
TRANSACTIONS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 158, Number 1, July 1971

MATCHING THEORY FOR
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MARTIN AIGNER AND THOMAS A. DOWLING

Abstract. Given two combinatorial (pre-) geometries and an arbitrary binary

relation between their point sets, a matching is a subrelation which defines a bijection

between independent sets of the geometries. The theory of matchings of maximum

cardinality is developed in two directions, one of an algorithmic, the other of a

structural nature. In the first part, the concept of an augmenting chain is introduced

to establish as principal results a min-max type theorem and a generalized Marriage

Theorem. In the second part, Ore's notion of a deficiency function for bipartite graphs

is extended to determine the structure of the set of critical sets, i.e. those with maxi-

mum deficiency. The two parts of the investigation are then connected using the

theory of Galois connections.

1. Introduction. A geometric relation is defined as a triple (G(S), R, G'(T)),

where G(S), G'(T) are pregeometries (matroids) on point sets S, T, respectively,

and R ç S x T is an arbitrary binary relation from S to /. The simplest example of

a geometric relation is a bipartite graph, in which G(S), G'(T) are free geometries.

In the present paper, we consider several questions which originated historically

with finite bipartite graphs, or with their equivalent representation as a family of

subsets of a finite set. Some classical results of matching theory for bipartite graphs

are extended to geometric relations.

A matching in a geometric relation (G(S), R, G'(T)) is a subset M of R, the

elements of which define a bijection cpM from an independent set of G(S) to an

independent set of G'(T). We assume that both G(S), G'(T) have finite rank, from

which it follows that any matching is finite. A maximum matching is one of maximum

cardinality.

By a support of (G(S), R, G'(T)), we understand a pair (C, D) of closed sets in

G(S), G'(T), respectively, which cover R in the sense that, for all (c, d) e R, either

ce C or de D holds. The flats C, D are called the elements of the support (C, D).

The rank p(C, D) is the sum of the ranks of its elements, and a minimum support is

one of minimum rank.
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For bipartite graphs our definitions reduce to the usual ones. In this case, the

concepts of maximum matching and minimum support are related by the well-

known König-Egervary theorem. We extend this theorem to geometric relations

(Theorem 2) in §3. The proof rests on a characterization (Theorem 1) of a maximum

matching in terms of the nonexistence of an "augmenting chain". The latter

concept originated with bipartite graphs (cf. Berge [2]), where it is associated with

the "Hungarian method" for finding a maximum matching. Our definition extends

the notion of an augmenting chain to geometric relations by means of the MacLane-

Steinitz exchange property.

In §4, Ore's [8] definition of a deficiency function on subsets of S, for the case of

a bipartite graph, is generalized to a geometric relation. The sets of maximal

deficiency, called critical sets, are shown to form a ring. The open sets in this ring

form a distributive sublattice of the lattice of open sets (Theorem 3).

The notion of maximal deficiency is applied in §5 to obtain an expression for the

cardinality of a maximum matching (Theorem 4), a result proved by Ore [8] for

bipartite graphs. As a corollary to Theorem 4, we obtain a generalization of the

Marriage Theorem of P. Hall (see e.g. [6]) and Rado [9]. The minimal critical open

set is characterized in terms of the effect on the maximal deficiency when contract-

ing G(S) by a point.

In §6, we investigate the structure of minimum supports. The relation R induces

a dual Galois connection between the lattices of closed sets in G(S), G'(T), for

which the elements of irredundant supports (defined in §6) are the coclosed elements,

with the canonical anti-isomorphism between the quotient lattices specifying the

corresponding elements in each such support. Among these, the elements of

minimum supports are shown to form anti-isomorphic distributive sublattices of the

lattices of closed sets of G(S), G'(T). As a consequence, we show that the minimum

supports exhibit a distributive lattice structure (Theorem 5).

2. Preliminaries. Our primary reference for notation, definitions, and termin-

ology is Crapo and Rota [4]. We summarize some basic concepts in the present

section which will be needed later.

A pregeometry G(S) consists of a set 5 together with a closure operator / on

subsets of S enjoying the following properties :

(2.1) Exchange property. For any elements a,beS, and for any subset A^S,

ifae J(A u b),a$ J(A), then b e J(A u a).

(2.2) Finite basis property. Any subset A^S has a finite subset A0 such that

J(A0)=J(A).

We shall frequently denote the closure J(A) of a subset A^S simply by A.

A set A ç S is closed if A = A, and open if its complement in S is closed. A pre-

geometry G(S) is open if the null set is closed, i.e. if S is open.

A combinatorial geometry (briefly, a geometry) is an open pregeometry G(S)

for which the elements a e S, called points, are closed. Canonically associated with
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any pregeometry G(S) is a geometry G(S0) whose points are equivalence classes of

elements of S—f, under the equivalence relation a~b if and only if a = b.

Given a pregeometry G(S) and subsets A, B of S with As B the minor G,A-B] is a

pregeometry on the difference set B — A with closure operator

(2.3) JuAQ = (J(C KJA)nB)-A   for C <= B-A.

Of particular importance among minors are the restrictions to sets BsS,

(2.4) /[0.B](C) = CnB   for C s 5,

and the contractions to sets 5—yi,

(2.5) /M>SJ(C) = J(C u y4)-¿    for C £ S-¿.

The set 5 s 5 is independent if it is a minimal set with given closure. By (2.2) any

independent set is finite. The rank r(A) of a set As S is defined as the cardinality

of the largest independent subset of A. The rank function r satisfies the (upper)

semimodular inequality

(2.6) r(Ax u A2) + r(Ax n ^2) á r(Ax) + r(A2).

For a minor GM>B] of G(S), the rank function is

(2.7) i-MiB,(C) = r(A\J C)-r(A)   where C s B-A.

It follows from (2.7) that if C is independent in the minor G[A¡m, then it is also

independent in G(S).

The closed sets, or flats, of a pregeometry G(S), ordered by inclusion, form a

geometric lattice L(S) in which

(2.8) d v C2 = J(CX u C2),       Cx A C2 = Cxn C2.

The lattice /.(S) is anti-isomorphic to the lattice M(S) of open sets. A canonical

anti-isomorphism is provided by complementation C ^ S—C with respect to 5".

The cardinality of any finite set A will be denoted by v(A).

3. Augmenting chains. Throughout this paper, we consider an arbitrary (but

fixed) geometric relation and denote it by (G(S), R, G'(T)). The rank functions of

G(S), G'(T) will be denoted by r, r', respectively. The converse geometric relation of

(G(S), R, G'(T)) is the relation (G'(T), R', G(S)) where R'sTxS is defined by

(b, a) e R' if and only if (a, b) e R. Most of the problems we consider will be sym-

metric with respect to G(S) and G'(T). The distinction between a geometric relation

and its converse in such cases is unnecessary, but it will be convenient to distinguish

the two on some occasions.

The relation R defines a function, which we also denote by R, from subsets of S

to subsets of T, where, for any subset A s S,

(3.1) R(A) = {beT:(a,b)eR for some a e A}.
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The fonction 7? is order-preserving between the Boolean algebras B(S) and B(T),

(3.2) Ax £ A2   implies   R(AX) S R(A2),

preserves unions,

(3.3) R(AX u A2) = R(AJ u R(A2),

but not necessarily intersections,

(3.4) R(A1 n A2) s R(A,) n i?(/J2).

It follows from (3.2) to (3.4) and the semimodular inequality (2.6) for r' that the

composite function r'R is upper semimodular on subsets of S:

(3.5) r'(R(A1 u A2)) + r'(R(A1 n ¿a)) £ r'(/?(^i)) + r'(Ä(^a)).

The analogous definition and properties hold for the converse relation 7?'.

A matching M in (G(S), R, G'(T)) will be denoted alternatively by its correspond-

ing bijection </>M: A —> 7i when it is necessary to specify the independent sets A, B

which are matched by M. Thus

M = {(a, <pM(a)) : aeA}.

Definition. Given a matching <f>M: A -> B in (G(S), R, G'(T)), an augmenting

chain with respect to M is a sequence

(3.6) (ízó, b[), (bu a,), (a[, b'2),..., (bn, an), (a'n, b'n + j)

of 2n +1 (n è 0) distinct ordered pairs such that

(3.7)
(a,, h) eM, I ^ i ^ n.

(ai,b'i + l)eR-M,        0 ^ i ^ n.

(3.8) a'0eS-I,       b'n + 1eT-B.

a', el,       a'^jíÍA- (J a,) u Ü «i).
(3.9) u   7 ;  z;1 y     ¿à/à*.

h', eB,        b'^J^B- y è,) u \j ¿;),

Note that if both G(S), G'(T) are free geometries, (3.9) implies that a't = au

b[ = b, for 1 ikiikn, so that our definition reduces to that of an augmenting chain

in a bipartite graph. We shall prove that M is a maximum matching in

(G(S), R, G'(T)) if and only if there does not exist an augmenting chain with

respect to M. The first step in the proof is

Proposition 1. If a matching M admits an augmenting chain, it is not maximum.

Proof. Let the chain be given by (3.6), and define

P = {(a* 60 : 1 á i á n},      P' = {(aj, b't+l) : 0 á i ¿ n}.
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A straightforward inductive argument, using (3.9) and the exchange property,

shows that

A', = (A- Ûa,)uÙ a)

and

B\ = (b- \Jb,)v\J b\
\      í=i    /      i=\

are independent sets with closure A, B, respectively, for 1 g /á«. Thus by (3.8), the

sets A' = A'n u a'0, B' = B'ny-> b'n + x are independent sets, each of cardinality v(M)+l.

It follows that M' = (M—P) UP' is a matching of cardinality v(M)+1, so M is

not maximum.

Proposition 2. If M is a matching and (C, D) is a support, then v(M) 5= p(C, D).

Proof. By definition, R(S-C)sD. Thus

v(M) = v(A) = v(A n C) + v(A n (S-C))

= v(A n C) + v(cbM(A n (S-C))) = r(A n C)+r'(cpM(A n (S-C)))

í r(A n C) + r'(R(A n (S-C))) g r(C) + r'(R(S-C))

^ r(C) + r'(D) = p(C, D).

To prove the converse of Proposition 1, we require several lemmas valid for any

pregeometry.

Lemma 1. If BX,B2 are subsets of an independent set B, then

BxnBa = J(BX n B2).

The proof is straightforward.

Lemma 2. If B is an independent set, and DsB, then the set

Bx = {beB: D $ J(B-b)}

is the unique minimal subset of B whose closure contains D.

Proof. Suppose D s B2, where B2 s B. If Bx $ B2, there exists a point be Bx

such that B2sB — b. But then DsJ(B-b), contradicting the definition of Bx.

Thus DsB2, B2sB imply B2^BX. To prove that DsBx, we apply Lemma 1:

d s  n j(B-b) = /( n (B-b')\ = bx.
b'EB-Bx \b'EB-B1 )

Lemma 3. Let B be an independent set and

fljC^C^C.Ci,

a strictly increasing sequence of subsets of B. Suppose bh b[ (1 ̂  /'^ «) are points such

that

(3.10) bieBj-Bi^,

(3.11) b'ieBl-J(B-b).
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Then

b'^J^B-U 6,) u 'Çj ¿>;)   for Xúiún.

Proof. Let

m = (77,- Ù b\ u (j b',.

We first show that B', =77,. By (3.11), b'1^J(B1-b1), so (3.10) and the exchange

property (2.1) imply the result for /=1. The proof proceeds by induction. Let

C, = U-Ü *,) u Ü V, = (Bt-B,.,) u S,'.!.
Then

Ç = /((Z?,-^) u 5Í-0 = Jm-Bi.J u J^'.O

= /((A - A¡ _ O u 77; _ j)       (by hypothesis)

= J((Bi-Bi_1)uBi.1) = B„

and by a similar argument,

/(Ç-ôO = Jm-B^-bt) u A'-i) = S<A-A).

It follows now from (3.11) and the exchange property that

Bl = Ci=J((C,-bi)vb¡) = B'i.

Thus

J((B~ M6í)u PI6î)= /«i,-i,«-i-w u #-J = ■/(fi-^),

and the lemma follows by (3.11).

Lemma 4. Le/ ^4 ¿>e a« independent set and

A0  C ^  C ^2 C...C  An

a strictly increasing sequence of subsets of A. Suppose a¡, a\ (1 f¡¡ /' ¿ «) are points such

that

(3.12) a, e A, — At_x,

(3.13) a'ieJ(A-Al_1)-J(A-ai).

Then

al4j((A- Ù a,) u y a;)   /or l á i S ».

Proof. By (3.13), ai ^J(A-ax), so assume inductively that the lemma holds up

to /— 1, where 2^i^n. Then

C, = [A- U a,   u U a]
\      j = i    I      f-i

is independent. We can write Ci = (Ci — a,)fu (A — Ai_1) and apply Lemma 1,

obtaining

J(Ci-a,)nJ(A-Ai.1) = J(A-A,.1-ai).
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Since J(A-Ai_x-a)sJ(A-ai), it follows by (3.13) that a\ $ J(Ct - a), and the

proof is complete.

Proposition 3. If a matching <pM: A —>- B does not admit an augmenting chain,

there exists a support (C, D), where CsA, D = <pM(A — C).

Proof. Let E0 = S—A. Then R(E0)sB, for otherwise there would exist a trivial

augmenting chain consisting of one element of R. Let Bx be the minimal subset of

B, defined according to Lemma 2, such that R(E0)sBx. Let Ax = cp^1(Bx), Ex

= S—J(A — AX). In general, having defined £|_i, we define B{ as the minimal subset

of B such that R(E¡.X) n BsBh and set Ai = cPû1(Bi), Ei = S-J(A-A). Since

Ai_xsEi_x, cpM(Ai_x)sR(Ei_x)nB, but <pM(Ai_x)$J(B-b) for any beBt.v

Thus by Lemma 2, Bí_xsBí, and so Ai_xsAu Ei^1sEi. It is clear, moreover, that

each of the sequences A¡, Bu Ef is strictly increasing up to and including some

index m, after which the process terminates. Thus

R(Em) nBsBm,
but

R(E) n B $ Bi

for O^i^m—l, where B0= 0.

We shall prove that R(E)sB for all i, O^i^m. Assuming otherwise, let « be

the smallest integer, 1 ̂ n^m, for which R(En)^B. Then there exists (a'n, b'n + x)e R

such that

b'n + xeT-B,       a'neEn-En_x = J(A-An-1)-J(A-An).

If a'n e J(A — a) for all ae An, then a'n e J(A — An) by Lemma 1. Hence there exists

an e An such that a'n^J(A—an). Since a'n eJ(A — An_x), a'ne J(A — a) for all

aeAn-x, and therefore ane An-An_x. Let bn = cPM(an), then bne Bn-Bn_x. By

Lemma 2 and the definition of Bn, there exists (a'n-i, b'n) e R such that an-i e En-i

and b'n e B-J(B-bn). Thus b'n <ß £„_!, and so b'n e Bn-Bn-i- Since R(En-2)^Bn^x

by assumption, it follows that

a'n.xeEn-1-En^a   and   (a'n.x, b'n)£M.

We can now repeat the above argument beginning with a'n_x. The process

terminates when we arrive finally at a'0 e E0, having constructed a sequence

(3.14) (b'n + u a'n), (an, bn), (b'n, <&-ù> • • •> («i, bx), (b'x, a'0),

(a¡, b) e M, l ú i Ú n,

(a'i,b't + x)eR-M,        0 ^ i S n.

(3.16) a'0eS-I,       b'n + 1eT-B,

aieAi-Ai_x,       a'leJ(A-Ai_x)-J(A-a),

bieBi-Bi^x,        b'ieBi-J(B-b),

where

(3.15)

l -¿ i ^n.
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Now (3.15) and (3.16) are restatements of (3.7) and (3.8) and by Lemmas 3 and

4, therefore, (3.17) implies (3.9). It follows that the sequence (3.14) is an augmenting

chain (in reverse order), contradicting the hypothesis. Thus R(Ei_1)ç,Bi for

l^i^m, and R(Em)£Bm. Since Em = S-J(A - Am), the pair (C, D) with C= A - Am,

D = Bm constitutes a support as required, and the proposition follows.

Our preceding results are summarized in

Theorem 1. A matching is maximum if and only if it does not admit an augmenting

chain.

Proof. The necessity of the condition is stated in Proposition 1. If there does not

exist an augmenting chain, then the support guaranteed by Proposition 3 has rank

equal to the cardinality of the matching, which together with Proposition 2 estab-

lishes the maximality of the matching.

Corollary. If a matching <pM: A -> B is not maximum, there exists a matching

<pM.:A'Ua^B'u b, where I' = I, B' = B, anda$A,b$B.

Proof. By Theorem 1, there exists an augmenting chain with respect to M, and

the matching M' may be constructed as in the proof of Proposition 1.

The following theorem, an immediate consequence of our preceding results,

provides a generalization of the König-Egervary theorem to geometric relations.

Theorem 2. The maximum cardinality of a matching in (G(S), R, G'(T)) is equal

to the minimum rank of a support^).

Proof. By Theorem 1 a maximum matching M satisfies the hypothesis of Prop-

osition 3, so there exists a support of rank v(M). By Proposition 2, this support is

minimum.

4. Deficiency and critical sets. The results of §3 may be applied directly to

obtain an expression for the cardinality of a maximum matching in a geometric

relation (G(S), R, G'(T)), from which a generalization of the Marriage Theorem of

Hall and Rado follows as a corollary. Before establishing these results, however,

we consider in this section the notion of a deficiency function on subsets of S. The

concept was introduced by Ore [8] for bipartite graphs, and may be extended to

geometric relations as follows.

For any subset A of S, define the deficiency 8(A) of A by

(4.1) 8(A) = r(S)-r(S-A)-r'(R(A)).

Since S—(A1 u A2), S—(A1 n A2) are, respectively, identical to (S—AJ n (S—A2),

(S— Ax) u (S—A2), it follows from (2.6) and (3.5) that S is lower semimodular:

(4.2) 8(A, u A2) + 8(AX n A2) ^ 8(A1) + 8(A2).

(2) It can be shown that Theorem 2 is equivalent to a result obtained independently by

Edmonds [5].
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The rank functions r, r' are finite by (2.2), so the deficiency 8(A) is finite for all

A ç S. Since 8 is integer-valued and bounded above by r(S)l there exists a maximum

deficiency

(4.3) 7, - max 8(A).
ASS

Subsets A of S satisfying 8(A) —r¡ will be called critical sets. Since S(0) = O, r¡^0,

and 77 >0 if and only if all critical sets are nonempty. An immediate consequence of

(4.2) is

Proposition 4. If A1} A2 are critical sets in G(S), then Ax u A2, Ax n A2 are

critical sets.

It follows from Proposition 4 that the family of critical sets is closed under

finite unions and intersections, and thus forms a ring of sets. The open sets in this

ring will be of particular importance below. In investigating their structure, it is

convenient to consider the coclosure operator K induced by the closure operator

/ of G(S). For any subset A = S— B, we define

K(A) = S-J(B).

Clearly K is a coclosure operator: K(A)çA, K2(A) = K(A), and A^A2 implies

K(A1)^K(A2). The coclosed sets are the open sets of G(S). Suprema and infima

in the lattice M(S) of open sets are given by

(4.4) A1 v A3 = Ai u A2,       Ax A A2 = K(Ai n A2).

If A = S-B is any subset of S, then r(B) = r(B), that is

(4.5) r(S-K(A)) = r(S-A),

while K(A)^A implies by (3.1)

(4.6) r'(R(K(A))) Ú r'(R(A)).

From (4.5) and (4.6) we have

(4.7) 8(K(A)) ä 8(A).

Thus

Proposition 5. If A is a critical set, then K(A) is a critical open set.

Propositions 4 and 5, together with (4.4), imply

Proposition 6. The critical open sets form a sublattice M0(S) of the lattice M(S)

of open sets in G(S).

In the case where G(S) is a free geometry, all subsets of S are open, and the

sublattice M0(S) of the Boolean algebra M(S) is a ring. By a well-known result

(see e.g. [3]), rings are characterized latticially by the distributive property: every
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distributive lattice is isomorphic to a ring of sets. For arbitrary G(S), we have as

analogue

Theorem 3. The sublattice M0(S) of critical open sets is distributive.

Proof. By a theorem of Birkhoff [3], a lattice is distributive if and only if it

contains neither Mx nor M2 (Figure 1) as a sublattice.

a o: A  Ó

OS

OC

Mx M2

Figure 1

We observe that if either Mx or M2 is a sublattice of M0(S), then

(4.8) J(R(A n B)) = J(R(D)),

since A n B is a critical set, D = K(A n B), and equality must hold in (4.6) when-

ever both sets are critical.

Suppose first that Mx is a sublattice of M0(S). Then by (4.4),

(4.9) AvB = A\JC = E,

(4.10) K(A nB) = K(A nC) = D.

It follows from (4.9) that B-A = C-A, so B-CsAn B. Then by (4.8),

R(B-C) s R(A nB)s J(R(A n B)) = J(R(D)) s J(R(C)).

Thus

r'(R(B)) = r'(R(C) U R(B-C)) = r'(R(C)),

which implies, since 8(B) = 8(C) = •>?, that r(S-B) = r(S-C). But B>C in Mx,

hence in M(S), so in the lattice L(S) of closed sets S—B<S—C, and hence

r(S-B) <r(S-C), a contradiction.

If Af2 is a sublattice of M0(S), then

(4.11)

(4.12)

AvB = A*JC = BuC=E,

K(A nB) = K(A n C) = K(B n C) = D.
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By (4.11) we have ,4-C=S-C=.E-C, so E-Cs A n B. Then from (4.8)

R(E- C) S R(A nB)s J(R(A n B)) = J(R(D)) s J(R(C)).

Thus

r'(R(E)) = r'(R(C) U R(E-C)) = r'(R(C)),

which implies as before that r(S—E) = r(S—C), a contradiction. The proof is

complete.

The foregoing results may, of course, be applied to subsets of G'(T). In particu-

lar, for the converse relation R' to R, a deficiency function 8' is defined on subsets of

Thy

8'(B) = r'(T)-r'(T-B)-r(R'(B)),

with corresponding maximum deficiency

r{ = max 8'(B).

The critical sets and critical open sets in G'(T) are defined in the obvious manner.

By our preceding results, the critical open sets of G'(T) form a distributive sub-

lattice M'0(T) of the lattice M'(T) of open sets in G'(T).

5. Maximum matchings. As a consequence of Theorem 2, we may express the

cardinality of a maximum matching in (G(S), R, G'(T)) in terms of the maximum

deficiency rj = maxJ4çS 8(A) defined in §4. The result, which generalizes a theorem of

Ore [8] for bipartite graphs, is

Theorem 4. The cardinality of a maximum matching M in (G(S), R, G'(T)) is

(5.1) v(M) = r(S)-v.

Proof. By Theorem 2, it is sufficient to prove that r(S) — r¡ is the rank of a mini-

mum support. If (C, D) is a minimum support, then clearly D=J(R(S—C)), and

p(C,D) = r(C) + r'(R(S-C))

= min(r(B) + r'(R(S-B))) = min (r(S)-8(S-B)).
Jes jes

Since by (4.7), r(S)-8(S-B)úr(S)-8(S- B) for any BsS, we may rewrite the

equality above as

p(C, D) = min (r (S) -8(S -B))
BSS

= r(S)-max 8(S-B) = r(S)-7¡.
BSS

The case r¡ = 0 in Theorem 4 provides a generalization of the Marriage Theorem

of P. Hall and Rado to geometric relations :
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Corollary. There exists a matching of cardinality r(S) in (G(S), R, G'(T)) if and

only if

(5.2) r(S)-r(S-A) S r'(R(A))

for all subsets A of S.

Recalling the definition (2.7) of the rank function for a minor, we observe that

condition (5.2) may be alternatively stated as follows:

For every subset A Ç S, the rank of the contraction of G(S) to A does not exceed

the rank of the reduction of G'(T) to R(A), i.e.

(5.3) rÍS_A,s](A) 5¡ r'l0¡RlA»(R(A)).

We close this section by characterizing the minimal critical set, which by (4.7)

is also the minimal element in the lattice M0(S).

Proposition 7. Let A0 be the minimal critical set in S. Then a point ae S belongs

to A0 if and only if the maximum deficiency rj is reduced by one when G(S) is con-

tracted to S—ä. If a £ A0, the maximum deficiency r¡ remains unchanged when

contracting G(S) to S—ä.

Proof. The deficiency 8ia_S](A) of a set A^S—ä for (Gla¡Sh 7?, G'(T)) is

W^) = WS" «) - raAS- (A u a)) - r'(R(A))

= (r(S)-r(ä))-(r(S-A)-r(ä))-r'(R(A)) = 8(A).

If a $ A0, then a e S—A0, so ä^S—A0 since S—A0 is closed. Thus a$ A0 implies

A0^S—ä and hence, by (5.4), (GM>S], 7?, G'(T)) has maximum deficiency t¡.

If ae A0, however, it follows from (5.4) and the minimality of A0 that the

maximum deficiency is reduced when G(S) is contracted to S—ä. It is sufficient to

show that the set A0 — ä has deficiency tj — lin (G(S), R, G'(T)). Now since ä^A0,

8(A0-ä) = r(S)-r((S-A0)U ä)-r'(R(A0-ä))

= r(S)-r(S-A0)-l-r'(R(A0-ä))

^ r(S)-r(S-A0)-r'(R(A0))-l

= 8(A0)-l -,-L

But 8(A0 — a)fsr¡— 1 since A0 is minimal, so equality holds, and the proof is

complete.

6. The structure of minimum supports. Let 7.(5), L'(T) denote the geometric

lattices of closed sets in G(S), G'(T), respectively. The same symbol will be used to

denote an arbitrary closed set of G(S) when it is regarded as an element of the

lattice 7.(5), and similarly for G'(T).

Consider now a pair of functions a: 7.(5) -+L'(T), a':L'(T)~^-L(S) defined by

(6.1) o(C) = J(R(S-C)),       o'(D) = J(R'(T-D)),
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where R'sTx S is the converse relation to R. Clearly a, a' are order-inverting:

Cx á C2   implies   a(Cx) ä a(C2),

Dx ^ D2   implies   a'(Dx) ^ a'(D2).

Furthermore, we have for any C e L(S), D e L'(T),

(6.3) ctV(C) ^ C,        aa'(D) Í D,

as is easily verified.

We deduce from (6.2) and (6.3) that the pair of functions a, a' forms a dual

Galois connection between the lattices L(S) and L'(T), that is, a Galois connection

between their dual lattices. It follows from the theory of Galois connections

(cf. Ore [7]) that the composite functions oo, oo' are coclosure operators on

L(S), L'(T), respectively, and that the quotient lattices Q(S), Q'(T) of coclosed

elements are anti-isomorphic, with the restriction of a to Q(S) providing a canon-

ical anti-isomorphism. Furthermore, for any subset {C¡ : i el} of Q,

V c, = V Q,      A Q = o'a[/\ d),
iel iel iel \iel       I

and similarly for Q'(T) and L'(T).

The preceding observations may be related to supports of (G(S), R, G'(T)) as

follows. Let us define a support (C, D) to be irredundant if no pair (Cx, Dx) of

closed sets, such that Cx u Dx is a proper subset of C u D, is a support. Clearly

any minimum support is irredundant.

Proposition 8. A pair (C, D) of closed sets in G(S), G'(T) is an irredundant

support if and only if Ce Q(S), D = o(C), or equivalently D e Q'(T), C=a'(D).

Proof. Suppose (C, D) is an irredundant support. By the definition of a support,

D^J(R(S— C)) = a(C), and irredundancy implies that D = a(C). By symmetry,

C=a'(D), i.e. C=a'a(D), so C e Q(S).

Conversely, if C e Q(S), D = a(C), then (C, D) is a support, but (C, Dx) is not a

support for any proper closed subset Dx c D. Hence if (C, D) is xiot irredundant,

there exists a closed set CX^C such that CX^J(R'(T-D)) = a'(D). But then in

/.(S), a'a(C) < C, which contradicts C e gtS).

Consider now the minimum supports. If L0(S) is the subset of L(S) consisting

of those flats in G(S), which are elements of minimum supports, then L0(S) S Q(S)

by Proposition 8, and the corresponding subset L'0(T)sQ'(T) is order-anti-

isomorphic to L0(S) under a. Thus every minimum support is of the form (C, D),

where CeLQ(S), D = a(C), or equivalently, D e L'0(T), C=a'(D). The structure

of the subsets L0(S), L'0(T) will become apparent from our results in §4 through

Proposition 9. A closed set C in G(S) is an element of a minimum support if and

only if its complement S— C is a critical open set, and similarly for closed sets D in

G'(T).
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Proof. Suppose S—C is a critical open set. Then

p(C, o(0) = r(C) + r'(R(S-Q) = r(5)-S(5-C) = r(S)-n,

so (C, <r(C)) is a minimum support by Theorems 2 and 4.

Conversely, if (C, a(C)) is a minimum support, then

8(5-C) = r(S)-r(C)-r'(R(S-C))

= r(S)-p(C,a(C)) = v,

so 5— C is a critical open set.

The same result holds for a closed set D in G'(T) by symmetry.

The quotients Q(S), Q'(T) are lattices in which suprema coincide with suprema

in 7,(5), 7/(7"), respectively. For the subsets 7_0(5), L'0(T), the result is considerably

stronger.

Proposition 10. The subsets L0(S), L'0(T) are anti-isomorphic, distributive sub-

lattices of 7,(5), L'(T), respectively, and the restriction of a to L0(S) provides a

canonical anti-isomorphism.

Proof. By Theorem 3 the critical open sets in G(S), G'(T) form distributive

sublattices of the lattices M(S), M'(T) of open sets, respectively. Since distribu-

tivity is preserved under dualization, the complements of critical open sets in

G(S), G'(T) form distributive sublattices of 7.(5), 7/(7/ By Proposition 9 the

complements of critical open sets in C7(5), G'(T) are precisely the elements of

L0(S), L'0(T). That a is an anti-isomorphism from 7_0(5) to 7.0(F) follows from the

Galois connection theory, since 7,0(5) £ Q(S) and 7_Ó(F) is the image of 7_0(5)

under a.

The anti-isomorphism a from 7_0(5) to 7.0(F) implies that for any set {C¡ : / e 7}

of lattice elements in L0(S),

"(V Q) = A <c,),     or(A Q) = V °(Q),
Vie/       / is/ Vie/       / is/

where suprema and infima are as in 7.(5), L'(T), since L0(S), L'0(T) are sublattices.

Our results on the structure of minimum supports are summarized in

Theorem 5. Let M0(S), M'0(T) be the sublattices ofM(S), M'(T) whose elements

are the critical open sets in G(S), G'(T), respectively. Let L0(S), L'0(T) be the sub-

lattices of L(S), L'(T) whose elements are the set-theoretic complements of the

elements of M0(S), M'0(T). Then the sublattices L0(S), L'0(T) are distributive and

anti-isomorphic. The minimum supports of (G(S), R, G'(T)) consist of all pairs

(C, o(C)), CeL0(S), and, for any set {(C,, o(C,)) : i el} of minimum supports, the

pairs

(V c„ a °(c()\,     (A ct, V o(Cd)
Vie/ ¡e/ / Vie/ ieZ /

are minimum supports.
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We conclude with an example illustrating the foregoing theory. Take the geo-

metric relation consisting of the triple (G(S), I, G(S)), where G(S) is an arbitrary

open pregeometry and / the identity relation. Since in this case the maximum

cardinality of a matching obviously equals r(S), we have ?? = 0 by Theorem 4.

Hence the critical sets A S S are those which satisfy

(6.4) r(A) + r(S-A) = r(S).

Now it is easy to see that any such set A is closed, and hence by symmetry open as

well. Thus the lattices of critical and critical open sets coincide and, since according

to (6.4) this lattice is uniquely complemented, it is by Theorem 3 a Boolean algebra.

The dual lattice L0(S) is hence also a Boolean algebra and every minimum support

of (G(S), I, G(S)) is of the form (C, S-C),C satisfying (6.4). Since (6.4) character-

izes the separators of an open pregeometry, we thus obtain the well-known result

(see e.g. [4]) that the separators of a geometric lattice L form a Boolean algebra

which is a sublattice of L.
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