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WORD PROBLEM FOR RINGOIDS OF
NUMERICAL FUNCTIONS

A. ISKANDER

Abstract. A. The composition ringoid of functions on (i) the positive integers,

(ii) all integers, (iii) the reals and (iv) the complex numbers, do not satisfy any

identities other than those satisfied by all composition ringoids.

B. Given two words u, v of the free ringoid, specific functions on the positive

integers, /!,...,A- can be described such that u(fu...,fk) and v(f,.. .,fk),

evaluated at 1, are equal iff u = v is an identity of the free ringoid.

The word problem for different algebraic systems has been studied by several

authors (cf. e.g. [1], [3], [4], [5], [7], [9], [10] and connected literature quoted there).

The aim of this paper is to describe all identities satisfied in a class of certain

ringoids.

In §1 are formulated some imbeddability properties and representation of

semirings and composition ringoids; and also those with nullary operations.

In §11 we recall the construction of the free composition ringoid and formulate

the main theorem of this paper (B of the Abstract) and some of its immediate

corollaries (among which A of the Abstract). Thus there is an algorithm which

describes the identities satisfied in Zz, RR w.r.t. pointwise addition, multiplication

and composition of functions, which solves Problem 56, p. 158 of [1].

In §111 some lemmas and their immediate corollaries are proved basically to

provide the proof of the main theorem. Every word of the free composition

ringoid is reducible to a canonical form and two words are equivalent iff they are

reducible to the same canonical form.

In §1V how to modify the methods of the paper in order to apply them to

ringoids with nullary operations is shown.

For notations of the theory of universal algebras, cf. e.g. [1], [3], [6], [8]; for the

theory of recursive functions, cf. e.g. [4], [9], [10].

I would like to express my thanks to Garret Birkhoff, Kirby Baker and the

referee for reading the original manuscript and making valuable indications.

I. Semirings and ringoids.

1. Commutative semirings. By a semiring will be meant a nonvoid set together

with  two  associative  and  commutative  binary  operations:   addition   +   and
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multiplication x ; moreover, multiplication is distributive w.r.t. addition. A semiring

is said to be with 0 if it contains a neutral—w.r.t. addition—element 0, such that

the product of any element of the semiring and 0 is 0. A semiring is said to be with

1 if it contains a neutral—w.r.t. multiplication—element 1. A semiring is said to be

with 0 and 1 if it is with 0 and with 1 and 0 # 1.

The sets (i) N0 of all nonnegative integers, (ii) Z of all integers, (iii) Q of all

rational numbers, (iv) R of all real numbers, and (v) C of all complex numbers,

together with natural addition and multiplication, are examples of semirings with

Oand 1.

The sets (i) N of all positive integers, (ii) of all positive rational numbers and

(iii) of all positive real numbers are examples of semirings with 1 and without 0.

The set of all positive even integers is a semiring without 0 and without 1.

As in semigroups and rings:

Proposition 1. Every semiring is imbeddable into a semiring with 0 and 1.

2. Composition ringoids. By a ringoid will be meant a nonvoid set together with

three binary operations: addition +, multiplication x and composition o, such

that addition and multiplication define a semiring, composition is associative and

is right distributive with regard to both addition and multiplication. The associative

laws of addition, multiplication and composition, the commutative laws of addition

and multiplication and the distributive laws of multiplication with regard to ad-

dition and of composition with regard to the other two operations will be called

"laws of ringoids."

A ringoid is said to be with 0 (and/or 1) if addition and multiplication define a

semiring with 0 (and/or 1); moreover 0 ° a = 0 (1 ° a= 1) for all elements a of the

ringoid. A ringoid is said to be with e if it has a neutral—w.r.t. composition—

element e. A ringoid is said to be with 0, 1 and e if it is with 0, with 1 and with e;

moreover, 0, 1 and e are three distinct elements.

The sets (i) of all functions with finite range on the positive integers, the reals,

the complex numbers, (ii) of all primitive recursive functions, (iii) of all partial

recursive functions, (iv) NN, (v) Zz, (vi) QQ, (vii) RR, (viii) Cc together with point-

wise addition and multiplication and the composition of functions are examples of

ringoids. A^is a ringoid with 1 and e but without 0. The ringoids of (i) are without

e but with 1 in the first case, with 1 and 0 in the other cases. All other ringoids

above are with 0, 1 and e.

Proposition 2. Every ringoid is imbeddable into a ringoid with e.

3. Ringoids of semiring transformations.

Proposition 3. If A is a semiring then AA is a ringoid with e, where addition and

multiplication are pointwise and composition is the composition of functions, e is the

identical function on A; moreover, if A is with 0 (and/or 1) then AA will be with 0

(and/or 1); the 0(1) is the constant 0(l)-valued function.
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AA will be called the full ringoid of transformations of A.

A converse of Proposition 3 is

Proposition 4. Every ringoid is imbeddable into a full ringoid of transformations

with 0, 1 and e.

Thus every ringoid can be considered a ringoid of transformations of a semiring

with 0 and 1.

Propositions 1, 2, 3, 4 are similar to results in [2].

4. Functional extensions. Let A, B be semirings and R(A), R(B) be ringoids of

transformations of A and B respectively. R(B) will be called a functional extension

of R(A) if A can be identified with a subsemiring of B and, for any finite subset X

of A and for any function fe R(A), there is a function g e R(B) such that the

restrictions off and g to A coincide.

II. The free ringoid

5. The word algebra. Let F be a countably infinite set. We recall the construction

of the word algebra IF over F with binary operations +, x and o (cf. e.g. [1], [3],

[6], [8]):
(a) Words of rank 0 are elements of F, i.e. F^ W.

(b) lfu,ve W, the ranks of u, v are less than k, and at least one of u, v is of rank

k — 1, then (u) + (v), (u) x (v), (u) ° (v) e W are of rank k.

(c) Every word of W is obtained by repeated use of (a) and (b).

The operations +, x, o are defined on W as usual.

The word algebra with nullary operations is the word algebra over the union of

F and the nullary operations.

r(u) will denote the rank of u.

Proposition 5. The set W is primitive recursive; the rank function r has a

primitive recursive extension (cf. e.g. [4], [9], [10]).

If u e W and a(u) denotes the number of distinct elements of F occurring in u,

then

Proposition 6. 1 ¿a(u)^2r(u); both bounds are reached.

6. The free ringoid—the main theorem. The free ringoid over F is the factor

algebra of IF by the congruence relation =, where «= v iff u can be transformed to v

by repeated use of laws of ringoids.

Theorem. Given any two words u,v in fx,.. .,fkeF, one can construct specific

functions fx,.. .,fk on the positive integers, such that

u = v iffu(fi,.. .,fi)(\) = v(fl,. ..,fk)(\);

fl(x) = exp(q;pi(x+t)s),       1 ú i Ú k;

s = c(r(u + v)),       t = (s+\)\;

p = (s + 2)ts + 1,       q = (s + 2)ps + 1;

c(n) = (« + !) sg (2-^-w)-f-exp (2; exp (2; n+1)) sg («^ 1).
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The proof of the Theorem will be given in §111. We conclude §11 by some appli-

cations of this Theorem.

7. Corollary 1. The graph of = is a primitive recursive set and so the set of all

identities of the variety of all ringoids is primitive recursive.

Denote by A0 the subringoid of NN generated by all functions//(x) described in

the Theorem, for all ¿S2 and l^i^s. Since it is clear that//(x) in the Theorem,

once constructed, can be cut down to functions with finite range, we will consider

ft(x), functions with finite range. We have

Corollary 2. For any u,ve W, u=v iff u = v is an identity in A0.

Corollary 3. The ringoid A0 generates the variety of all ringoids.

Corollary 4. If a ringoid A is a functional extension of A0, then the algorithm of

the Theorem determines the identities of A, and so u = v is an identity in A iff it is an

identity in every ringoid and A generates the variety of all ringoids.

Letw = rbean identity in A and letg!,.. .,gk e A0. A can be considered a ringoid

of transformations R(B) where B is a semiring and A7 is a subsemiring of B. Let

X(n) be the set of all integers of A7 appearing in the computation of u(glt..., gk)(n)

and v(gx,. ■ ■, gk)(n). X(n) is finite for every « e N. As A is a functional extension of

A0, there are ax,.. ■, ak e A such that the restrictions of a¡ and g¡ to X(n) coincide,

1 </¿«. Hence

u(gx,..-, gk)(n) = u(ax,..., ak)(n)

= v(flx,..., ak)(n) = v(gx,.. .,gk)(n),

i.e., for all ne N, g1;.. .,gke A0, u(gx,..., gk)(n) = v(gx,..., gk)(n).

Corollary 5. The algorithm of the Theorem describes all identities in

(a) the ringoid of all functions on (i) the positive integers, (ii) the integers, (iii) the

real numbers, (iv) the complex numbers;

(b) the ringoid of all functions with finite range on (i), (ii), (iii) and (iv).

The algorithm of the Theorem describes all identities in any of the ringoids of

functions on any subsemiring of the complex numbers given in §11.

Each of the ringoids concerned is clearly a functional extension of A0.

The word problem for Zz and RR has been suggested by G. Birkhoff in [1,

Problem 56, p. 158].

III. Proof of the Theorem. To prove the Theorem we need some preparations

and must prove some lemmas.

For any w(l),..., u(n) e W, we write

!{u(i) : l úiún} for (■■ -(u(l) + u(2))+ ■■ -) + u(n),

U{u(i) : lúiún} for (■■ -(u(l)xu(2))x ■■ -)xu(n),

nu for 2 {«0) '• l^i^n},

Mnforri{w(0 : lúiún},

in case u=u(l)= ■ ■ • =u(ri).
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8. Canonical forms. We define by induction on a function d, called the depth,

words of certain type, called canonical forms. We define equivalence of two such

forms and also a function b, called the width of the form :

A canonical form of depth 0 is a word ueW, d(u) = 0 of the type :

(1) u = 2 {'O') Il {(/('7))r(i;) : 1 Ú j ¿ k(i)} :lá/á„),

where/(//') e F, r(ij), t(i), k(i), n e N. No two /(//) with same i and distinct j and

also, no two {{f(ij)}mn : 1 újú.k(i)} with distinct i are equal (via sets). (As is the

sth cartesian power of A.)

b(u) = max ({2 MO : 1 á í á »}} U g Hü) :líji k(i)} : 1 f;i á *})■

With « we associate the set

{O/W" : 1 = 7 = ¿(Of" : 1 = / = »}•

Two canonical forms u, v of depth 0 are equivalent, and we write u eq v if their

associated sets are equal.

It is clear that if u eq v, d(u) = d(v) = 0, then b(u) = b(v).

Suppose all canonical forms of depth less than d, d e N, their equivalence, their

associated sets and their width have been defined. Let it also be true that for two

such forms u, v,ueqv implies d(u) = d(v) and b(u) = b(v). A canonical form u of

depth d is of type

(2)       u = 2 {m n Mu)rw : i = y = km ■. i ¿ ̂  4

where f (/'), r(y), &(/), « e TV and u(ij) e F or w(//') =/(//') ° (ux(ij)), where ii|((¡f) is a

canonical form of depth less than d and at least one of u(ij) is of depth 4—1. No

two u'ij) with same /' and distinct j and no two sets {{u(ij)}r(ii) : 1 ̂ j^k(i)} with

distinct / are equal, where two equivalent forms are considered equal;

(f° u) eq (g ° v) means f=g, u eq v.

b(u) = max ({2 {?(') : 1 ^ i ^ «}}

(3) u {2 Mi/) : 1 ST'S MO} :íáíá8¡

u{è(«((/)): 1 Sjúk(i): lúiún})-

With « we associate the set

{{{u(v)YiW 'lûjÛ k(i)}m : 1 ú i S »},

Two canonical forms w, y of depth ú? are equivalent if their associated sets are

equal.

It is clear that each of the depth and width functions takes the same value at

equivalent forms.
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Proposition 7. The set of all canonical forms is primitive recursive; moreover, the

depth and width functions have primitive recursive extensions (cf. e.g. [4], [9], [10]).

9. Reduction to canonical forms.

Proposition 8. Every word of W can be reduced to a canonical form by repeated

use of laws of ringoids.

In other words, to every u e W we can construct a canonical form v such that

u=v; every congruence class of = contains a canonical form.

It is clear that in a canonical form no well formed part of the expression looks

like ux(v+w),(v + w)xu,(v + w) ° u,(vxw) ° u and reducing an expression to

canonical form consists of repeated use of laws of ringoids, in order to remove

expressions of the above form, and grouping similar terms (up to associativity and

commutativity of + and x ).

Although every congruence class of = in W has a canonical form, the set of all

canonical forms is not a transversal for W/= in W (cf. e.g. [4]). We could have

defined normal forms by lexicographically ordering the canonical forms and

pointing, in every class, the form with minimal order.

If c(n) is the maximum of all widths of all canonical forms of words of rank «,

then

Proposition 9. c(«) = (n + l) sg(2-«) + exp(2; exp (2; «-1)) sg(«-l).

10. Number theoretic preparations. If a, be N$ then we shall write a(i) for the

/th component of a, l^/^4; a* for (a(l))*(1,x(a(2))W2)x(a(3))*(3)x(a(4))A(4>: aúb

for a(i)<,b(i), 1 ̂  i^ 4 and 0 for (0, 0, 0, 0).

Lemma 1. Let n,ue N*, a¡,b¡eN0, a¡, b¡<u(l) for all O^i^n and let \<u(i),

(1 +«(/))(«(/))(1+"(,))^«(/+1), 1 ̂ /^3 and

(4) 2 fo*': ° = ' = "} = 2 &"' : ° = ' = "}•
Then a¡=b¡for allQúiún.

Proof. Rewrite each side of (4) as a polynomial in «(4). Consider the coefficients

of (u(4))k in both sides, say yk, zk, where

yk = 2 {a,H(l)ia)H(2)'<2)«(3)i(3) : 0 ^ i ^ n, i(4) = k}

< 2{«(l)1+í<1>«(2)í<2)«(3);(3> : 0 ^ i ú n,i(4) = k}

< (1+«(1))«(1)<1+"<1))2{«(2)''<2)"(3),<3) : 0 ^ i(2) ^ n(2),0 ^ i(3) ^ «(3)}

^ 2iM(2)1+i<2>w(3)/<3> : ° = ,-(2) = "(2)'0 = '(3) S "(3)}

< (1+/i(2))h(2)1+"(2)2{«(3)''(3) : 0 g i(3) <, n(3)}

^2{«(3)™:0^i(3);ii,(3)}

^ (1+h(3))b(3)1+"(3> ^ «(4).



1971]     WORD PROBLEM FOR RINGOIDS OF NUMERICAL FUNCTIONS        405

Thus yk<u(4), the same is true for zk, i.e. we have two representations of the

same integer as «(4)-polynomial and hence yk = zk for all 0 ¿ k i= n(4). Repeating the

same argument for the coefficients of w(3)m in yk = zk, we deduce that the co-

efficients of u(3)mu(4)k in both sides of (4) are equal. Repeating the same process

once more we get that the coefficients of u(2)pu(3)mu(4)k in both sides of (4) are

equal, i.e.

2 {a;«(iya) : 0 í i í n, i(2) = p, i(3) = m, i(4) = k}

= 2 {Ml)/a) : 0 ú i Ú », i(2) = p, i(3) = m, i(4) = k}.

Again we have two «(^-representations of the same integer from which Lemma 1

follows.

It may be noticed that the coefficient of any product of powers of «(1), u(2), u(3),

u(4) in both sides of (4) are equal.

11. Lemma 2. If u,v are canonical forms in fx,.. .,fk, fx,.. .,fk are as in the

Theorem with k,b(u),b(v)<s, (s+l)\-¿t,(s+l)\ts*1<p and (s+l)ps + 1<q then

u eq v iffu(f{,. ..,fk)(l) = v(fl,. . .,/¿)(l).

Proof. Let w(f[,.. .,fk)(l) = w* for any w e W. Since if ueqv then u = v is an

identity in every ringoid, the lemma will be proved if we show that u* = v* implies

u eq v. The proof will be by induction on

(5) D(u, v) = max {d(u), d(v)} + max {b(u), b(v)} ^ 1.

If D(u, v)=l, then d(u) = d(v) = 0 and b(u) = b(v) = 1. So u=f and v=g,fgeF

and the lemma is immediate for this case.

Let the lemma be true for all canonical forms u, v with D(u, v)<D, 1 < D and let

u, v be canonical forms with D(u, v)=D and let

(6) u* = v*.

Since u, v are of the form (2), (6) is of the form

2 {t(0 exp (q; 2 {r(ij)pmW\ut(ij) + t)s : 1 ¿j * k(i)}) : 1 ^ i í n}

(7)
= 2{í'0')exp (q;2{r'(Ü)Pm'(W(vt(ij) + ty :l újú k'(i)}) : 1 ¿ / S "'},

where m(ij) is the index of the element f(ij), i.e. 1 ̂ m(ij), m'(ij)^k.

If one of the u(ij) is simply f(ij), then «*({/) = 1,

2 WO : ! = ' = "}   and   2 W : l = ' = "') = s < 1-

Then, comparing the ^-representations of u* = v* in (7), we get that the coeffi-

cients of every power of q in both sides of (7) are the same. Let two powers of q in

the left-hand side of (7) be equal, i.e.

2{r(ü)pmUi)(uKü) + t)s :lújá k(i)}

(8) = 2WO>m(,'>ÎO'7) + Os : 1 =7 = W)}.
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All uf(ij) and uf(i'j) are sums of powers of a whose coefficients do not contain

any power of p or t and both 2 Mi/) : 1 Új1kk(i)}, and 2 M'7) '■ 1 íkjúk(i')} are

less than ¿^¿!<i.

The conditions of Lemma 1 are satisfied here. We infer that the coefficients of

every power of^ in both sides of (8) are the same, i.e.

2 {r(U)(uU'J) + ty : 1 S j Ú k(i), m(ij) = r}
(9)

= 2 MO')(«i0"7) + 0s : 1 Sj S *(/'), m(i7) = r}

for all l^rá/c.

From (2), Ux(ij), Ux(i'j) are canonical forms of depth less than d(u) and of width

not exceeding that of u. Hence D(ux(ij), Ux(ij')), D(ux(i'j), Ux(i'j'))<D. If in (9)

«*('/) = «*('/")> tnen by the induction hypothesis Ki(y) eq ux(ij') and hence

"('/) =/(»>') ° Ux(ij) eq/((/") ° KiOJr') = «((/')

(fi(v)=fi(ij')=fir) which contradicts the writing of canonical form if y'#y". Thus all

uf(ij), 1 újúk(i), m(ij) = r are distinct.

The same is true for all uf(i'j), l^jíkk(i'), m(i'j) = r. Comparing different

powers of / (by Lemma 1) in (9) we get

2 {{sS_h)>-(ij)(uî(ij)f :lújú k(i); m(ij) = r}

= 2 {(slhy(i'J)(uKi'f))h :lá/á ¿(Oí »KO) = '},       0 g « á ¿.

Dividing by (siÄ) we get

2 My)(«f ((/'))" :!=/ = *<0; m(ij) = r}
(10) _,

= 2 WWMW :!=/' = *<0; m(i'j) = r},       0 £ h < s.

Again

¿ > 2 M'/) : 1 = J = *#&   2 W''./) :!=/ = *ÍO}-
By the theory of symmetric functions, we deduce that, for some rearrangement of

the terms r(ij) = r(i'j), ut(ij) = u^(i'j) for all j such that m(ij) = m(i'j) = r. Hence

ux(ij) eq ux(i'j). But/(//')=/(/7) =/r. Hence u(ij) eq u(i'j) and so

(«(y))rtM> eq (»(/7))r(i'y).

Thus the equality of exponents of a in the left-hand side of (9) implies the equiva-

lence of the corresponding products in the canonical form u.

From the writing of the canonical forms we should have the exponents of q for

distinct /', 1 ¿ i un, distinct, i.e. the left-hand side of (9) contains precisely « distinct

powers of a. The same could be said about the right-hand side of (9), i.e. it contains

precisely «' distinct powers of q. Since the coefficients of every power of q in both
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sides must be equal we get n=ri and for some rearrangement of indices

2{r(ij)pmUi\u*x(y)+ty : l aj s k(i)}

(11) =2 {r'iij)pmw\vî(ij) + tf:lújú k'(i)},

t(i) = t'(i),       1 úiún.

d(vx(ij))<d(v) and b(vx(ij))^b(v) and so D(ux(ij),vx(ij'))<D. Using the same

argument as above we get

(u(y)y^eq(v(ij)Y^,

1 r¿j^k(i) = k'(i), l-¿i^n = ri (up to a reordering of indices), i.e. «eq v.

The other part of Lemma 2 is immediate and this concludes the proof of

Lemma 2.

12. Corollary 6. Ifu, v are canonical forms then ueqv iffu=v.

If ueq v then u=v is obvious, the converse is also obvious if one notices that

u= v implies that « = v is an identity in NN and hence u(f[,... ,fk), and v(f[,... ,fk)

are equal elements and they have the same value at 1.

Now we conclude the proof of the Theorem. Let u,veW and reduce uto a

canonical form K(u) and v to K(v). We have u=K(u) and v=K(v). Since b(K(u))^

c(r(u)) < c(r(u+v)), Lemma 2 can be applied to K(u) and K(v) for the given functions

f[,... ,fk in the Theorem.

Corollary 7. Ifu, veW then u=v iff the canonical forms ofu and v are equivalent.

This solves also the word problem for the free ringoid.

IV. Ringoids with nullary operations.

13. The algorithm of the Theorem can be modified to solve the word problem

for ringoids with nullary operations. We sketch out here the case where all 0, 1, e

are present; the other cases are similar.

The word algebra W' is constructed as in n°5. The free ringoid with 0, 1, e

generated by F is the factor algebra of W' by = ', where u= 'v iff u can be trans-

formed to v by repeated use of the basic identities of ringoids with 0, 1 and e.

Canonical forms are defined as in n°8 ; but instead of F, F u {0, 1, e} is used. They

should also be restricted to the following conditions: (having in mind (3)) all

u(ij) are of the form

(a) f° (u), where fe Fand u—a canonical form, u^e,

(b) /oreje F,

(c) 1 only in case k(i) = l =s(ij),

(d) 0 only in case 1 =n=k(l) = t(i) = s(ij).

Every word u can be reduced to a canonical form K(u) such that K(u)='u.

All the results of §11 can be reformulated for ringoids with 0, 1 and e. In place of

TV one should use 7V0 and in substitution by functions on the nonnegative integers
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0, 1, e must be substituted by the constant functions 0(x) = 0, \(x)=l and the

identical function e(x) = x, respectively.

14. It may be noted that the results of this paper could be used to solve the word

problem for the free or numerical algebras, whose operations are a subset of

{ + , x,°,0, 1, e} and satisfying all the laws of ringoids with 0, 1, e except those in

which occur any of the deleted operations. For the case of semirings this is

essentially the well-known algorithm of elementary algebra.
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