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LOCALLY NOETHERIAN COMMUTATIVE RINGS
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WILLIAM HEINZER AND JACK OH MO

Abstract. This paper centers around the theorem that a commutative ring R is

noetherian if every RP, P prime, is noetherian and every finitely generated ideal of R

has only finitely many weak-Bourbaki associated primes. A more precise local

version of this theorem is also given, and examples are presented to show that the

assumption on the weak-Bourbaki primes cannot be deleted nor replaced by the

assumption that Spec (Ä) is noetherian. Moreover, an alternative statement of the

theorem using a variation of the weak-Bourbaki associated primes is investigated.

The proof of the theorem involves a knowledge of the behavior of associated primes

of an ideal under quotient ring extension, and the paper concludes with some remarks

on this behavior in the more general setting of flat ring extensions.

Our terminology is that of Zariski-Samuel [17] and Bourbaki [3]. We use R to

denote a commutative ring with identity and A to denote an ideal of R. (All rings

of this paper are assumed to be commutative with identity.) By "ideal" we shall

always mean an ideal # R. A prime ideal P of R is called an MPD (minimal prime

divisor) of A iiP is minimal among the prime ideals containing A. A is said to be a

radical ideal if A = \/A. If S and T are sets, we use S\T to denote {s e S | s £ T};

and <= denotes containment and < strict containment.

1. The main theorem. We shall discuss in detail in §3 the concept of associated

primes of an ideal, but for the present it will suffice to give the following definition.

A prime ideal P of R is called a Bw-prime of A (weak-Bourbaki associated prime,

[3b, p. 165, Exercise 17]) if there exists x e R such that P is an MPD of A :x.

1.1. Lemma. If A has a unique Bw-prime P, then A is P-primary (and conversely).

Proof. Suppose xyeA, x$P. If y $ A, then A:y<R. But xeA:y implies

A:yc£P; so if Q is an MPD of A:y, then Q is a Bw-prime of A different from P.

Thus, ye A.

1.2. Proposition. Let R' be a quotient ring of R (with respect to a multiplicative

system), let A be an ideal of R and A' = AR', and let P be a prime ideal of R such that

P'=PR'^R'. Then P is a Bw-prime of A if and only if P' is a Bw-prime of A'.
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Proof. =>. F is an MPD of A : x for some x e R. Since R' is a quotient ring of 7?,

(A:x)R' = AR':x; and there exists a 1-1 correspondence between primes of 7?'

and primes of 7? which do not blow up, effected by extension and contraction.

Therefore F' is an MPD of AR':x.

<=. P' is a Bw-prime of A' implies there exists y e R' such that F' is an MPD of

A':y. Then P'R'P. is an MPD of (A':y)R'P, = A'R'P,:y. But R'P. is canonically

isomorphic to RP, so if <p is the canonical homomorphism of R into R'P-, then

there exists s e R\P and re R such that <p(s) is a unit in R'P, and <p(s)y = <p(r).

Therefore A'R'P.:y = A'R'P. : tp(s)y = (A:r)R'P., the last equality being a con-

sequence of the fact that 7?V is a quotient ring of 7?. It follows that PRP is an MPD

of(,4:r)7?P, and hence F is an MPD of A:r.    Q.E.D.

The above proposition is an exercise in [3b, p. 166]. We include a proof because

we are interested in §4 in the degree to which Proposition 1.2 remains true when

we replace the hypothesis that 7?' is a quotient ring of R by the weaker assumption

that 7?' is merely a flat 7?-algebra.

In the proofs of the next theorem and its corollary we use the following lemma:

Lemma. LetTi = {Pij}nL1, i=l, 2,..., be a collection of finite sets (possibly empty),

and let F= (J T,. Suppose that T is partially ordere&with respect to a relation ^ and

that T with respect to this relation satisfies the ascending chain condition and has the

further property that if, Pi + XjeT, + x, then there exists Pik e T, such that Pi + X)> Plk.

Then there exists a natural number n such that Tt is empty for all i^n.

Proof. Suppose that for each natural number n there exists i^n such that F, is

nonempty. It follows from our hypotheses that F( is nonempty for all i. Let Ff

= {PXil | there exists a chain PXJ1 < P2J2 < ■ ■ • < PnjJ. Since Tn is nonempty, it

follows that Tx is also nonempty. Moreover, Tx => Ff for m ^ n ; and Ff is finite.

Therefore 0^=1 7? is nonempty. Choose Px e H"=i Ff.

Now, for each n^2, let T% = {P2J2 | there exists a chain PX<P2J2< ■ ■ ■ <Pn¡n}-

Since Px e Tf, Tt is nonempty. Also, T^Tg for m^n; and F£ is finite. Therefore

D"=2 11 is nonempty. Choose F2 e fl"=2 F¿\

Thus, proceeding inductively, we construct a chain Px < P2 < ■ ■ ■, which contra-

dicts the ascending chain condition.

1.3. Theorem. Let P be a prime ideal of R, and suppose the following hold:

(i) PRM is finitely generated for every maximal ideal M^P (and hence also for

every prime ideal containing P),

(ii) there exists a finitely generated ideal B0 such that \/B0=P and such that for

every finitely generated ideal B with B0cB<zP, B has only finitely many Bw-primes,

(iii) the set of Bw-primes of the ideals B of (ii) satisfies the a.c.c. (ascending chain

condition).

Then P is finitely generated.

Proof. Let 77 be a finitely generated ideal of 7? such that B0^B<=P and such

that BRP=PRP. By (ii), 77 has only finitely many Bw-primes different from F, say
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Px,..., Pn. Then \/B=P implies P^P¡. Since the Pt are finite in number and each

PRP¡ is finitely generated (by (i)), there exists a finitely generated ideal A such that

B^A^P and ARP¡=PRP¡, i=l,..., n. Note that each Bw-prime of A contains

P=s/A.
Claim. If Qx,..., Qm is the set of Bw-primes of A different from P, then each g¡

properly contains some P¡. To see this, it suffices to show that if Q is a prime ideal

of R which contains P but does not properly contain some P}, then ARQ=PRQ;

for AR0t has QiRQi as a Bw-prime by Proposition 1.2, and hence ARQi^=PRQt. If

Q=P¡ for some j, then by the choice of A, ARQ = PRQ. On the other hand, if

Q3>Pj for allj, then BRQ has PRQ as its unique Bw-prime by 1.2. But then BRQ is

PÄ0-primary by Lemma 1.1. Since RP is a quotient ring of RQ and BRP=PRP, we

therefore conclude that BRQ—PRQ, and a fortiori ARQ=PRQ.

We proceed to define inductively a chain {A) of finitely generated ideals con-

taining B0 and contained in P and such that A¡RP=PRP. We take ^0 to be the ideal

generated by the ideal B0 of (ii) and a finite set of elements of R which generate

PRP (by (i) such a set exists). Then B0<=A0<=P and A0RP=PRP. If now Nx,...,Nr

are the Bw-primes of An distinct from P, then we choose An + 1 to be a finitely

generated ideal such that An^An + ̂ P and An + iRN¡=PRNl, i=l, ■ ■ -, r. By our

previous observations and the a.c.c. on the Bw-primes of the {A), we can apply the

above lemma to conclude that there exists m such that Am has P as its unique Bw-

prime. Then Am is P-primary by Lemma 1.1. Since AmRP=PRP, we therefore

conclude that Am=P. Thus, P is finitely generated.    Q.E.D.

Note that the converse to Theorem 1.3 is trivially true. The following corollary

gives a criterion for R to be noetherian when every localization of R is. In §§2 and

3 we shall justify by examples the hypotheses used here.

1.4. Corollary. If every RP, P a prime ideal ofR, is noetherian and every finitely

generated ideal of R has only finitely many Bw-primes, then R is noetherian.

Proof. By Cohen's theorem, it is sufficient to check that every prime ideal P of

R is finitely generated. Any chain of primes is contained in a maximal prime M,

so RM is noetherian implies the chain must be finite; thus, (iii) of Theorem 1.3 is

satisfied. We must yet check that P=\/B0 for some finitely generated ideal B0.

Since PRP is finitely generated, there exists a finitely generated ideal A of R such

that ARP=PRP. Since A has only finitely many Bw-primes by hypothesis, A has a

fortiori only finitely many MPD's, one of them being P. Therefore we can enlarge

A to a finitely generated ideal Ax such that A<^AX<^P and such that no MPD of Ax

different from P is an MPD of A. We similarly enlarge Ax and thus construct a

chain A^Ax<=A2c ■ ■ ■ <=P such that no MPD of Ai + X different from P is an MPD

of At. By applying the above lemma to the MPD'S different from P of the Au we

conclude that there exists an n such that P is the only MPD of An. Therefore

An = B0 is the required ideal.    Q.E.D.
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2. Two examples. We shall give in this section two examples to show that

some obvious conjectures in connection with Corollary 1.4 must be ruled out.

First, the most obvious conjecture is that every RP is noetherian implies 7? is

noetherian. The customary counterexample is due to Nakano [13, p. 426] and

is quite involved. (See also [2, §4] where a generalized form is worked out.) It is

possible to give a simple example, which we do in 2.2.

Thus, the assumption in 1.4 that every finitely generated ideal of 7? has only

finitely many Bw-primes, or some alternative, is certainly necessary for the validity

of the corollary. A pleasant alternative would be the assumption that Spec (7?) is

noetherian, i.e. that radical ideals of 7? have a.c.c. Some equivalent statements are

the following [15]:

(i) Spec (7?) is noetherian.

(ii) For any ideal A of 7?, there exists a finitely generated ideal A0 such that

(iii) For any prime ideal F of 7?, there exists a finitely generated ideal P0 such

thatF=V7Jo-

(iv) Every ideal of R has only finitely many MPD's and R has a.c.c. on prime

ideals.

Our example 2.3 is considerably more complicated than 2.2 and is a finite-

dimensional domain R which satisfies (i)-(iv) and has every RP noetherian but is

not itself noetherian. Thus, this condition is not suitable either. Incidentally, the

example also shows then that the assumption in Theorem 1.3 that every finitely

generated ideal 77 such that B0<^B^P have only finitely many Bw-primes cannot be

omitted.

2.2. Example of a domain D such that every DP is a noetherian valuation ring

but D is not itself noetherian.

Since this example uses the technique of constructing a domain by means of

an appropriate lattice ordered group, we shall review first a few of the facts related

to this construction. If D is a domain with quotient field K, let U(D) denote the

group of units of D, and let * denote nonzero elements. Let <p : K* —> K*/U(D) = G

be the canonical homomorphism of the (multiplicative) group K* onto the group

G. It is customary to switch to additive notation for G, and we do so. An ordering

is defined on G by taking G+ =<p(D*), and the resulting ordered group is called the

group of divisibility of D (where here G+ ={g e G \ g^0}). We are particularly

interested in the case when G is lattice ordered, since we then have

Theorem (Jaffard [8, p. 78]). If G is a lattice ordered group, then there exists a

domain D having G as group of divisibility. We henceforth assume that G denotes a

lattice ordered group (although much of what follows can be done in greater generality ;

see [14]).

We now carry over the ideal-theoretic concepts from D to G. A segment of a

lattice ordered group G is a subset A # G+ of G+ such that ae A and b ^ a implies
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be A, and a, b e A implies inf {a, b}e A. A is called aprime segment if a, b e G + \A

implies a + b^A. A is a principal segment if there exists aeA such that

A ={b e G+ | b^a}. G is noetherian if the a.c.c. holds for the segments, dim G (or

rank G) = n if there exists a chain PX<P2< ■■■ <Pn of n prime segments and no

such longer chain, etc. Finally, let us sketch yet how the concept of localization at a

prime carries over to G (see [8, p. 36]). If P is a prime segment of G, let H be the

subgroup of G generated by G + \P. Let cpP be the canonical homomorphism

G -> G/H=GP, and define an order on GP by taking GP =cpP(G + ). GP is the local-

ization of G at P. If P' = g3"1(/>) u 0 then P' is a prime ideal of D; and GP is then

the group of divisibility of DP-, with cpP-cp: K* -> GP being the associated group of

divisibility homomorphism. Note in particular that when GP is totally ordered,

then cpP ■ cp is a valuation having ring DP..

We conclude this summary with a few elementary observations about the

relationship between D and G. If A is any segment (prime segment) of G, then

cp~\A) u {0} is an ideal (prime ideal) of D. Conversely, if one uses the K and cp

given by the proof of Jaffard's theorem, it can be seen that for any ideal A / (0) of D,

cp(A*) is a segment of G, and cp~\cp(A*)) = A*. Thus, if one uses Jaffard's construc-

tion, there exists a 1-1 correspondence between nonzero ideals of D and segments

of G; and this correspondence preserves primeness and most of the other ideal-

theoretic concepts. It can furthermore be seen [7, p. 1370] that the D given by

Jaffard's construction is actually a Bezout domain (i.e. finitely generated ideals are

principal).

To construct example 2.2, it is sufficient then to give a lattice ordered group G

such that for every prime segment P of G, the group GP is order isomorphic to Z,

where Z = additive group of integers with the usual order. The idea for the example

comes from a similar example given by Underwood in [16, Example 3.10].

Let A/={1, 2, 3,...}, Z+ ={0, 1, 2, 3,...}. Let G = group of all functions from

N to Z such that /(/') is constant for all / greater than some integer, i.e.

G = {feZN \fi(N) is finite}. G is a lattice ordered group under the ordering fi^g

if and only if /(/') Sg(i) for all i e N. Let

Pi={feG\f(i)>0},       i =1,2,...,

Poo = {/e G | there exists n such that/(/) > 0 for all i > n}.

P¡, P«, are clearly prime segments of G.

Claim. These are the only prime segments. For suppose Q is a prime segment

<£Pi, Px, i= 1, 2,.... Since gazi5«,, there exists/„ e Q such that/„(/') = 0 for all

/> some integer«. Also, Q^PX,..., Pn implies there exists f e Q such that///') = 0,

j=l,...,n. Therefore, 0 = inf{/i, ...,/„,/„} e Q, a contradiction. Thus, Pt,Px

are the only maximal segments of G. Now consider the maps <pt: G->Z,i=l,2,

..., oo, defined by

9Áf)=fU),     y =1,2,...,

<P»(f)=f(n+\),
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where n+1 is chosen such that fis constant for i^n+l. The <p¡ are lattice homo-

morphisms of G onto Z. Since Z has the unique prime segment Z + \0, it follows

from the usual correspondence between prime segments under a lattice homo-

morphism that F¡ contains no prime segment properly. Thus, P,, i=l,..., co, are

the only prime segments of G; and GP¡ is order isomorphic to Z. Finally, G is not

noetherian since/= 1 has infinitely many MPD's. It is also interesting to note that

each Fj, /<co, is principal but Fœ is not.

2.3. Example of a (2-dim) domain 7? such that RP is noetherian for every prime

ideal P of R and Spec (7?) is noetherian, but R is not noetherian. (By Corollary 1.4,

a 1-dim example of this type cannot exist.) It follows from the usual theorems on

integral extensions that if 7? <= R' and R' is integral over 7?, then R' satisfies (iv) of

2.1 implies 7? does also; so it is sufficient to exhibit a nonnoetherian domain R such

that

(a) RP is noetherian for every prime F of R,

(b) there exists a noetherian domain 7?' such that 7?' is integral over 7?.

Let k be a field of characteristic 0 and xx, x2,..., y, z be indeterminates over k,

let K=k(xx, x2,...), and let J=K[y, z]. Ff = (j, z — i), i= 1, 2,..., are prime ideals

of J; and JP( = R[ are 2-dim local domains of the form R', = K+M,, where M,

= maximal ideal of R¡. Consider the subring Ri = Ki + M, of R'u where

Kt = k(xx, x2,..., x\,...) is the subfield of K generated by {x,)^, and x\ over k.

Note that 7?¡' is a finite integral extension of 7?¡ and hence that F, is a 2-dim local

domain. (That Rt is noetherian can easily be checked directly, or else apply Eakin's

theorem [4] or [11].) Let R = D R¡ and R' = (~) R'i = C\Jpt- R' is then a Krull ring

whose essential valuation rings are the localizations of J at those minimal primes

which are contained in some Pt. Since the minimal primes of J are principal, this

set can also be described as the set of minimal primes of J which are contained in

U Ft. Therefore by [12, p. 116, 33.5], R'=JS, where S=J\\J F¡.

We next note that {P,} is exactly the set of primes of J which are maximal with

respect to not meeting 5. For, if Q / 0 is a prime of J such that Q c U P,, then Q

has height 1 ör 2. Since/is a UFD, Q has height 1 implies Q is principal; and then

Q <=Fj for some /'. If height Q = 2, then Q is maximal in J; so Q + (y) <=■ (J P, implies

ye Q. But Q is principal mod (y), so Q = (y,f),feK[z]. Thenfe(JPt implies

fe Fj for some i: so Q CF¡. It now follows that {PiJs} is exactly the set of maximal

ideals of JS = R'.

Now let us check that R' is integral over R. r' e R' implies r' e k(xx,..., xn)(y, z)

=Ln, for some n. r' e R', n Ln implies r' = a, + b,, a, e k(xx,..., xn), b¡ e M¡. Since

ax,..., an are integral over k(xx, x\,..., x*), there exists a monic polynomial

f(T) e k(xx, x\,..., xl)[T]  such  that /(a,) = 0, i=l,..., n.  Therefore f(r') e Mt

<=7?(, /= 1,..., n; so/(/') e f] R, = R. Thus, r' is integral over 7?.

Let us denote the prime P¡JS of 7Î' by A/. As we have observed, {A/} is exactly

the set of maximal ideals of 7?'. Since 7?' is integral over 7?, it follows that {A¡},

where N¡ = N{ n R, is exactly the set of maximal ideals of R. To show each RP is
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noetherian, it suffices to show then that each 7?,,, is noetherian. We shall, in fact,

show that RN¡ = Ri. RN¡<^R, is clear since A¡ is contained in the maximal ideal M,

of R,. Conversely, if a e Rt, we must exhibit an r e R\N, such that ra e R. Since

R'=JS and R¡=JP¡ and N[=P,JS, it follows that ae R', = R'N¡. Therefore there

exists r' e 7?'\A// such that r'a e R'. If Ln = k(xx,..., xn,y, z), then r'a and r' are

in Ln for some n; so r'a and r' are in R¡,j>n. We also have r' = b + m, be K n Ln,

meMt; and since r' is a unit of R'¡, we see that b=£Q. Hence there is a monic

polynomial g(T) e (K, n Ln)[T] such that g(b) is a nonzero element of K,. It follows

that g(r') is a unit of R,. Also, ag(r') e R'; so if r = 7r(z— j)g(r'),j=l,.. .,n,j+i,

then r e 7?\A¡ and ra e F. Thus, RNi = Rt and each localization of R is noetherian.

Finally, we observe that R is not itself noetherian. For, if it 2, then x,y$yR

but (z— ¡')*i_y e j;7?. Since F' is integral over 7? and N{ is the only prime of R' which

contains both y and z — i, it follows that Ni=y/(yR:xiy), z'ä2. Thus, jF is an

ideal of R with an infinite number of Bw-primes (in fact, an infinite number of

ZS-primes; see §3), so R is not noetherian.

3. Associated prime ideals. We devote this section to an examination of some

alternative hypotheses in Theorem 1.3 and Corollary 1.4. Let us begin by consider-

ing some possible alternatives to the Bw-primes we employ there. The following

four definitions of associated primes of an ideal A can be found, either as definitions

or as characterizations, in [3b, p. 131], [17, Vol. 1, p. 211], [3b, p. 165, Exercise 17],

and [12, §7], respectively.

3.1. Definitions. (B) F is an associated prime of A in the Bourbaki sense if

P=A:x for some x e R.

(ZS) F is an associated prime of A in the Zariski-Samuel sense if there exists

xeR such that F= y/(A:x).

(Bw) F is an associated prime of A in the weak-Bourbaki sense if there exists

x e R such that F is an MPD (minimal prime divisor) of A :x.

(N) F is an associated prime of A in the Nagata sense if there exists a multi-

plicative system 5 of R such that 5 n A = 0 and such that PRS => ARS and PRS is

maximal with respect to being contained in the set of zero-divisors mod ARS.

When R is noetherian, then the associated primes in any of the above senses

coincide with the usual associated primes of A. In general, F satisfies (B) => F

satisfies (ZS) => F satisfies (Bw) => F satisfies (N), and none of these implications is

reversible. See [16] for details(2).

(B) and (ZS) seem to be too restrictive to be of much use in the nonnoetherian

case; for example, an ideal may have no ZS-primes. On the other hand, at least

every MPD of an ideal must be a Bw-prime. Moreover, as we have shown in

Proposition 1.2, the Bw-primes localize well.

It is conceivable that replacing "Bw-primes" by "ZS-primes" in Corollary 1.4

would yield a better result. However, it can be seen that Nakano's example [13,

(2) The ZS-primes defined by Underwood in [16] are slightly different from our ZS-primes.
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p. 426] gives a domain D such that every DP, P prime, is a noetherian valuation

ring and yet every finitely generated ideal of D has no ZS-primes; so 1.4 is, in fact,

false with this replacement. (Such a domain can also be constructed by using

Jaffard's theorem as in 2.2 but we shall omit the details. Note that 2.2 does not

itself yield the required example since it is easily seen that there exist principal

ideals of that example which have infinitely many ZS-primes.) We shall show in

Corollary 3.4 though that if a mild condition is added to the hypothesis of 1.4,

then such a change to ZS-primes can be successfully made. We first examine how

to reformulate Theorem 1.3 and Corollary 1.4 in terms of ZS-primes.

3.2. Lemma. Let A be an ideal of R. If {\/(A:x)}, xeR, has a.c.c, then every

Bw-prime of A is also a ZS-prime.

Proof. Suppose A has a Bw-prime P which is not a ZS-prime. Among the ideals

of the form \/(A : x) which have P as an MPD, choose a maximal such ideal

B=\/(A:x). P^=B since P is not a ZS-prime of A, so there exists an MPD Q of B

such that Q+P. Choose y e Q\P. y is in an MPD of B implies y is a zero-divisor

mod B [3a, p. 94]. Therefore, there exists z $ B such that zy e B. By raising to a

power, we may assume zy e A:x. If now B' = \/(A:xy), then B^B' and zeB';

so B<B'. Moreover, y $P implies A:xy = (A:x):y^P; so B'^P. Thus, B' contra-

dicts the maximality of B.    Q.E.D.

The following theorem is our version of Theorem 1.3 in terms of ZS-primes.

3.3. Theorem. If P is a prime ideal of R such that

(i) PRM is finitely generated for every maximal ideal M=>P,

(ii) there exists a finitely generated ideal B0 such that \/B0=P and such that for

every finitely generated ideal B with B0<^B<^P, B has only finitely many

ZS-primes,

(iii) the set of ideals of the form ^/(B:x), B an ideal from (ii), xe R, satisfies

the a.c.c,

then P is finitely generated.

Proof. By Lemma 3.2 the ZS- and Bw-primes of an ideal B of (ii) coincide,

(iii) implies the a.c.c. on ZS-primes of ideals B from (ii) and hence also the a.c.c.

on Bw-primes of such ideals. Therefore Theorem 1.3 applies.    Q.E.D.

The next corollary is the ZS-analogue of Corollary 1.4.

3.4. Corollary. If R is a ring such that

(i) every RP, P prime, is noetherian,

(ii) every finitely generated ideal of R has only finitely many ZS-primes,

(¡ii) Spec (R) is noetherian,

then R is noetherian.

Proof. Since Spec (R) is noetherian, R has a.c.c. on radical ideals. Therefore

Theorem 3.3 applies; so every prime ideal of R is finitely generated, and hence by

Cohen's theorem R is noetherian.    Q.E.D.
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We conclude this section with some further observations on the associated

primes of an ideal.

3.5. Proposition. Let A be an ideal of R. If A has only finitely many Bw-primes,

then {ZS-primes} = {Bw-primes} = {N-primes}.

Proof. Since the hypothesis of 3.2 is satisfied when A has only finitely many

Bw-primes, every Bw-prime of A is also a ZS-prime. By our previous remarks, it

therefore remains to see that every N-prime of A is a Bw-prime. First consider the

case where P is a maximal N-prime of A, i.e. a prime which is maximal with

respect to containing A and being contained in the zero-divisors mod A. Let

Qi, ■ ■ ■, Qn be the Bw-primes of A which do not contain P. Choose xeP,$ Qx

u • ■ • u Qn- Since x is a zero-divisor mod A, there exists y $ A such that xye A.

Then xeA:y implies A:yc£Qx u- • -u Qn; and since any MPD of A:y is a Bw-

prime of A, it follows that P is the only MPD of A :y. Thus, P is a Bw-prime of A

(and even a ZS-prime of A). Since Bw-primes localize well (1.2), and since every

N-prime extends to a maximal N-prime in some Rs, it follows that every N-prime

of A is a Bw-prime.    Q.E.D.

Underwood proves in [16, Theorem 3.4 and Proposition 3.6] that if A = \/A,

then the ZS- and B-primes coincide with the irredundant MPD's of A (P is an

irredundant MPD of A if it cannot be deleted when A is written as the intersection

of all its MPD's). Nakano's example [13, p. 426] shows that an ideal A may have

no ZS-primes but infinitely many Bw-primes; and Underwood gives examples in

[16, Examples 3.9-3.15] which show that ZS-primes and Bw-primes of an ideal A

may be present in almost any combination.

Also, in connection with Lemma 3.2 and Proposition 3.5, it is possible to have

an ideal A such that W(A :x)}, xe R, satisfies the a.c.c. but A still does not have a

finite number of Bw-primes; this example was used in another context in [16, 3.9].

3.6. Example. Let R=k[xx, x2,... ] be a polynomial ring over the field k in the

indeterminates xt, and let A = ({xixj}i<j). Then A = (~)Pn, Pn = (xi,x2,...,xn-X,

xn + i, ■ ■ ■); and {Pn} is the set of MPD's of A.

If A:r<t:Pn, r e R, then rePn; so xnr e A, and hence xneA:r. Let P be any

MPD of A:r. Then P^Pn for some n; so if P¥=Pn, then A:r<^Pn and hence

xneA:r<=P. Thus, P = (xx, x2,...) if P¥=Pn- But r $ A implies r$Pj for some j;

so A:r<=Pj<P. Thus, P is not an MPD of A:r if P^Pn; so {Pn} is exactly the set of

Bw-primes of A.

Now let us check that \/(A:r),re R, has a.c.c. A:r + A implies rePn for some n.

Hence r has constant term equal to 0. If r involves only the variables xx,..., xm,

then Xi e A :r for all i>m. Thus, the MPD's of A :r can only come from among the

set Pi,..., Pm. Hence any proper ideal of the form \/(A:r), reR,is either A or a

finite intersection of ideals from {Pn}.

4. Generalizations of 1.2. Since Proposition 1.2 is crucial for the main result

of §1, it is perhaps of interest to examine the hypothesis further. Let us first observe



282 WILLIAM HEINZER AND JACK OHM [August

that the proof remains valid if we merely assume that R' is a generalized quotient

ring of R, in the sense of [1], i.e. there exists a homomorphism q>: R-> R' which

makes R' a flat F-module, and R' is contained in the total quotient ring of <p(F).

Let us see what happens if one tries to weaken this assumption further to merely:

Tx" is an F-algebra which is flat as an F-module. We make the following assumptions

throughout this section : R' is an F-algebra which is flat as an F-module, A is an

ideal of R, A' = AR', F is a prime ideal of R containing A, F'=FT?'#TF. By re-

placing R by the canonical homomorphic image of R in R' we may also, without

loss of generality, assume that R^R'. (The above assumptions also imply

P' nR=P.)

If F' is a prime ideal, then 4.3 will show that F is a Bw-prime of A implies F'

is a Bw-prime of A'. However, it can happen that F is a Bw-prime of A and yet

P'=PR' is not even prime. For example, take F to be a valuation ring with quotient

field K having the property that there exists an algebraic extension K' of K such

that the integral closure Tx" of R in K' is not a valuation ring. Then Tx" has at least

two primes lying over F [17, Vol. 2, p. 27, Theorem 12], so P'=PR' cannot be

prime. Note that by [3a, p. 29, Proposition 3], a module is flat over a Bezout

domain if and only if the module is torsion free; in particular, R' is flat over R.

We can, of course, avoid the above difficulty by merely looking at the MPD's

of F'. We observe first that flatness of R' over R yields the following proposition.

4.1. Proposition. If z(A) and z(A') denote, respectively, the zero divisors of R

modulo A and of R' modulo A', then z(A') n Rcz(A). If in addition A' n R = A,

then z(A)=z(A') n R.

Proof. If xez(A')r\ R, then (A:x)R' = A':x¥= A'. Hence A:x=£A andxez(^).

Conversely, if xez(A) and A' C\R = A, then A:x^A implies that A'ji(A:x)R'

=A':x so that x e z(A').

4.2. Corollary. If A is P-primary then any associated prime of A' in R' (using

any one of the definitions of associated primes) lies over P.

Proof. This is immediate from 4.1, for if Q' is an associated prime of A', then

Q''=z(A').

In particular, 4.2 implies that any MPD of F' in R' lies overF. It follows that for

an arbitrary ideal A of R any MPD of AR' = A' lies over an MPD of A.

4.3. Corollary. If P is a Bw-prime of A, then each MPD of P' is a Bw-prime

of A'.

Proof. F is an MPD of A;x for some xe R. (A:x)R'=AR':x by flatness; so if

Q' is an MPD of F', then Q' lies over F, and hence Q' is an MPD of AR':x.

Q.E.D.
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It can happen, however, in the case where R' is not a generalized quotient ring

of R, thatP' is a Bw-prime of A' and yetPis not a Bw-prime of A. Our next example

illustrates this. (Example 4.4 also provides a negative answer to the more general

question raised by D. Lazard in [9a, p. 19, Remark 3.4].)

4.4. Example. Let R be a valuation ring having maximal ideal P and a chain of

primes Px <P2< ■ ■ ■ such that (J P¡=P (such a ring may be obtained by choosing

the value group of R to be Z © Z ©• • • with lexicographic order; see, for example,

[6, p. 248]). Let A=aR for some a#0 in P. Then A:y is principal for each y e R,

so P cannot be an MPD of A:y. Thus P is not a Bw-prime of A. Let x he an in-

determinate over R and consider the ring R' = R+P', where P'=PR[x/a]. Since

R'<=R[x/a], we see that R' is a torsion free and hence flat A-module. Note that

P' n R=P and R'/P' s R/P. Hence P' is a maximal ideal of R'. Moreover, P'=PR'.

It is clear that PR'^P', and to show that P'^PR' it will suffice to show that

b(x/ay e PR' for any be P. Since P is not principal there exist bx, b2e P such that

b = bxb2. Hence b(x/ay = bxb2(x/ay, and bxb2(x/ay e PR' since b2(x/ày eP'^R'.

Finally we show that P' = aR':x, and hence that P' is a B-prime (and a fortiori a

Bw-prime) of aR' = AR'. That P'<=aR':x follows from the fact that P<=aR':x, i.e.

x/a-P^R'. Since P' is maximal, to show P' = aR':x, it suffices to observe that

x/a $ /?' = i?-l-Pi?[x/a], which is clear from the transcendence of x/a over i?.

Thus, in general, P' is a Bw-prime of /F does not imply P is a Bw-prime of A.

We can show, however, that P must be an N-prime of A.

4.5. Proposition. IfQ' is a Bw-prime of A' and Q n R=P, then P is an N-prime

of A.

Proof. If S=R\P, then R's is flat over Rs [3a, p. 115, Proposition 13]; and by

Proposition 1.2, Q'R'S is a Bw-prime of A'R'S = AR'S. Hence Q'R'S is contained in

z(AR's), the set of zero divisors of R's modulo AR'S. We have PRS<=Q'R'S, so

Proposition 4.1 implies that PRS consists of zero divisors modulo ARS. Since PRS

is a maximal ideal, it follows that PRS is a maximal N-prime of ARS. Hence P is an

N-prime of A.    Q.E.D.

We have not been able to determine whether N-primes of R' necessarily contract

to N-primes of R (even in the case where R is an integral domain and R' is con-

tained in the quotient field of R).

Question. If Q' is an N-prime of A ' must it follow that Q = Q' n R is an N-prime

of AI

A difficulty in considering this question is that N-primes are not preserved by

localization, i.e. Q is an N-prime of A does not imply QRQ is an N-prime of ARQ.

(See [10] or [5].) In connection with the above question we can make the following

observations: applying 4.1 we see that Q<=z(A). Hence when Q is maximal we

certainly have that Q is an N-prime of A. Moreover, if there exists a multiplicative

system S' of R' with S' n R = S such that QRS is maximal and Q'R'S. is an N-

prime of AR'S,, then QRS is an N-prime of ARS and hence Q is an N-prime of A.
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