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SOME ANALYTIC VARIETIES IN THE POLYDISC AND

THE MÜNTZ-SZASZ PROBLEM IN SEVERAL VARIABLES

BY

SIMON HELLERSTEINC)

Abstract. For 1 ■¿Pi <p2 < oo and «ä 2 it is shown that there exists a sequence of

monomials {n?=1 s$mj} with Ami~mforeach_/=l,..., n whose linear span is dense in

L"i(7") but not in i.p2(/") (/" is the Cartesian product of n copies of the closed unit

interval [0, 1]). Construction of the examples is via duality, making use of suitable

analytic varieties in the polydisc.

The object of this note is to exhibit some contrasts between the Müntz-Szasz

theorem in one variable and the analogous problem in several variables.

The following notation will be used. The closed unit interval [0, 1 ] will be denoted

by land In will denote the unit cube Ixlx ■ ■ ■ xlin Rn (« = 2, 3,...). The Banach

spaces Lp(In), 1 Sp < oo, will be the usual spaces of complex valued functions on /"

taken with respect to Lebesgue measure. I shall use C(In) to denote the Banach

space with supremum norm of continuous functions / on In which satisfy

f(sx,..., s„) = 0 if s; = 0 for any 7= 1, 2,...,«. In addition if {fm} is a sequence of

functions in Lp(In) then S„({fm}) will denote the closed linear span of {fm} in L"(In).

One version of the theorem of Müntz and Szasz is the following [3, p. 23] :

Theorem A. Suppose {s*-»} is a sequence of monomials with 0<A1<A2<--.,

then the condition

is necessary and sufficient in order that Sp({sÁ<"})=Lp(I)for all p= 1, 2,... and also

in order that {sK">} have a dense linear span in C(I).

In particular Theorem A asserts that, for 1 a/? < oo, {s*™} is a spanning set in

LP(I) for one value of p if and only if it is a spanning set in every Lp(I).

I shall show that the analogous statement in Lp(In) is false if n^2. In fact,

Theorem 1. If \Spx<p2<co and ne2, then there exists a sequence {sm} of

monomials {sx^s2^- ■ •s£»»>} with positive real powers satisfying

Received by the editors March 23, 1970.

AMS 1970 subject classifications. Primary 32A10, 32C25, 42A64, 44A50; Secondary

30A76, 41A63, 46E15.

Key words and phrases. Analytic varieties, polydisc, Banach spaces L"(In), space of con-

tinuous functions, monomials, spanning set, Blaschke product, sets of uniqueness in H'°{Un),

polydisc algebra.

(*) This research was supported by NSF grant GP 8886.

Copyright © 1971, American Mathematical Society

285



286 SIMON HELLERSTEIN [August

(i) Xmj / co asm -> co (j= 1,2,..., n),

(ii) SPl({sm})=L*1(I"),

(iii) SP2({sm})#L"<7").

One consequence of Theorem 1 is the corollary :

Corollary 1.1. Suppose that {s^is^ ■ • ■ si">»} is a sequence of monomials

satisfying properties (i)-(iii) of Theorem 1. Then the sequence {si} of the monomials

fâmi-isb«-1- ■ -s^-1} satisfies SPl({si})¥=L^(In).

Moreover, for any p, l<p<co, there exists a monomial spanning sequence

{sí«- • -Snmn} in C(In) such that {jJm-1- • -si™'1} is not a spanning sequence in
7_p(7n).

In other words a shift to the left in the powers of a spanning sequence may destroy

the spanning property. Clearly, if n = 1 no such sequences exist. It is not difficult

to see that shifts to the right do preserve the spanning property.

Corollary 1.1 answers the question raised in [1] at least for monomial sequences

with positive powers increasing to oo.

In [1], J. Korevaar and I considered the Müntz-Szasz problem in 2 variables for

monomials with positive integral powers and proved the following:

Theorem B. Suppose that Í2 is a sequence {(mk, nk)} of positive lattice points in

R2. Denote by N(r, Ü) the number of lattice points in Í2 satisfying m2 + n2^r2.

Assume that lim supr_ œ A(r, Q)/r2 > 0, then {sf^s™*} is a spanning sequence in C(I2).

Examples given in [1] show that the condition of positive upper density is not

necessary. One such example is the set of all lattice points bounded by the curves

y = xll2andy = (2x)112.

The present methods will show that if the lattice condition on the powers is

dropped, then "very sparse" sequences in Rn may serve as powers of monomial

spanning sequences. For example it will be shown that there exists h holomorphic

in Rez>a, for some a>0, such that h(x) is real for x=Re z>a, h(x) / oo as

x / oo with (h(x) — x) -*■ 0 as x / co and such that {s^sja'"0}« = i is a spanning

sequence in C(I2).

Some analytic varieties and uniqueness sets in the polydisc. The unit disc centered

at the origin in the complex plane C will be denoted by U and its boundary by F.

Let Un= Ux ■ ■ ■ x U be the unit polydisc in Cn centered at the origin with F"

= Fx-xF its distinguished boundary. The space of bounded holomorphic

functions in Un with supremum norm will be given as usual by H°°(Un).

The following lemma is central to this work.

Lemma 1. Suppose B is a Blaschke product in U having T as a natural boundary.

Let V be the analytic variety defined by

V = {(z, T7(z), T72(z),...., Bn-X(z)) \ z e U}

where B¡ = B ° B¡-x (2^j^n—l), and BX = B. Then the closure of V contains Tn.
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Proof. Take (wx, w2,..., wn) e Tn. For each m= 1, 2,... and j= 1, 2,..., n

denote by Vmj the intersection of U with the disc of radius l/m centered at w¡. Since

F is a natural boundary for B, the cluster set of B at any w e T is U [4]. Put

V*2 = B(VmX)n Vm2 and recursively define V*i = B(V*u_X)) n Vmj (j=3,...,n).

Since B(Vmj) is dense in U for each./ (1 ^j-¿n— 1), it follows that K*2 is dense in

Fm2, V*3 is dense in Vm3,..., V*n in Fmn. Now select any lmn e F*n, then pick

£m(n-i>e ^Än-i) so that 5(£m(n _ i,) = £mn and continue step by step choosing

£m(n-fc)e ^mCn-fc) SO that B(im(n-k) = imin-k + l) for k = 2, 3, . . .,..«-1. Put Zm = £ml.

Then {(zm, 5(zm), B2(zm),..., Bn_x(zm))} converges to (wx, wa,..., wn) as m -»- oo.

Remarks. The same proof shows that the closure of {(B(z), B2(z),..., Bn(z))}

as z ranges through U is Un.

I first employed the variety {(z, B(z))} in C2.1 am grateful to J. Zinn for conjectur-

ing that the variety in Cn obtained by using successive iteration of the coordinate

functions has the desired property.

Corollary 1.2. Let J be a set of positive measure on T" and fie Hœ(Un) which

is continuous on Un u /. Suppose that {zm} is a sequence in U satisfying

(0 2d-W)-+».
(ii) f(zm, B(zm),..., Bn-1(zm)) = 0, m= 1,2,... (B as in the preceding lemma).

ThenfmQ.

In other words, with B as in the lemma, the sequence {zm, B(zm),..., Bn-i(zm)}

is a set of uniqueness (or determining set [3]) for the space of functions in Hœ(Un)

which have a continuous extension to /, and in particular then for A(Un), the

polydisc algebra.

Proof. Consider/(z)=/(z,5(z),...,5n_1(z)). Then feHm(U) and f(zm) = 0.

From (i) and the Blaschke condition it follows that/=0 or equivalently/=0 on

the variety V of the lemma. But F=> Tn and / is continuous on /, so /= 0 on /. Since

/has positive measure andfe Hm(Un),f=0.

I now introduce a particular Blaschke product B which in addition to having T

as a natural boundary has the property that both B and B' have radial limits equal

to one as z approaches 1 along the positive ray, with B"(z) -> 0 along this ray.

Lemma 2. Suppose that B is the Blaschke product whose zeros are simple and

situated at the kth roots of —rkfor each k= 1, 2,... where rk is defined by

Then

(i) F is a natural boundary for B,

(ii) B(r) / 1 as r / I,

(iii) linVi B'(r)= 1,

(iv) limr^15"(r) = 0.
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Proof. Easy estimates show that ^k(l—rklk)<co, so that F is a convergent

Blaschke product. To prove (i) observe that every point of F is a limit point of

zeros of B.

For the proof of (ii) notice that

B(z) = U(rk + zk)l(l+rkzk)

and that for r (>0) fixed, for 9 arbitrary, and for each k

| (rk + rkeikB)l( 1 + rkrkeike) \ <> (rk + rk)¡( 1 + rkrk).

Hence, maxU| = r |77(z)|=77(r) and 77(r) is an increasing function of r forO<r<l.

Since 1151100 = 1, (ii) follows.

To see that (iii) holds, write

B'(r)/B(r) = 2 [(1 -rDkr^M^ + r^l + rkrk)].

Letting r / 1 and using property (ii) gives

lim77'(r) = ^k(\-rk)¡(\+rk) = 2 1/2* = F
iv i

In order to prove (iv), differentiate B'(r)jB(r) to obtain

7J"(r)    \B'(r)V _ ^ f   k(k-l)rk~2       (\+2rkrk + r2k)k2r2(k-»\    _ 2

B(r)     [ 77(F) J    ~ ¿ \(rk + rk)(l +rkrk)       (rk + rk)2(l+rkrk)2   JU    ^

Since 77(r) and B'(r) tend to 1 as r / 1,

and thus the assertion.

The interchanges of limit and sum operations in the proofs of (iii) and (iv) as

well as the term by term differentiation in (iv) may be justified by observing that

the series in question are uniformly convergent on [0, 1], as is readily verified.

Proof of Theorem 1. Choose p so that 1 ̂ px <p <p2 < oo and set

^ = {(zx,..., zn) | Re z, > - l/p, 1 á / á n}.

Map Un onto M? by

z, = <p(l,) = (1 + Ql(\ -Q-l/p       (1 S j £ n).

Let B be the Blaschke product of Lemma 2 and consider the sequence

{(Ami, • • -, Amn)} defined by XmX=m and Xmj = <p ° B¡.x ° <p-\m) for j=2,3,...,n

and m=l,2,.... Denote this sequence by {Am}.

Also, for notational simplicity let the variable (zx,..., zn)e Cn be given by z

with the «-tuples (sx,..., sn) and (yx,..., yn) in Rn denoted by s and y respectively.

The monomial sfi• • ■ sn" will be given by s*. If a e C, then z + a = (zx + a,..., zn + a)

ands3 + a=s?i + a--<» + a.
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Claim. With «a 2 fixed, {s*-»} satisfies assertions (i)-(iii) of the theorem,

(i) Since B increases to 1 along the positive ray and {cp~\m)} is a positive se-

quence increasing to 1, B¡_x o cp-\m) increases to 1 as m -*■ oo fory'=2, 3,..., ».

(ii) Let g eL"i(In) where l/px + l/qx = l.l shall show that if

\g(s)sA<"ds = 0

for m=l, 2,..., with ds denoting Lebesgue measure on In, then g = 0 a.e. on /"

Introduce

F(z) =  f g(s)s*ds.

Then Fis holomorphic in JtJ[, bounded in J&*, and F(Am) = 0 for m=l, 2,.... It

follows that F(0 = F(<ï>tt)) (?-(&, • .-,L), *(0 = (9<£i), • • -, 9>0) is in H^(Un)
and is continuous on J—Tn — {(wx,..., wn) | w¿= 1 for somey'= 1, 2,..., ri} which

is a set of full measure on Fn. Also F vanishes on the sequence {£m} given by

(mi = <p~1(m) and £mf = Bj-1 ° <p_1(/m) f°r eacn w=l,2,... and j=2,3,.. .,n.

Since 2(l-9_1(w))=+oo, Corollary 1.2 applies. It follows that F(£) = 0 on <7"

and F^O on J#£. In particular F=0 on the set of all nonnegative lattice points in

Rn so that g annihilates all polynomials and g=0 a.e. on /".

(iii) I shall show that there exists geLqz(In), l/p2+l/q2 = l, such that g=0 a.e.

on /" does not hold while

I g(s)s*«< ds = 0

for each m=l,2,... where {Am} is the sequence of «-tuples defined above.

To this end, set

f(z) =f(zx,..., zn) = cp-\z2)-(B o cp-i)(zx)

with B and cp as before. Then/is holomorphic and bounded in JP* and/(Am)=0

for m = 1, 2,.... Define F by

n(2+z,)2.
t=i

Then Fis holomorphic and bounded in 3tf£ and the zero sets of F and/coincide.

Also if F* is given by

F*(y) = F*(yx, ...,yn) =    lim   F(x + iyx,..., x + iyn),
xS -Up

then F* exists a.e. on Rn and is in L\Rn), [5, Chapter XVII, §4].

It is now sufficient to find g e LQz(In) such that, for all z e Ji^2,

F(z) = ^j(s)s*ds.
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By the Cauchy formula and the relations

F(zx, ...,zn) = 0(l¡\Zj\2)       as \z,\ -> oo in X*       (l ú j Ú n),

it follows that

f«=(ií)"Lf*w/(n(-í+'>'-z'))*;

where dy is Lebesgue measure in Rn. But

(n(^-^rW^iï+1'p_1^
so that

F(z) = (l/2w)" f n F*(j) | f f-**'**-* ds\ dy.

Since F* e L\Rn), by Fubini's theorem,

F(z) = f  s4(l/27r)V/p-1 (F*(y)e-i<y-loss>dy\ds,

where <v, logs> = 2?=i y i logs^. The integral inside the brackets is a bounded

continuous function of s on 7n (7=(0, 1]). In addition, since p<p2 and I/P2+I/Ç2

= 1, q2(ljp-l)> -1, so that

J,¡paaiP-D JS <   +00.

Denoting the bracketed expression in the last integral but one by g(s), it follows

that, for all z e 3tPpn,

F(z) = I n szg(s) as,

with g e Lq2(In).

Proof of Corollary 1.1. Let {Am} be any sequence in Rn satisfying properties

(i)-(iii) of Theorem 1. Since SP2{sh-}^Lp2(I'i) there exists g eL««(7"), l/>2+l/<72=l,

such that g is not 0 a.e. on 7" and

J>>s*mds = 0       (m = 1,2,...).

Put/(z)=J,n g(s)s2 as, and fix/?>/72- Then/is holomorphic in #Fpn2 and is bounded

in 3ff%. Consider"p

F(z)=/(z)/n(2 + ̂ )2.

Proceeding as in the proof of assertion (iii) of Theorem 1 gives the representation
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for all z e #?£, where g*(s) = sllph(s) and h is bounded and continuous on 1%. Since

g* is continuous on /" and F(Am) = 0 for m= 1, 2,..., Sp{s*«>~1}^Lp(In) for any p,

1 ̂ /><oo.

Remarks. To obtain an example of a sequence {sA»} which spans in C(In) and

has the property that {s**»-1} does not span a given Lp(In), l<p<co, it is sufficient

to define {Am} as in the proof of Theorem 1 by

Aml = m   and    Am, = <p ° B,_x ° tp-\m)   (m = 1, 2,... ; j = 2, 3,..., n)

with B as in Lemma 2 and cp given this time by

9,(0 = (1+0/(1-0 + «,
with a fixed and 0 < a < 1 — l/p.

The same methods also show that the spanning property in Lp(In) or C(In) may

be undone by the addition to all the powers of any vector (ax,..., an) if a¡ <0 for

y=l,2,...,».
Moreover, in the following section we shall also show that asm/ go, the se-

quence {Am} defined in the preceding proof satisfies Ámj~m for y'= 1,2,...,«.

Sparse spanning sets. The sequences of powers appearing in the monomials in

the proof of Theorem 1 are of the form

{(m, cpo Bo cp-\m), ...,cpo Bn-x ° <p-\m))}

where B is the Blaschke product of Lemma 2 and cp is the conformai map of U

onto 2FV defined at the outset of the proof.

Recall that by Lemma 2, B(r) / 1, B'(r) -> 1 and B"(r) -^Oasr/ 1. Then

(coKMA   „(A - 1+i?(r>    1+r -      2(r-!?(/))
(cp o B)(r)-cp(r) - f_5__: _ (1_5(r))(1_ry

and therefore

lim [(cp o B)(r)-cp(r)] = 2 lim ̂ Q = lim B"(r) = 0.

It follows that each of the power sequences above lies on an analytic curve of the

form

{(t, cpo Bo cp-\t), ...,cpo Bn-! o cp-^t)) | (0 < t < oo)}

which has monotone increasing coordinate functions and which as t^-co is

asymptotic to the diagonal {(i, t,..., t)}, although the monomials {(sx, s2 • • s™)}

do not span in any Lp(In) if n ^ 2.

If cp is defined by <p(£) = (l+£)/(l-£) + <* (<*>0), then the corresponding power

sequences, although asymptotic to the diagonal sequence, serve as powers for

monomials whose linear span is dense in C(In).

It may be worth remarking that in fact the full power sequences given above are

not needed. Any subsequence {(mk, cpo B ° cp~\mk),..., cp o fin_1 o cp-\mk))}

where 2 l/»ik= +°o would suffice.
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I am grateful to W. Rudin for some stimulating conversations and helpful

suggestions.

Note. J. Korevaar has informed me that he has also proved Theorem 1 and

Corollary 1.1 using monomials with lattice powers.
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