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ANALYTIC CONTINUATION OF THE SERIES 2 {m + nz)-s

BY

JOSEPH LEWITTESC)

Abstract. The series 2 (m + nz)~s, m, n ranging over all integers except both zero,

for s an integer greater than two is well known from the theory of elliptic functions and

modular forms. In this paper, we show that this series defines an analytic function

G(z, s) for Im z > 0 and Re s > 2 which has an analytic continuation to all values of s.

It is then shown that G satisfies a functional equation under the transformation

z ->■ — 1/r, and finally as an application some numerical results are obtained.

Throughout, except where otherwise noted, ifweC, the complex numbers, and

m»#0, we define arg w to be that value of the argument such that — n-^arg w<n.

Then logw = log |iv|+/'argw and for complex u, wu = eulosw. Also we use the

standard notations z = x + iy, s = a + it for complex variables. With these con-

ventions define

0) G(z, s) = V ,    }    v
m% (m + nzf

The ' on the summation sign indicates that m, « range over all integers except

m = n = 0. Each individual term of the sum is an analytic function of (z, s) e {j >0}

x C and it is known that the series in (1) converges absolutely and uniformly on

compact subsets of {y > 0, a > 2} so that G is an analytic function of two complex

variables in this product of half-planes. Because of the absolute convergence the

terms of the series may be arranged in any order of summation.

It is evident that G(z+1, s) = G(z, s) so that G has a Fourier expansion of the

form G(z, i) = 2™= - » ak(s)e2"ikz. To find the coefficients write the sum in (1) as

CO —1 COCO — 1 CO

2=2+    2    +22+2   2
m,n        m= 1, n =0      m = - co, n = 0       n = 1 m= - co       n= — aom=— oo

and recalling our convention concerning the argument, e.g., for m>0, ( — m)s

= e~nisms, we obtain

CO CO

G(z, s) = (1 +e"l%(s)+ 2 F(nz, s)+ ]T F(-nz, s),
n=l n=l

where (,(s) is the Riemann zeta function and F(z, j) = 2m= -« (z + m)~s. The series

for F converges absolutely and uniformly on compact subsets of {>»^0, <r> 1} and
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since   for  y>0   we   have   (—z+mf=e "is(z — m)s   it   follows   that   F( — z,s)

= e"tsF(z, s). Thus we have

(2) G(z, s) = (1 +e™)U(s)+ f F(nz, s)).

From now on we consider F as defined only for y > 0.

Since F(z+1, s) = F(z, s) and Limy^+ «, T^z, s) = 0, F has a Fourier expansion

of the form 2™=i bk(s)e2n,h!i. Application of the Poisson summation formula gives

bk(s) = e2nky /"„ e~2*ilcul(u + iy)s du, where ^ is any fixed positive number. Setting

y=l, the integral may be evaluated by the calculus of residues in the complex

«-plane and yields bk(s) = ((-2rri)sir(s))ks~1 so that

Fiz,s) = ^^lk^e

Now replace z by nz and substitute in (2), collecting like powers of e2ninz—which is

permissible because the resulting double series is absolutely convergent—to obtain

(3) ^ = as) + {-^2^-i(n)e^

where <rs-i(w) = 2kin ks~x,k running over the positive divisors of«. It is convenient

to define H(z, s) = G(z, s)jl+e%is and A(z, s) = 2"=i o-s_x(n)e2ninz, so that (3)

becomes

(4) 77(z, s) = C(s) + ((-2niyiT(s))A(z, s).

Now the series for A(z, s) is absolutely and uniformly convergent for (z, s) in any

compact subset of {y > 0} x C so that we have found the analytic continuation of

G(z, s) for all values of s.

The formula (4) is known from the theory of modular forms for the special case

where s is an even integer 2r & 4. In this case G(z, 2r) is a modular form of weight f.

To determine the behavior of G(z, s) under the modular group we study the

transformation z -> — 1/z which along with z -> z+1 generates the group. To do

this we rearrange the terms of the sum (1) as follows:

2' = ( 2   +   2 )+( 2   +   2 )
m,n \m>0,n = 0 m<0,n = 0/ \m = 0,n>0 m = 0,n<0/

+( 2   +   2 ) + (  2   +   2  )■
\m>0,n>0        m<0,n<0/        \m<n,n>0 m>0,n<0/

In each pair of summations the second sum is e"is times the first. Thus, recalling

the definition of 77, we have

(5) 77(z, s) = t(s) + z-%(s) + K(z, s)+L(z, s)

where K(z, s) = ^=i Z"=i (m + nz)-\L(z, s) = l~h^ 2£=i (m + nz)-\ Now, for

y>0, arg (— l/z) = 7r-arg z, arg (m + n(— l/z)) = arg (wz —«) —arg z, if m>0, n>0,

and arg (m + n(— l/z)) = arg( — «íz + «) — argz + w,  if m<0, «>0.  Thus (—l/z)s
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= e*is/zs, K(-l/z,s) = zsL(z,s) and L(- 1/z, s) = zse-»isK(z, s). Using this in (5)

gives, after a little rearrangement,

(6) H(- 1/z, s) = z°H(z, s) + zXe-*is-m(s) + K(z, s)).

Solving for A(— 1/z, s) gives

(zse ~ nis — I) zs(e ~"**—\\

(i)  a(-l/z, s) = z*a(z,s)+K *_2vi)t} mm+• (_2tr/). r{s)K{z> *)•

(6), (7) hold for a > 2, as derived ; however, as all the functions occurring, other than

K, have continuations to all values of j so does K and the formulas hold for all s.

To apply these formulas we obtain another expression for K. Recall the relation,

for x>0, ct>0, T(s)/zs = \q u*~1e~l!U du so that for x>0, j»>0, <x>2 we have

T(s)K(z,s)=  J   2   F M!"lr<"+'
m=ln=lJo

ow.

Because of absolute convergence we can interchange the order of summation and

integration and, summing the resulting geometric series, we have

(8) ns)K(z,s)^[{e^u_l}du.

By analogy with the integral representation of the T function, we introduce the

complex variable w = u + iv and define, for x>0, v>0,

J(z, s) =  f
(ew-l)(ezw-l)

dw.

Here yz is the path in the vv-plane along the real axis from +oo to 8Z,

0< S2<min (27T, 2tt/\z\), with arg w = 0, then along the counterclockwise circle of

radius S2, with OS arg w¿2-n, then back along the real axis from 8Z to +oo with

arg w = 27T. By the residue theorem the value of the integral is independent of the

choice of S;, within the range stated. For z in a compact subset of the first quadrant,

the integral converges uniformly for s in any compact subset of C, hence is analytic.

Splitting the integral into two, one along the axis, the other along the circle, and

noting that ws~1 = us~1 on the " upper-edge" of the axis and ws~J = e2ltisus'1 on the

"lower edge", we have

C œ . .S - 1 f WS - 1

(9)     ,<2, ,) = («»-,)£ (e._|)(e„_|) *u+Sm =sj (e„_,)(e,._1) *-•

If a> 2, the second integral tends to 0 as 5, tends to 0 so that

du./(z,í) = (e--i)j;^
l)(ezu-l)

Comparing this with (8), we see that

(10) T(s)K(z, s) = J(z, s)/(e2™-\).
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Again, as derived, (10) holds for z in the first quadrant and a>2 but we already

know that the left side has a continuation to z in the upper half-plane and all s,

hence so does J(z, s) and (10) then still persists.

Substituting (10) into (7) and noting ( —27r/)s = e"',is(27r/)s yields

(11) A(-ljz,s) = zsA(z,s) + {4^?ns)í(s)
(2tt/)s      v-p'    (27ri)s(e"is+l)

valid for y > 0, all s.

As an application of these formulas, note that if s an integer k, then by (9), for

z in the first quadrant,

The integrand here is meromorphic in a neighborhood of the origin and analytic

for 0 < | w\ < 8Z so, by the residue theorem, J(z, k) = 2m Res^, , 0 wk ~ x¡(ew - l)(esw - 1 ).

Now

w V bP   . w 1 ■£> è,

with b0= 1, bx= —\, b2p+x=0 for p>0 and b2p the Bernoulli numbers. Thus for

k^3, J(z, k) = 0, while for k = 2-r, r^O,

J(z,2-r) = 2niResw = 0w-'-1--^-j-^—v

hence,

(12) J(z,2-r) = (2-ni\z)Cx(z)

where Cr(z) is the polynomial 2P+« = r ibplp0(bjq!)z". In particular, for r = 0, J(z, 2)

= 2iri\z so (11) becomes, using r(2)£(2) = 7r2/6,

(13) A(- 1/z, 2) = z2A(z, 2)-z2\2\ + iz\A-n+ 1/24,

an interesting functional equation.

We make a number of simple deductions from (13). First, recalling the definition

of A, and taking z = iy, y>0, gives

oo co 2 1

(14) 2   °iik)e-2My = -y2 2 ^K^+fl-f +¿*
Jc = l k = l "     w     "

Since A(iy, 2) -+ 0 as y -> +oo we note that 2"=i tr1(A:)e-2,"c,i'~>'2/24 as >> -> +oo.

Also, by (13) and A(z+l, 2) = A(z, 2), one can evaluate A(z, 2) at any point zfixed

under the modular group. For example, putting z = i in (13) gives

t CTl(*)e— = ¿-¿,

while putting z = a> = e2yiil3 = -\ + i\/3¡2, in (13), and noting -l/cu = w+l so that

A(— I ¡co, 2) = A(oj+ 1, 2) = ^4(co, 2) gives, after a little calculation,

2 (-nWÂOe-^* = —
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To apply (7) or (11) for s an odd integer, one needs more information about K

or J. For example, when s = 2k+l, and J(z, s)=J(z, 2k+ l) + a(s-2k— l)+ ■ ■ ■

is the Taylor's series of J(z, s) about s = 2k+ 1, a = 8J(z, 2k+l)/8s, then if a were

known, we could insert this in (11), expand all functions of s about s = 2k+ 1, and

comparing the constant terms, we would obtain the functional equation for

A(z, 2k + 1) in terms of known numbers.

In case í is a nonpositive even integer, say s= —2k, k^O, then we may simplify

(11). For by the functional equation for the ^-function one has, if k>0,

r(iX(i)|s=-2, = (-lH(2/V+l)/2(27r)2\while(e--szs-l)r(5)Ç(i)|s = 0 = (7r/-logz)/2.

Also, J(z, -2k)=J(z,2-(2k + 2)) = (2-ni/z)C2k+2(z), by (12). Since b2=l/6, we

obtain

(15) ^(-l/z,0) = A(z, °)-T2+T~Ï2z-2

Note that we cannot use this to evaluate A(i, 0). For k > 0, we obtain

A(-\/z, -2k)
(16) (z-2k-l) (-l)ki(2Tr)2k + 1

= z~2kA(z, -2k) + (Z   2    l)l(2k+l)-(    V)2lzlt+{-C2, + 2(z).

If k is odd, then (16) can be used to evaluate A(i, —2k) in terms of the Bernoulli

numbers and l(2k+\).

Additional Note. We have just observed that the function A(z, 0) and its

functional equation are familiar objects. Recall the definition of Dedekind's r¡

function,
CO

r¡(z) = e*ull2l~l(l-e2!limz)
m = 1

convergent for z in the upper half-plane. Then

CO

logv(z) = ^+2 logO-e2*"-),
1¿-      m = l

all logarithms chosen to be real for z=iy. Using the Taylor's series for log (1 — t)

about i = 0 in the above infinite series, we obtain

CO 00 1
logrfiz)— =-22   Te2nikmZ - - 2 °-i(n)e2nin2 = ~A(z,0).

lz m=lk=l   K n=l

Thus, using the transformation formula for A(z, 0) under z -> — 1/z we obtain the

classical formula

log r¡( - 1/z) = log r¡(z) + (log z)/2 - 7T//4.

This derivation seems to be different from the other proofs in the literature.
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