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Abstract. The theory of Geöcze area for two-dimensional surfaces in three-

dimensional space had been essentially completed by the mid 1950's. The only

hypothesis needed for all theorems in this case is the finiteness of the area. See [2] for

an account of this theory. In the early 1960's, H. Fédérer established, in his paper

[6], fundamental facts concerning his integral geometric area for higher dimensional

area theory by employing the theory of normal and integral currents. These facts

employ not only the finiteness of area as a basic hypothesis but certain other hy-

potheses as well. The extensions of Geöcze type area to higher dimensions also

employ not only the finiteness of area but certain added hypotheses. These hypotheses

are of such a nature as to allow the use of the theory of quasi-additivity [3], [11].

The present paper concerns these added hypotheses which play such an important

part of higher-dimensional area theory of today. It is shown that Radó's lower area

is the best Geöcze type area to describe these added hypotheses. That is, it is shown

that the quasi-additivity hypotheses of Geöcze area in [11] imply the quasi-additivity

hypotheses of lower area. Second, it is shown that the quasi-additivity hypotheses

for lower area imply that the surface has the essential cylindrical property defined

by J. Breckenridge in [5]. This essential cylindrical property is proved to be equivalent

to the existence of area measures on the middle space of the mapping representing

the surface. Finally, it is shown that the essential cylindrical property of a surface is

equivalent to the quasi-additivity condition for lower area. Thus, an intrinsic property

of the surface characterizes the quasi-additivity condition for the lower area of a

surface.

0. Introduction. Around 1945, T. Radó introduced a Geöcze type area which

he named lower area. As he remarked in [12] lower area is the largest of the Geöcze

type areas of a surface. Also, around 1951, L. Cesari used surface area to induce a

measure over a suitable Borel algebra on the domain of the mapping which repre-

sents the surface. The definition of area used by L. Cesari was a Geöcze type area

but not lower area. In dimension two, the equality of the two areas to Lebesgue

area is known and so Cesari's area measure is applicable to both the lower area

and Lebesgue area. For dimensions larger than two the equality of areas is not

known. Nonetheless, Cesari's area measure can be constructed from his Geöcze

area under suitable additional hypothesis and Radó's lower area is well defined.

It is the purpose of this paper to investigate measures induced by areas and the

lower area of Radó. This investigation is prompted by certain "cylindrical"
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properties of mappings which were investigated in [5], [9] and [2]. These cylindrical

properties relate the mapping to its corresponding flat mappings. It is not surprising

that such cylindrical properties are important; for, the area measure of a surface

should be intimately tied to the area measures of the flat mappings corresponding

to the surface. Indeed, it is shown in the present paper that the essential cylindrical

property as defined by J. Breckenridge is precisely the condition needed to define

an area measure of a mapping which is consistent with the area measures of its

corresponding flat mappings.

§1 establishes some notation and sets forth some concepts and theorems con-

cerning flat mappings. In §2, we define Radó's lower area and relate it to the

concept of quasi-additivity introduced by L. Cesari in 1962. §3 concerns the area

measure induced by the quasi-additivity property of lower area for a certain class

of mappings. Finally, we establish in §4 a criterion under which lower area will

induce an area measure on the surface; and also an intrinsic characterization of the

quasi-additivity condition for lower area is established.

1. Preliminaries.    Let k and n be integers with 2^.k-¿n.

3~(n, k) will denote the class of all continuous transformations/whose domain

(f)<^Rk and range (/)<=/?". In general we will only consider those/with domain

(/) possessing nice properties such as being locally connected, locally compact and

A-dimensional at each of its points.

A mapping will be called flat if fe3~(k, k).

life 3~{n, k) and A <= domain (/), then L(/ A) will denote the Lebesgue area of

/on A. (We, of course, mean A-dimensional area.)

A(n, k) will denote the set of all increasing A-termed sequences in {1, 2,..., n}.

For each X = (XX,..., Xk)e A(n, k), PA:Rn^Rk will be the usual orthogonal

projection given by P\y) = (yÁ1, ■ ../y*j), where y=(yx, ...,yn)e Rn.

For convenience of notation, s will denote a function defined as follows: For

each pair of sets A and B,

s(A, B) = 0   ifA$B,       s(A, B) = 1    if A <= B.

For the remainder of this section we will assume / is a flat mapping and

X= domain (/). For each simple polyhedral region -n-^X, we have the usual

topological index 0(f n, y), y e Rk. Let A<^X. For each finite system © of non-

overlapping simple polyhedral regions ttc X, we have the numbers

2 s(ir,A)\0(f,TT,y)\,

(*) £ 5(tt,,4)0 +(/>,>>),    and
lie®

2s(7r,A)0-(fn,y),

where O + and O" denote the positive and negative parts of O. The suprema over all

such systems © are denoted by N(f, A, v), N+(f, A, y) and N~(f A, y), respec-
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tively. It is known that each of the functions in (*) is lower semicontinuous on Rk

and N(f A, y) = N + (f, A,y) + N~(f A, y) for almost every y e Rk. The suprema

over <S of the integrals of the three functions of (*) will be denoted by V(f A),

V + (f A) and V~(f, A), respectively. The flat mapping/is said to be of bounded

variation (BV) if J N(f, A,y)dy«x>.

Suppose / is BV and tr is a simple polyhedral region contained in X. Then

0(f it, y) is summable and we will denote its integral by

»if, w) = ! 0(f, w, y) dy.

For each A <= X, we define

U(f, A) = Sup 2 Sin, A)\u(f,n)\,
nee

U+if,A)   =   SuP   ̂ SÍ7T,A)u + if,7T),
neS

and

U~if,A) = Sup ^sitr,A)u-if,n),

where the suprema are taken over all finite systems © of nonoverlapping simple

polyhedral regions tt<= X.

The following theorem is true [10], [2].

1.1. Theorem. For each flat mapping fand A <= domain if),

NHf,A,y)dy= V±ifiA).

US, A)=j Nif, A, y) dy = F(/ A),

Í
Furthermore, iff is BV then U(f A) and U±(f,A) can be added to the above

equalities.

For each BV flat mapping/and A<= domain (/), we define the relative area off

on A as

vif,A)= U+if,A)-U-if,A).

For a BV flat mapping/with X= domain (/) we define two mesh functions 8

and B. Let 3> be a finite system of nonoverlapping bounded domains D with

closure D^X, and S be a finite system of nonoverlapping simple polyhedral

regions -n c X. Then,

and

8(^) = Max {diam [/(7))] : D e 2)}+ \U(J, X)-% IK/ D)\],
L DeB J

S(S) = Max {diam Lfin)] : n e ©}+ \Uif, X)-^ Wif *)\\
L neS J

Each <B can be considered as a 2¿¡ by just taking the interior of each n e ©. The

following lemmas are valid.
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1.2. Lemma. S(©)â2S(©).

Proof. Observe that U(f,rr)=U*if, ir)+U~if, ir), uif, it)=«+(/, *)'-«"(/, *)

and f/±(/, ir)£w±(/, 77) for rr e ©. Hence it follows that 8(©)^2S(©).

1.3. Lemma. 7/^1 c domain (/), r/icn

í/(//í)-2 4A^)IK//J)l^0
De®

as 8(3) -» 0.

Proof. From [11, §6.5] we infer that for each e>0 there is an r¡>0 and a set

B, open in .V, such that

(i) B^X-A,

(ii) U(f, A) + U(f, B) < Uif, X) + e,
(iii) 5c X, S n (X-A)¥= 0 ¥= S n (X-B) imply diam If(S)]^ti.

Suppose 8(3) <r¡. Then, for each D e ¡&, we have diam [/(7))]<t/.  Hence,

D e3 and 7) n (X-^)^ 0 imply 7J>c7i. So, we have

U(fA)-2"iD,A)Hf,D)\
De®

S Uif, A)- 2 s(D, A)\v(f, D)\ + Uif, B)-2 i(A BMf D)\
De® De®

S í/(/ A-)- 2 IK/, J>)|+« = 8(0) + «,
De®

since s(D,A) + s(D,B)^l for all 7)eS>.

2. Radó's lower area and quasi-additivity.    Let fe 0~(n, k) and X= domain (/).

For each A<=-X we follow Radó and define the lower area of/on .4 as the su-

premum of the set of numbers

J4siD,A)(   2     [L(P'°f,D)]2V12,
De® UeA(n,íc) /De®

where 3 is a finite system of nonoverlapping domains flcl. The lower area of/

on ^ is denoted by R(f A).

The following theorem is easily proved.

2.1. Theorem. LetfeS~(n, k) and A<=-X= domain (/). Then

(i) R(f,A)^L(fA);
(ii) R(f, A)=L(f, A) if fis aflat mapping;

(iii) Œ*ew) WA °/> ¿ífíF'ZXU', A)èZ,£Mn,k) R(P" 0/ ¿); fl«d
(iv) F(/ A') < 00 if and only if PK of is BV for each X e A(n, k).

Let fE0~(n, k) with FA °/of bounded variation for each A e A(n, k). Then for

each finite system 3 of nonoverlapping bounded domains D with closures D^X

= domain (/), and each A e A(n, k), the mesh 8X(3) is defined as in §1 above for the

flat mapping F* °/ We define, for the nonflat case, the mesh 8 as

8(3) = Max {8h(3) : A e A(n, k)}.
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Similarly, we define the mesh S(S) of a finite system of nonoverlapping simple

polyhedral regions ttc X.

£%*(n, k) will denote the class of those mappings fe 2f(n, A) for which 8(S>) can

be made arbitrarily small. Similarly, ^*(n, A) will denote those mapping/e 3~(n, A)

for which S(S) can be made arbitrarily small. The class 3~*(n, A) has been studied

in [11], [5] and [8]. Lemma 1.2 implies the following theorem.

2.2. Theorem. 3T*(n,k)^0l*(n,k).

Let e,,..., en be the standard basis for Rn and for each A e A(n, A) let eA

= eAl A • • ■ A eÁk. Then for each fe SF(n, k) with R(f X)<oo and A <= X= domain

(/), we have c(FA °fi A) as defined in §1. We define the A-vector

v(f,A)=     2    KPK°f,A)eh
AeA(n.)c)

and denote the Euclidean norm of v(f A) by \v(f A)\.

The following theorem generalizes Lemma 1.3.

2.3. Theorem. Let fe3i*(n, k) and A <= X= domain (f). Then

R(f,A)=   lim   J^ s(D, A)\v(f D)\.

Proof. Let D0 be any finite system of nonoverlapping domains contained in X.

Then, by Lemma 1.3 and Minkowski's inequality, we have

2   s(Do,A)l   2    WK of Do)]2)112
Do<=&o \>i6A(n,fc) I

=    2   s(Do,A)(   2    [U(P*°f,D0)]a)lla
Dqc&0 \AeA(n,Jt) /

=   2   s{D0,A)l   2    flint    2i(A/)o)|v(F^o/JD)|lY'2
DoeSo UeACn.k)   \_6(@)->0 DeSt J /

=   lim     2   s(Do,A)(   2     \I,s(D,D0MP*of,D)\]a\iia
S(S)-0  Does0 \\eA(n.k) \_De9 J   /

Ú Hm inf  2   s(Do, A) 2 *(A D0)\v(f D)\

¿ lim inf 2 s(D, A)\v(f D)\
d(®)-0   ¿^Q

£ lim sup 2 s(D, A)\v(f D)\
nm^o DeSl

á lim sup 2 s(D, A){   2    W °f, D)]2\u
í(®)-0   DsS \AeA(rc,fc) /

^ R(f A).

The theorem now follows.



360 TOGO NISHIURA [September

We next prove the theorem which establishes the fact that <p(D) = v(fi D) is a

quasi-additive set function in the sense of L. Cesari [3], [4].

2.4. Theorem. Let f e 3$*(n, A). If e>0 7Aen 7Aere is a 80>0 such that for each

2o with 8(¿&0) < so 'Aere is a 8X > 0 such that 8(2) < 8X implies

(0

and

(¡O

2 v(/ d0)- 2 *(a ax/;D) I < (;)«
3eS0 De3 Ve ID0eS0

2 [1- 2   s(D, D0)]Hf, D)\ <2(")e.
De® L D0e®0 J V   '

FAa7 is, v(f D) is a quasi-additive set function.

Proof. There is 80 > 0 such that for all A e A(n, A) and 3> with 8(2) < 80 we have

0á U(P* of X)-2d*® HPX of, D)\<e.
Let 20 be such that 8(20) < 80 and N be the number of elements in 20. There is

8X>0 such that for all A e A(n, A), L»0 e 20 and 2 with 8(2) < 8X we have

0 5Í £/(F* of D0)- 2 s(D, Do)HPÁ of D)\ < e/N.

Now,

and

2   v(P* of Do) - 2>( a D°xpK °f> D)
DoeSo De®

á   2   \\U+(PxofiDo)-J,s(D,D0)U + (P*°f,D)\
D0e®a | L De® J

-[£/-(/>* of D0)- 2 S(D, D0)U-(P* of D)]
L De® J

á   2   \U(P* °f> A>)" 2 *(A A,)L(F* o/ /))]
D0eS>0 L De® J

^   2   \U(PÁof,D0)-2s(D'Do)HPÁof,D)\]

2 [i- 2 s(r>,r>o)]KP'of,D)\
Je® L D0e®0 J

< e.

De®

¿ 2 HpÁ °f> °)l - 2   2 '(A A)(KPA °/, ö)|
De® D0e®o DeS

^ £/(/>* o/ X)-   2    W* °/, A>)-«/W]

â  U(P**f,X)-   2    k(F*°/, A>)|+*
D06®0

< 2e.

The theorem follows easily.
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2.5. Remark. The notion of quasi-additivity has been extensively studied in

[3], [4], [5] and [11]. We refer the reader to these papers for some further facts

concerning mappings / in the class 0¿*(n, k). Notably, we can infer from these

papers that for mappings in the class 0~*(n, k) Cesari's Geöcze area equals the

lower area. We also refer the reader to [8] for the quasi-additivity approach to the

existence of a current valued measure associated with mappings in the class â#*(n, k).

3. Area measures. Let/e 0~(n, k) and, for convenience, assume X= domain (/)

is compact and locally connected in addition to those conditions assumed in §1

above. Then the following diagram commutes:

/

/•**\

> Rn

y Rk

where m, I and mx, /A are the monotone-light factorizations of/and PK ° /and

J( and JtK are the middle spaces of the respective mappings. The mappings XlK

are also monotone, A e A(«, k).

Suppose further that R(f X)<co. For each Z<=-Ji and A e A(n, k), we define

the following outer measures on JÍ:

p.(Z) = inf {R(f m-x[B]) : Z <= B, B open},

p.Á(Z) = inf {R(Pk of m-1[B]) : Z c B, B open},

/*Í(Z) = inf {£/*(/>* o/ m-^B]) : Z <= B, B open}.

We also define the signed set function

cx(Z) = p,¿(Z)-^(Z).

3.1. Theorem. Suppose f e £%*(n, k) and Xe A(n,k). Then p., p.k, p.* are Borel

regular measures on Jt. Furthermore, ox is a signed measure on the algebra of Borel

subsets of M and (o*)* =VL\.

Proof. This theorem is a consequence of quasi-additivity. See [2], [11], [4] and

[5].
Suppose/e 0*(n, k). Then we define a A>vector valued measure a on the algebra

of Borel subsets of M by

aiZ)=    2    cta(ZK.
AeAin.k)

Then the total variation of a with respect to the Euclidean norm is p.. This again

follows from the quasi-additivity of <p(7J>) = vif D).
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3.2. Remark. There are natural outer measures IIA#(/zA) defined on Jik by

letting nA#(/iA) = /iA o nA 1. It is a simple matter to show for each Z^JiK that

nA#(^A)(Z) = inf {7?(F* o/ m^[B]) : Z c B, B open}.

Similar remarks hold for nA#(^). These measures on Jix are also Borel regular.

3.3. Remark. Since fe0~*(k, k) if and only if/is BV, we have that p., p.* are

Borel regular measures on Ji whenever/is a BV flat mapping. Also, p.+ and p.~

are mutually singular. Finally, we have, for A<= X= domain (/), that R(f, A)

= p[m(A) — m(boundary A)], where boundary A is computed relative to Rk. See [11].

4. Essential cylindrical property.    For the sake of convenience all mappings /

in this section will be such that X= domain (/) is compact and locally connected.

First, let/be a BV flat mapping and let

X —£> R"

v/
Ji

be the monotone-light factorization off. As remarked in 3.3 above there are three

Borel regular measures p., p+ and p.' on Ji and p+ and p.~ are mutually singular.

For each set A open in X, the functions N(f A, ■), N±(f A, ■) are nonnegative-

integer valued lower-semicontinuous functions on Rk such that N(f A, y)

= N + (f A, y) + N~(f A, y) for almost every y in Rk and J" N(f A,y) dy <oo.

4.1. Proposition. Let f be a BV flat mapping. Then there are two Borel subsets

E+ and E~ of Ji with the following properties:

(i) F+ c\E- = 0;

(ii) p,(E± n B) = p±(E± n B) = p±(B)for Borel subsets BofJi; and

(iii) ifzeE±,G is an open neighborhood ofz and y = l(z) then 1 á N(f m ~ \G), y).

Proof. Let 0Í be a countable basis for the topology of Ji. Then p-(B) =

j N(f,m~1(B),y)dy for each BeSS. Let NB = l~1{y : N(f m-1(B),y) = 0} n B.

NB is a closed subset of B and hence is an F„ subset of Ji. It is easily shown that

p(NB) = 0. Let S=Ji- (J {NB : B e 01}. S is a G6 subset of Ji.

Next, observe that there are disjoint Borel subsets S + and S ~ of Ji which satisfy

the condition p.±(S±) = p.±(Ji) and /x±(5'T) = 0. Since /x = /x++^_, we have

p.(S+ u 5'-) = /x(^). So, p.(S±) = p±(S±) = p±(Ji).

LetF* =5 n 5*. (i) is obviously true. Sinceii(^-5) = 0and/x(^-(5+ u5"))

= 0, (ii) follows. To prove (iii), let Be01 with zeB^G. Then z$NB and hence

lúN(f,m- \B), y) i Nif, m " \G), y).
The proposition is now proved.

In the remainder of this paper we will need to refer to the Lebesgue measure of

subsets A of Rk. We will denote it by Sfk[A].
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4.2. Lemma. If E± are the Borel subsets of Jt in Proposition 4.1 and Z<=E±

with /x±(Z) = 0 7Ae« SCk[l(Z)] = 0.

Proof. Z^E* and p,±(Z) = 0 implies p.(Z) = 0. Let G be any open subset of Jt

with Z<=G. Then Sfk[l(Z)]^( N(f m-\G), y) dy = R(f m-\G)) and the lemma

follows from the definition of p.(Z) = 0.

4.3. Remark. If E=E+ u£" then F satisfies the following two conditions:

(i) p,(E) = p(Jt).

(ii) IfZcF and/x(Z) = 0 then Sfk[l(Z)] = 0.

Borel subsets of Jt with the above two properties are called essential sets. See [5].

Next suppose/is a mapping in the class ST(ri, A) with FA °/of bounded variation

for each A e A(«, A) and consider the commutative diagram (**). For each

A e A(n, A), PA of has an essential set FA. We say / has the essential cylindrical

property if

S£k{y e Rk : 3z e FA 3 /A(z) = y and diam [¡(U;1^))] > 0} = 0

for each A e A(n, A). It is clear that the notion of essential cylindrical property is

independent of choice of the essential sets FA, X e A(n, k).

4.4. Theorem. If fe 3/t*(n, A) then f possesses the essential cylindrical property.

Proof. This theorem is an easy consequence of the next theorem due to the

definition of /¿A, Theorem 3.1 and Remark 3.2.

In the remainder of this section we investigate the relationship between measures

on Jt and the essential cylindrical property of/ where feJ~(n, k) with FÀ °/of

bounded variation, A e A(n, A). Consider again the commutative diagram (**).

For each flat mapping FA °/ A e A(n, A), we have the Borel regular measures

fi\, fi* on the middle space Jtx of PA of

Area measures should be defined on Jt rather than Jtx. To each flat mapping

FA o/ there should be a measure </>A on Jt satisfying the following natural

conditions:

(i) i/ia is a Borel regular measure on Jt.

(ii) If G is an open subset of Jt then R(PX of m-1(G)) = x/>A(G).

(iii) nÄ#o/.A) = /iÄ.

We remark that conditions (i) and (ii) imply (iii). Condition (iii) is included to

explicitly emphasize the interplay of Jt and Jtx.

4.5. Theorem. Le7 fe ST(n, k) with FA °/ of bounded variation for X e A(n, A).

FAe«, natural measures </>x on Jt, X e A(n, A), exist if and only if f possesses the

essential cylindrical property.

Proof. Suppose </% A e A(n, A), are natural measures on Jt. Let FA be essential

subsets of JtK for PK of. For each positive integer m and A e A(n, A), let H&

= {zeEx : diam [fIA 1(z)]t l/m}. H* is a Borel set. Consider any finite family
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{Bx, B2,..., Bt} of closed sets of Ji with diam [B¡] < lfm and Uî = i B, equal to the

closure of ITA71(//^). Since ¡/<A is Borel regular, there is for every j and e>0, an open

set Gj^Bj with diam(GJ)<l/m and i/ja(G,,— B,)<e/t. By Remark 3.3 and the

monotonicity of nA, we have

UG,) = R(PÁ of m^[G,]) = F(F* of m-^Gi-B,]) = MG,-B,) < e/t.

Hence

«njTTO]) ̂  2 W^) = Í *¿G¿ < e.
1=1 i = i

That is,

o = «nA-H/7¿]) = nA#(«(77¿) = ß,(HiX).

It now follows easily that p,A{z e FA : diam [IIA 1(z)]>0} = 0 from which we infer

that <e*\{y eRk :3zeEA3y = /A(z) and diam [/(nA \z))]>0}] = 0.

Conversely, suppose/has the essential cylindrical property. Using the mapping

nA and the Carathéodory construction, we can induce on Ji a Borel regular

measure i/>A such that, for any Borel subset B of Ji,

UB) = jn(UÁ\B, z) dßA(z),

where n(UA\B, z) is the number of elements in IIA 1(z) n B (possibly +oo). See

[7, §2.10.10].
Since IIA is a monotone mapping, we have for each Borel subset B of Ji that

ßA[{z : «(nA|F, z)â2}] = 0. Hence, for Borel subsets A of JiA we have

*ltiùtà = M^K*)] = jn(YlA\Tl^(A), z) dß,(z)

= J   dßx(z) = ßA(A).

Let G be an open subset of Ji. Since m 1(G)cwA 1[ItA(G)], we have

R(P" of m-\G))^ßA[\\A(G)]=l n(UA\G, z) dßA(z) = UG).

For each e>0, we next establish F(F* °/, m-1[G])><¡>AiG)-e. Since ßA[B] = 0

where B = {z : diam [IfA"1(z)]>0}, we have ^A(I1A"1[F]) = 0. Therefore, there is a

compact subset F of G— IIA 1[Ä] such that </(a(F)>i/ia(G) —e. Since F is a subset of

the set on which IIA is one-to-one, we have Y\KiJi—G) n I1A(F)= 0. Hence there

is an open subset K of JiK such that K~=>X\.KiF) and mA\K)<^m~\G). Con-

sequently,

7?(F* of m-i[G]) ^ F(F* ./, ffl»"1^]) = pÄ(«)

= ¿a(IUF]) =  f«(nA|F, z) rf/iA(z)
J

= MF) > MG)-e.
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The theorem is now completely proved.

We conclude this paper with our main theorem.

4.6. Theorem. Le7 fe 3~(n, A) with FA °/ of bounded variation for X e A(n, k).

Thenfe 3i*(n, k) if and only if f possesses the essential cylindrical property.

Proof. One half of the theorem has been proved as Theorem 4.4. We prove the

converse. Suppose/possesses the essential cylindrical property. Let e>0.

For each A e A(n, k) there are disjoint Borel subsets FA+ and Ex of JtK such that

FA = FA+uFA" is an essential set for FA of p,ÁLE£ =/xA, and zeEA implies

diam nA 1(z) = 0. (fihL E£ means the measure given by(/zAL FA±)(F) = /iA(FA± n B).)

Let Sf be a finite Borel partition of Jt such that each of the Borel sets IIA 1(FA+),

n^^F^) and Jt — IIA \EX), Xe A(n, k), is the union of sets in Sf. Let M be the

number of sets S in the partition 0>.

Suppose Ae A(n, k) and Se& are such that nA(S)cFA+. We will employ the

measure </>A(F)= \ n(TlK\B, z) dfix(z), given by Theorem 4.5 above. Since </<A is

Borel regular, there is an open set G and a closed set F such that F^S^G such

that <pA(G — F)<e/M. Since Fis contained in IIA 1(FA), Fis a compact subset of the

set points at which nA is one-to-one. We have from Theorem 4.5 that UG)

=J A(FA of m~1(G), y) dy. Let C be a compact totally disconnected subset of Rk

such that

r
e/M > N(P* of m-\G), y) dy

JRk-C

= JiV(FAo/ [m-\G)-(PAof) -1(C)],y)dy.

/A 1(C) is a zero-dimensional subset of Jtx and hence IIA(F) n /A"1(C) is also a

compact zero-dimensional set. Since IIA is a homeomorphism on F,

T=Fr\ (lK o nA)_1(C) is a compact zero-dimensional subset of S. Also,

Wk(Jt — G) n nA(F)= 0. Consequently, we have

0 á US)-UT) Ú UG)-UT) = UG-F) + UF-T)

á e/M+ß,[U,(F-T)] = e/M+ß,[Il,(F)-l^(C)]

= e/M+ f       N(PX of m-^G), y) dy ̂  2e/M.
JBIC-C

Let F(A, S) denote the compact zero-dimensional subset F of S and G(X, S)

denote the open set G containing S constructed above. Similar constructions can

be made for A and S with UK(S) CFA .

Let 2 be any finite system of nonoverlapping domains D in Jt such that

diam (D)<8(X, S) where S(A, S) is the distance from Jt-G(X, S) and F(A, S).
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Suppose further that each D meets F(A, S) and 2 is a cover of F(A, S). Then, if

nA(S)<=FA+, we have

2HPxof,m-\D))\ ä \^v(P'ofm-\D))\

^ KFAo/WI-1[U^])l

= U(PÁ of m-l[(J ^])-2t/"(FA o/ w-^U ^1)

ST WU ^)-2i/-(FA of m-i[]J 2])

> UT)-2U-(P* ofim-^U 2])

^ US)-2e/M-2U-(P*ofm-i[{J2]),

where the summation is extended over 2. We next show £/~(FA °/ w?_1[U ^])

< e/A/. To see this, consider

i/-(FA°/ m-HU ^]) = ^(^ °/. w_1[U ^])- C/ + (FA o/, m-^U ^])

^ «U ^)-C/ + (FA o/, w-i[U J])

^^A(C7)-i/ + (FAo/m-1[U^])

= WC7 - F) + UT) - U + (FA of m - » QJ <&])

< e/M-(U + (P" of m-i[y J])-AA+(nA[F]))

^ e/M

where the last inequality is valid because UÁ[Jt — \J 2] n IIA(F)= 0 and

/xA(nA[F])=/iAt(nA[F]). Consequently, we have

«5)-2 I"(FA »/, m"1^])] < 4e/M.

The same inequality holds when A and S are such that II A(S) <=£■-.

Consider the compact zero-dimensional subset

Z = (J {F(A, S) : Ik£S) c FA+ or nA(S) ^ FA", S eá?, A e A(», A)},

and the positive number S with S < 4e and

8 < min {8(A, S) : UK(S) <= £+ or I1A(S) c FA-, Se&, X e A(n, A)}.

Let 2 be any finite cover of Z by nonoverlapping open connected sets with

diam (D) <8, D e 2. Such covers 2 exist because Z is a compact zero-dimensional

set. Let AeA(«, A) and let 0>K = {Se& : WK(S)<^EX}. Then \J&K = EK. Let

2KS = {D e2 : D n F(A, S)# 0}. Our earlier calculations now yield

f/(FA o/ X)- 2 HPX °f, m-^D])]
De®

iU(P*ofiX)-2     2    V(Pxof,m-1[D])\
Seá"A De5A.s

= 2 i«5)- 2 k^»/.»»-1^!"
Seá»A [ ¡¡eàKS

< 4e.
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Therefore, we can assert the existence of a finite system 3 of nonoverlapping

domains D^X such that 8(3) <4e because m is monotone and / is Lipschitzian

with Lipschitz constant not exceeding one. Thus we have shown fe £%*(n, k).
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