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Abstract. In this paper, we treat first-order algebraic differential equations whose

coefficients belong to a certain type of function field. In the particular case where the

coefficients are rational functions, our main result states that for any given sector S in

the plane, there exists a positive real number N, depending only on the equation and the

angle opening of S, such that any solution y(z), which is meromorphic in S and

satisfies the condition z~"y -» co as z -> co in S, must be of the form exp J" czm(\ +o(l))

in subsectors, where c and m are constants. (From this, we easily obtain a similar

representation for analytic solutions in S, which are not identically zero, and for

which zKy —> 0 as z -» oo in S, where the positive real number K again depends only

on the equation and the angle opening of S.)

1. Introduction. In [5], G. H. Hardy proved the following representation

theorem: If y(x) is a real-valued function on an interval (x0, +00), which is a

solution on (x0, +00) of a first order equation Q(x,y,dyjdx) = 0 (where Q is a

polynomial), and which for no value of a is o(x") as x-> + 00, then the function

y(x) or its negative must be of the form exp (cxv(\ +e(x))) where c and y are fixed

constants and e(x) -> 0 as x -> +00. The techniques used by Hardy in the proof

are valid only for real-valued solutions and, in fact, it is known [12], [13] that

Hardy's result does not hold for arbitrary complex-valued solutions. (In [12], it was

shown that for any real-valued increasing function <i>(x) on (0, +00), it is possible

to find a complex function h(z), which is analytic in a region containing (0, +00)

and satisfies a first order polynomial equation Q(z, y, dy\dz) = 0, and which has the

property that \h(x)\ > <&(x) at a sequence of real x tending to +00. The solutions

h(z) constructed in [12] are of the form F(Az), where F is the Weierstrass F-function

and A is a constant depending on <J>.) In this paper, we treat (for a broader class of

first order equations), solutions which are meromorphic in some sectorial region,

and we obtain a representation analogous to that obtained by Hardy in the real-

valued case, for those solutions y0(z) which have a sufficiently large rate of growth

as z —> 00 in the region. (We also obtain a similar result for those solutions which

have a sufficiently small rate of growth.)
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More specifically, we treat equations Q.(z, y, dy/dz) = 0, where Q. is a polynomial

in y and dy/dz, whose coefficients belong to a certain type of field of meromorphic

functions which was investigated by W. Strodt in [9] and which we call a logarithmic

field of rank p. This is a field of functions, each defined and analytic in a sectorial

region approximately of the form

(1) a < arg(z-ßeKa + b)l2) < A

(for fixed a and A in (— n, tt), and some jS^O), which contains all logarithmic

monomials of rank ■¿.p (i.e. all functions of the form

(2) M(z) = .rvzMlog z)Mlog log z)** ■ • • (logp z)yp,

for real y} and complex AT/0), and which has the property that for every element/

in the field except zero, there is a logarithmic monomial M of rank f^p such that

f\M ^ 1 as z -> oo over a filter base (denoted F(a, A)), which consists essentially

of the sectors (1) as ß -> +00. (The filter base F(a, A) was introduced in [8, §94] and

is reviewed in §2 below for the reader's convenience.) The set of all rational com-

binations of logarithmic monomials of rank ^p is the simplest example of a

logarithmic field of rank p. (Since any such field (e.g. for p = 0) contains the field

of rational functions, our results include, as a special case, the case where O has

polynomial coefficients.) In part (a) of our main result (§3), we prove the existence

of a positive real number A0, which depends only on Q. and the sector angles a and

A, with the property that any solution y0(z) of Q.(z, y, dy/dz) = 0, which is mero-

morphic in an element of F(a, A) and for which z~Noy0 -> 00 as z -*■ 00 over F(a, A),

must be of the form yQ(z) = e\p \ M(z)(\+e(z)), where M(z) is a logarithmic

monomial of rank ¿/? and e(z) is an analytic function in an element of F(a, A) such

that e(z) -*■ 0 as z -> 00 over F(a, A). As an easy consequence of part (a), we obtain

in part (b), a similar representation for "sufficiently small" solutions. The first

step in the proof of the main result is to show (§4) the existence of a positive number

A! (again depending only on Í2, a and A) with the property that any solution yx(z)

of ß(z, y,dy/dz) = 0, which is analytic and not identically zero in an element of

F(a, A), and for which zNiyx -» 0 as z -> 00 over F(a, A), must be free of zeros in

some element of F(a, A). The number A0 (and the corresponding number for

"sufficiently small" solutions) are exhibited in the proof of the main result, and

their explicit calculation in specific examples is discussed in §6.

§7 is devoted to the proof of a technical result in complex variables which is

needed in the proof of the lemma in §4. It is put at the end of the paper to avoid

unduly interrupting the main line of thought.

Finally, we conclude with three remarks. First, an existence theorem for solutions

jo of £2 = 0 which satisfy the condition z~ay0->co for all ce^O, as z^co over

F(a, A), was proved by the author in [1, §3]. Secondly, as a partial converse to this

existence theorem, a much weaker result along the line of part (a) of our main

result here was proved in [1,§6B]. This result in [1], which dealt with solutions
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satisfying the condition z~ay0 -> oo for all a^O, imposed severe restrictions on the

form of the differential polynomial il We emphasize that no restrictions on the

form of Q. are imposed in our results here. Thirdly, the author would like to

acknowledge valuable conversations with Robert Kaufman and Gilbert Stengle.

2. Preliminaries, (a) [8, §94]. Let —TT^a<b^TT. For each nonnegative real-

valued function $ on (0, (b — a)¡2), let T(<fi) be the union (over 8 e (0, (b-á)¡2)) of

all sectors

(3) a + 8 < arg (z-</<S) exp (i(a + b)¡2)) < b-8.

The set of all T(>/i) (for all choices of >/>) is denoted F(a, b) and is a filter base which

converges to oo by [8, §95]. Each T(<p) is simply-connected by [8, §93]. If W(z) is

analytic in T(<p), then the symbol j W will stand for a primitive of W in F(t/>).

(b) [8, §13]. If/is meromorphic in some T(ip) and A is a complex number, then

/->■ A over F(a, b) means that for any e > 0, there is a >/>x such that \f(z) - A| < e for

all z in T(ifix). Similarly, /-> oo over F(a, b) means that for any N>0, there is a

4>x such that \f(z)\ >N for all z in T(<px). We will occasionally use the notation

/«g to mean fjg -> 0 over F(a, b). From the Cauchy formula for derivatives, it

follows [4, p. 309] that if/-> 0 over F(a, b) then zf'(z) -> 0 over F(a, b).

(c) The set of all logarithmic monomials of rank ^p (i.e. all functions of the

form (2)) will be denoted by A„. A logarithmic field of rank p over F(a, b) is a set L

of functions, each defined and meromorphic in some F(¡/<), with the following

properties: (i) L is a field (where, as usual, we identify two elements of L if they

agree on an element of F(a, b)), (ii) AP<=F, and (iii) for every element/in L except

zero, there exists M in Ap such that//M -*■ 1 over F(a, b).

3. We now state our main result. The proof will be given in §5.

Theorem. Let Q(z, y, y') = ^,fkj(z)yk(y')' be a polynomial in y and y' whose

coefficients fkj belong to a logarithmic field of rank p over F(a, b). Then there exist

positive real numbers N0 and Nx (each depending only on Í2, a and b) such that the

following conclusions hold:

(a) Ify0(z) is a solution of Q(z, y, y') = 0 which is defined and meromorphic in an

element of F(a, b) and for which z~N°y0 -> oo over F(a, b), then there exist a log-

arithmic monomial M of rank ^p and a function W, analytic in an element of F(a, b),

such that W/M -> 1 over F(a, b) and y0 = exp J" W.

(b) If yx(z) is a solution of Q(z, y, y') = 0 which is defined, analytic and not

identically zero in an element of F(a, b), and for which zN^yx —¡- 0 over F(a, b), then

there exist a logarithmic monomial Mx of rank á/> and a function V, analytic in an

element of F(a, b), such that V\MX -> 1 over F(a, b) and yx = exp J" V.

4. Lemma. Let Q. be as in the statement of the above theorem. Then there exists a

positive real number N (depending only on Ü, a and b), such that ify(z) is a solution of

Q = 0 which is defined, analytic and not identically zero in an element of F(a, b), and
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for which zNy -*• 0 over F(a, A), 7Ae« there exists an element S of F(a, b) in which

y(z) is analytic and has no zeros.

Proof. We will impose the necessary conditions on A as the proof proceeds.

Initially, let A>0 and let y(z) be a solution as described in the hypothesis (i.e.

zNy -> 0 over F(a, A)).

Set q = min{k+j : fkJ^0} and ? = max{j :/_;.,^0}. By dividing the relation

D(z, y(z), y'(z)) = 0 through by (y(z))q, we obtain

(4) iz-y.^x/ooM^y^iz),
1 = 0

where

(5) <D(z) = - 2 fki(¿)(y'(z)ly(z)y(y(¿))k+i-q-
k + l>Q

From condition (iii) for a logarithmic field, it easily follows that there exist

real numbers C>0 and p., and an element Sx of F(a, A) such that, for z e Sx,

(6) |/k,(z)| á \z\c for each (k,j), and

(7) |/k/z)|^|z|«if/k^0.

Since y -> 0 over F(a, A), and since F(a, A) is a filter base converging to oo, we

may assume, in addition, that y is analytic on Sx and, for z e Sx,

(8) |.y(z)|<l and |z| >max{l, 2/}.

We now assert that there exist a complex number 6 with arg 6 = (a + b)ß, and a

sequence {zn} -> oo lying on arg (z-6) = (a + b)ß, such that, for each «,

(9) \y'(zn)ly(zn)\<\zn\li6 + \   where S = (Sß^b-a)'1.

To prove (9), we note first (see §2(a)) that Sx contains a sector R: a + a<

arg (z—9)<b — a, where a = (A — a)/5 and arg 9 = (a + b)\2. Set ax = a + a and

bx = b-a. For zeR, let f(z) = G(e-iiA(z-e)0), where G(Q = (£-!)/(£ + 0, 8 =

TT¡(bx—ax) and A = (A1 + a1)/2. Then it is easily verified that/is a univalent analytic

mapping of /? onto the unit disk. Now writing l = u + iv, it is easily verified that

|G(0|2ál- \t\-2 when wäl. It easily follows that

(10) |G(0| ¿ 1-(1/2)|C|-2    when Re £ ä 1.

Let /?! be the closed sector ax + a^arg(z—6)Sbx — a. For z e Rx, say z=ö + rei'!'

where ai + a^y^Aj-CT, we have Re (e'i6\z- 6)6) = rô(Cos (8(<p- A)). Clearly

8(<p—A) lies in the closed interval [ — (tt/2) + 8a, (nß) — 8a], and on this closed

interval Cos x has a strictly positive minimum. Thus clearly, in view of (10), it

follows that, for all sufficiently large r, \f(z)\ ^ 1 — (\ß)r~20. Hence there exists K0

such that if z e Rx and \z\ ^ K0, we have

(11) (l-IZ(z)l)-1 Ú226 + I\z\2'.

Now let g be the inverse of/ Then by (8), the function <p(w)=y(g(w)) is an

analytic function on |w| < 1 such that \<p(w)\ < 1 on |w| < 1. Let ax, a2,... be the

sequence of zeros (if any) of <p in 0< |w| < 1, and for each «, let Dn be the disk
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\w—an\ <(1 — |an|2)4. Let D be the union of the Dn. Then by the lemma of §7, there

exist real numbers r0 e [0, 1) and Kx >0 such that, for r e [r0, 1),

(12) \<p'(w)l<p(w)\ ^ Kx(l-r)~6    on \w\ = r    if w £ D.

Since <p is a bounded analytic function, we have 2 0 — \an\) < °° (by [6, p. 240]), so

in the terminology of Tsuji [10, p. 7], the exponent of convergence of {an} is zero.

Thus by [10, p. 14], there exists a sequence {/„} in [0, 1) which converges to 1 and

such that the circle |w| =rn is disjoint from D for each n. Let zn = g(rn). Hence by

(12), for all sufficiently large n,

(13) \y'(zn)g'(rn)¡y(zn)\ ^ Kx(\ -|/(zn)|)"6.

Now (g(w) — g(0))jg'(0) is a normalized univalent analytic function on the unit disk

and so by the Koebe distortion theorem [6, p. 351 ] it follows that, for some constant

K2>0, \g'(w)\ 2: K2(\ — \w\) for all w. Hence from (13), for all sufficiently large n,

(14) \y'(zn)ly(zn)\ 5¡ (KX¡K2)(\ - \f(zn)\y\

It is easily verified that (zn- d)à = ei6\(\ +r„)/(l — rn)), and so since {rn} is a sequence

in [0, 1) tending to 1, it follows that arg (z„ — 8) = A = (a + b)\2 for each n, and

{zn} -**• oo. Since a<(b — a)l4, it follows that zn belongs to Rx for each n. It is easy

to see that (9) now follows from (11) and (14).

Returning to the relation (4), let

(15) m = 1 + max {j : fM ^ 0 for some k},

and let d> 1 be a constant which is greater than the number of coefficients/^, which

are not identically zero.

We now distinguish two cases:

Case I. i = 0. In this case, relation (4) is

(16) fq0(z) = - 2 AX/(z)Mz))'(X*))fc+*-«.
k + j > q

Now let N be any positive real number such that

(17) N>C-p. + Am+l,    where A = 14S+1.

We now assert that in this case (i.e. t = 0), there can be no solutions y(z) of £2 = 0,

which are defined, analytic and not identically zero in an element of F(a, b), and

satisfy zNy -*■ 0 over F(a, b).

To prove this assertion, we assume the contrary, and let Sx have the properties

stated in (6), (7) and (8). Since zNy -> 0, there exists an element 5 of F(a, b) such

that S is contained in Sx and

(18) \zNy(z)\ < I    and    \z\ > d   for all z e S.

Now since 5 is in F(a, b), S contains a sector R2 of the form

(19) a + X < arg(z-t/-o) < ¿»-A,
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where arg ip0 = (a + A)/2 and A = (A — a)/4. Consider the sequence {zn} whose existence

was proved in (9). Since arg 9 = arg tfia = arg (z„ - 9) and |zn— 9\ ** +00, it follows

easily that for sufficiently large «, arg (zn — </>0) = (a + A)/2, and hence zn e R2 (where

R2 is given by (19)). Thus there exists an index «0 such that

(20) zno e S, and

(21) |/(zno)/j»(zno)|<|zno|Mby(9)).

We now estimate the right side of (16) for z = zno. Since k+j^q+l, and since

|Xzn„)| < 1 (by (8)), we have (by (18)), \y(zno)\k+i-"< K\'"- In view of (6) and (7)

(for z = zno) and (21), relation (16) gives rise to the inequality

(22) |zno|« Û \tJo&   2    \zny.
k+i>i

Since |zno| > 1 (by (8)), we obtain |zno|"ga'|zno|c-iV + '4m(wherea'and«2areasin(15)).

Hence,

(23) \zno\N-c + "-Am ¿ d.

But in view of the condition (17) on A, N—C + ^. — Am> 1, and so since |znJ >a"by

(18), we see that (23) is impossible. This contradiction proves the assertion that

when A is chosen so as to satisfy condition (17), then there are no solutions of the

type considered in the statement of the lemma in the case when 7 = 0.

Case II. 7>0. Set H(z, v) = 2tj = 0fq-u(z)vi.

We now assert that if £is any positive integer satisfying E^l + C — p., and if v(z)

is any meromorphic function on Si, then for any z e Sx,

(24) |i»(z)| ä \z\E implies \H(z, v(z))\^(\ß)\z\Et + u.

To prove (24), let £be any positive integer which satisfies E^ l+C — p.. We may

write

(25) H(z,v) = vt(fq^.t(z) + r(z,v)),

where T(z, p)-S-Í)i-i.X*y~'' Now let z e Si and let |t»(z)| ä \z\E. Since \z\ > 1

(by (8)), we have |i»(z)|í_t ¿ |z| ~E forj< t. Hence in view of (6), |T(z, i»(z))| è t \A°~E-

Since p.-C + E>l and \z\ >It (by (8)), we thus have |T(z, i»(z))| g(l/2)|z|". Since

\fq-t,t(z)\ = lzl" by (7), it is clear that (24) now follows from (25). Now let A be any

positive number which is greater than 1 +C + (E+A)m~ (Et + p,), where A = 148+ 1.

Since zNy -> 0, there exists an element S of F(a, A) such that S<= Sx and

(26) \zNy(z)\ < 1 and \z\ > 2d for all z e S.

We assert that

(27) y(z) has no zeros in 5.

To prove (27), we assume the contrary, and let w0 be a zero of y in S. Then the

function z~(E + A)y'(z)/y(z) has a pole at wQ and so there is a deleted neighborhood

of w0, lying in S, containing no zeros of v and on which the function in modulus is

greater than 1. Letting wx be a point in this deleted neighborhood, we thus have

(28) wxeS   and    1 < \wx{E + AV(wx)/y(wx)\ < 00.
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As in Case I (see (20)), the sequence {zn}, whose existence was proved in (9),

eventually lies in S. Thus there exists an index n0 such that z„0 e S and (9) holds for

n = n0. Since F^ 1 and |z„J > 1 (by (8)), we have |z„0|'4< |zno|E + '4, and hence, by (9),

(29) \y'Í2no)¡y(zno)\ < \zj>+*.

Since S is connected, clearly there exists a curve, lying in 5, joining z„0 to wx and

not passing through any zeros of y. Along this curve, \z~lB + A)y'(z)ly(z)\ is a

continuous real-valued function which by (29) is < 1 at zno and by (28) is > 1 at

Wi. Hence somewhere along the curve the function assumes the value 1. Thus there

exists a point w2 such that

(30) w2eS   and    \y'(w2)/y(w2)\ = |w2|£ + ̂ .

We now consider the function Q>(z), given by (5), evaluated at z=w2. By (8),

|j(w2)|<1, soiffc+./>i7(i.e. k+j^q+l), we have \y(w2)\k+i-"^\y(w2)\<\w2\-N

by (26). In view of (6) and (30), it thus follows that

(31) |<D(w2)| ̂  \w%\°-»   2    \">*\,lB + A>>
k + i>q

which by definition of m and d (see (15)), leads to |0(w2)| ^</|H>2|c-;" + m<i; + "4). By

definition of N, we thus obtain |í>(w2)| ̂ í/|w2|eí + "-1. But \w2\ >2d (by (26)) and

hence we obtain

(32) \®(w2)\ < (l/2)|wa|" + \

Now the equation (4) is H(z, y'(z)/y(z)) = <D(z), and so by (32), |H(w2, y'(w2)¡y(w2))\

<(1/2)|h>2|£í + *. Hence by (24), we must have \y'iw2)¡yiw2)\ <\w2\E. But in view of

(30), this implies |w2|£ + '4< \w2\E which is impossible since A >0 and \w2\ > 1 (by

(8)). This contradiction thus establishes the assertion (27) and so the proof of the

lemma is now complete.

Remark. It is clear that the N constructed in the above lemma depends only on

£2, a and b, and can be explicitly calculated in any specific example.

5. Proof of the main result (§3). Part (a)—If y0(z) is a solution of £2 = 0, then by

dividing the relation Q.(z, y0(z), y'o(z)) = 0 through by (y0(z))n, where n =

max{k +j : fkj^0}, and setting v0=y'Qly0, we obtain

(33) G(z, v0(z)) m g(z),

where

m

(34) G(z, v) = 2 A-i.ii^V   (where m = max {j :fn-u ¿ 0}),
i = o

and where

(35) g(z) = - 2 fkA¿)iyoi¿))¡íiyoi¿)T-k.
k+j <n

Now G(z, v) is an algebraic polynomial in v of degree m, whose coefficients

belong to a logarithmic field of rank/» over F(a, b). It follows from [9, Theorem II,
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p. 244] (by applying this result to, in the terminology of [9, p. 246], the logarithmic

quadruple (F, EQ(0, F), R, Sp), where F=F(a, A) and R is the set of real numbers)

that there exists a logarithmic field of rank p over F(a, b) in which G(z, v) factors

completely. Hence there exist distinct functions, Bx,...,Bq, each defined and

meromorphic in some element T of F(a, A), such that the following three con-

clusions hold:

(36) If 5,7*0, there exists M, in Ap such that B^M, -> 1 over F (a, A).

(37) If /#/ there exists Mtj in Ap such that over F(a, A), (Bi — B^/M^ ■**■ 1 (since

B¡ — Bj belongs to a logarithmic field of rank p and is not the zero element).

(38) There exist positive integers mx,..., mq such that

G(z, v) =fn_m,m(z)(v-Bx(z))mi-- -(v-Bq(z)Y,

for all meromorphic functions v = v(z) defined on T.

In view of (36), all the functions B¿(z) are analytic in some element of F (a, A), and

we may assume that T has this property. In addition, we may assume \z\ > 1 for all

zin T.

Now since the Mtj in (37) are logarithmic monomials, there exists a positive real

number A such that zÁMu -> oo over F(a, A) for all (/,/) with Okj. Then clearly,

(39) z\Bi-B,) -> oo over F(a, A) if /#/

Since the M} in (36) are logarithmic monomials, there exists a real number

Q < — 1 such that

(40) z~QMj -»- oo over F(a, A) for each/

By condition (iii) for a logarithmic field, clearly there exist real numbers C > 0 and

p., such that

(41) /w«zc over F(a, b) for each (k,j), and

(42) z««/w over F(a, A) iffkj^0.

Let p,x be a real number such that

(43) fj.x^/x — Am and p.x<min {m¡(Q + X) — \m + iJ¡. : l^j^q}.

Let / be the set of all (k,j) with k+j<n and/w^0. Let Nx be a real number

greater than 1 such that

(44) Nx > (C-Ml -/)/(» - * -J) for all (k, j) e I.
Finally, if y0 is a solution of Q,=0, and if we set w0 = 1 ¡y0, then it is easily verified

that w0 is a solution of the equation

(45) 2/w(z)(- iy^-«+2«(w'y = o,

where a = max {k + 2j : fkj^0}. By the previous lemma (applied to equation (45)),

there is a positive real number N2, such that any solution w0(z) of equation (45),

which is defined, analytic and not identically zero in an element of F(a, A), and for

which w0«z~Nz over F(a, A), must be free of zeros in some element of F(a, A).

We now assert that if we set

(46) No = max {Nx, N2},

then A0 is the number required in part (a) of the theorem.
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To prove this, let^0(2) De a solution of £2 = 0, which is defined and meromorphic

in an element of F(a, b), and for which

(47) zNo«y0 over F (a, b).

Set w0=l/y0, so clearly (by (46)), w0«z~Nz. Since w0 is a solution of (45), we

have by construction of N2, that there is an element of F(a, b) in which

(48) vv0 has no zeros (and so y0 is analytic).

Thus, for any e > 0, there exists an analytic branch he of (zNow0)e in some element

of F(a, b). Since he^>0 over F(a, b) (by (47)), we have by Cauchy's formula (see

§2(b)) that zh'e -> 0 over F(a, b). But clearly, zh's = N0ehs-ezNoe + 1(yólyh+e), and so

it follows that

(49) zNos + 1(y'olyl + £) -> 0 over F(a, b) for any e>0.

We now assert that

(50) g«z"i over F(a, b) (where p-x is as in (43)).

To see this, we refer to (35) and prove that each term fo^yoY/yo'" (where

k+j<ri) in g is «2*1. When7 = 0, this term is «zc-*i<»-fc> an(j so <<zu¡. by (44) if

7>0, this term can be written fkj(y'olyo + sy, where e= -1 +((n — k)jj). Hence by

(49), this term is «zc-«¿v+1), which by (44) and (46) is «z"i, thus proving (50).

From (50), we conclude that the degree m of G must be strictly positive if £2 = 0

has such a solution y0, for if m = 0, (33) would be impossible since the left side is

»z"i by (42).

Now set v0=y'0ly0 and u0 = zÁv0. Then in view of (38), the relation (33) can be

written

(51) (u0(z) - z*Bx(z)Yi ■ ■ ■ (u0(z) - z*Bq(z)Y> = gx(z)   on F,

where gx(z) = zXmg(z)lfn.m,m(z), noting that by (34) and (38),

(52) mx+ ■ ■ ■ +mq = m.

In view of (42) and (50), clearly gx«zÁm + ll¡-~'', and so by (43), gx^-0 over

F(a, b). From this, together with (39), (48) and the fact that jo -* 00, it follows that

there exists an element Tx of F(a, b), with TX<^T, such that y0 and v0=yólyo are

analytic on Tx, and for all z in Tx,

(53) 1^(2)1^(1/2)», and,
(54) \z'Bi(z) -z*Bi(z)\ > 2 if t+j.

Now let z0 be a fixed element of Tx, so [^(zq)] ^(l/2)m by (53). In view of (51)

(for z = z0) and (52), it is clearly impossible that |«0(z0) — za.ß/zo)| >(l/2) for all /

Hence there exists an index t e{l,.. .,q} (t depending on z0), such that

(55) |Mo(z0)-zäÄi(z0)| â (1/2).

We now show that the index t will work for every z in Tx, by showing that

(56) \u0(z)-zABt(z)\ ^ 1    for all z in Tx.

To prove (56), we assume the contrary, i.e. there exists zx e Tx such that

|"o(zi)—ziBtizi)\ > 1- Since Tx is pathwise connected, there is a curve, lying in Tx,
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joining z0 to zx. Along this curve, the function |u0(z) — z\S((z)| is a real-valued

continuous function which by (55) is á 1/2 at z0 and by assumption is > 1 at zx.

Hence, somewhere along the curve the function assumes the value 1. Thus there

exists a point z2 e Tx such that

(57) \u0(z2)-zx2Bt(z2)\ = 1.

But by (53), |gi(z2)| ^(l/2)m, and so as before, it follows from (51) (for z = z2) and

(52) that it is impossible that \u0(z2) — z^Bj(z2)\ > 1/2 for all/ Hence there exists an

index k e {1,..., a} (k depending on z2), such that \u0(z2) — z2Bk(z2)\ ̂  1/2. From

(57), it follows that k^t and | z\Bt(z2) - z\Bk(z2) | á 3/2, which clearly contradicts

(54) for z=z2. This establishes (56).

In view of (54) and (56), we clearly have for j^t, \u0(z) — z'"Bj(z)\>l for all

zeTx, and so it follows from (51) that

(58) \u0(z)-z*Bt(z)\^\gx(z)\llmt   for all z in 7V

Now set U(z) = u0(z) — zxBt(z) for z e Tx, and set V—z~xU. Then Kis analytic on

Tx, and since u0=z\y'0lyo), we have

(59) y'olyo = Bt+V   onTi.

We now assert that

(60) V«zQ   over F(a, A).

To prove (60), we observe that by (58), we have | V(z)\ ^ |z| ~Á\gx(z)\llm> on Tx.

But by (42) and (50), gx«zXm + "i - « in F(a, A). Since p.x < mt(Q + A) - Xm + p, (by (43)),

it easily follows that, in some element of F(a, A), we have | V(z)\ < \z\Q'e for some

e>0, from which (60) follows.

We now assert that Bt^0 on Tx. If this were not the case, then by (59), y'0= Vy0

on Tx. Setting <p = z~1y0, we would obtain 93(z) = aj(z0) exp J"* (V(Q — £_1) di on Tx,

for some convenient fixed point z0. But V«z~1 by (60) since Q<—\, and it would

thus follow from [8, Lemma 103] that <p -*■ 0 over F(a, A). Hence we would have

jo«z, which contradictsy0»zN°, since N0>1.

Thus Bt^0, so by (36), there is a logarithmic monomial Mt of rank ^p such that

BtIMt -» 1 over F(a, A). By (60) and (40), V/Mt -> 0, so if we set W=Bt+ V, then

W\Mt -*■ 1 over F(a, A), and by (59), v0 = exp J W. This concludes the proof of

part (a).

Part (b). If yx(z) is a solution of Q = 0, then wx = l/yx is a solution of (45). Let

Nx be the positive number for the equation (45), whose existence was proved in

part (a) (applied to (45)). Then clearly Nx is the number required in part (b).

6. Remark. Concerning the explicit calculation of N0 for a given Ü relative to

a given F(a, A), it is easily seen that all quantities involved in the calculation of A0,

with the exception of A, m¡ and Q, can be immediately deduced from Í2, a and A.

But a suitable value for Q can also be easily determined, since by [9, §36, p. 237],
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the logarithmic monomials M¡ (see (36)) can be found by applying to G(z, v) the

algorithm in [9, §28, p. 236] (or, if the coefficients of G are of the type treated in [2],

then in view of [2, §5], one could also use the algorithm in [2, §26]). However,

values for A (see (39)) and the multiplicities m¡ are not easily accessible since to

find these numbers requires much deeper information on the exact roots B¡ of

G(z, v) than just knowing the asymptotic behavior of these roots. In certain cases,

however, these numbers can be determined. For example, we first calculate the

resultant F of G and dG/dv (see [14, p. 84]). R depends only on the coefficients of G

and belongs to the same logarithmic field. It is well known [14, p. 87] that R is

related to the discriminant D of G (see [14, p. 82]) by the relation

(61) R=fn.m,mD.

Thus R^ 0 is a necessary and sufficient condition for all the roots of G to be simple.

Hence if Fc^O, then each tn¡=\, and by definition of D,

(62) /> = (/„- m.m)2m -2 n ißi -5*)2-
¡<fc

Since R^O, there is a logarithmic monomial M* such that Ä/Af *-> 1 over

F(a, b). Since Bj/Mj -*■ 1, if we let y be a real number such that Mj<czy for ally,

then clearly Bi — Bk«zv for all i and k. Hence from (61) and (62), clearly for any

pair (i0, k0), with /0<ito, we have, (Bio-Bko)2»M*za-2m)Clzyd where d=m(m-\)-2,

and thus a suitable value of A satisfying (39) can be determined explicitly. Hence N0

can be explicitly calculated when R^O.

Of course, even when A^ cannot be explicitly calculated for a given £2, our result

still provides a representation theorem for all meromorphic solutions y0 of £2 = 0

for which z'ay0 -> oo over F(a, b) for all a^O, and for all solutions yx for which

zayx -» 0 over F(a, b) for all a^O.

7. Lemma. Let <p(z) be an analytic function on \z\ < 1 such that \<p(z)\ < 1 on

\z\ < 1. Let ax, a2,... be the sequence of zeros of<p in 0< |z| < 1, and let Dn be the

disk, \z — an\ < (1 — |a„|2)4. Let D be the union of the Dn. Then there exist real numbers

r0 e [0, 1) andKx>0 such that, for r e [r0, 1),

(63) \<p'(z)l<p(z)\ S Kx(l-r)-6   on\z\=r   ifz$D.

Proof. Set

(64) S(z) = n (1 -((1 - K|2)/(l -änz))) exp ((1 - \an\2)/(\ -änz)).
ngl

It is proved in [3, §4] (using the fact that 2ngi (1 — \an\) converges) that S(z)

represents an analytic function in \z\ < 1, whose sequence of zeros is {an}, and that

there exist real numbers rx e [0, 1) and K2>0 such that, for r e [rx, 1),

(65) \S'(z)/S(z)\ ^ K2(l-r)~6   on \z\ = r   ifz$D.

(An analogous estimate for canonical products in the whole plane is developed in

[11, p. 75].)
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Now by using the same estimates developed by Tsuji [10, p. 12] (where, for our

purposes, we take his number/» to be 1), it follows that for some A^3>0, we have,

for r e [-J-, 1),

(66) log|l/5(z)| ^ A-3(l-r)-2    on \z\ = r   ifz$D.

Let <p(z) have a A>fold root at z = 0. Then clearly there exists an analytic function

<ji(z) on \z\ < 1, such that

(67) <p(z) = zV(s)S(z)    on \z\ < 1.

Since \<p(z)\ < 1 on |z| < 1, it follows easily from (66) that there exists r2 e [%, 1), such

that for r e [r2, 1),

(68) Re(</-(z)) S (K3 + \)(l-r)~2   on \z\ = r   ifz£D.

Let^(r) = maX|2| = r Re (i/>(z)). Then it is well known [7, p. 338] that A(r) is increasing.

Now by [10, p. 14], there exists r3 e [r2, 1) such that, for any r in [r3, 1), there is an

r', with r¿r't¡(r+l)/2, such that the circle \z\ =r' is disjoint from D. Hence from

(68), A(r)¿(K3+l)(l-r')~2 and so

(69) A(r) ^ 4(K3+1)(1 -r)~2   for all r in [r3, 1).

Let A/(r, i/i) = max|a| = r |</i(z)|. By an inequality of Carathéodory [7, p. 338],

M(r, <f>)^4(l -ry^Adl +r)¡2)+ \<f,(G)\), and so M(r, 4>)^K¿\ -r)~3 for r e [r3, 1),

where Kt is some positive constant. Now applying the Cauchy formula for deriva-

tives (using the contour |£ —z| =(1 — |z|)/2), we easily obtain, for r e [r3, 1),

(70) |f(z)| á K5(l-r)-*   on|z| = r,

where K5 is a positive constant. Since by (67), <p'/(p=(klz) + i/j' + (S'IS), the result

now follows immediately from (65) and (70).
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