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ESTIMATES FOR BEST APPROXIMATION

TO RATIONAL FUNCTIONSO

BY

S. J. POREDA

Abstract. Estimates for the deviation of certain rational functions and their

polynomials of best uniform approximation on various sets are given. As a result,

in some cases these deviation and polynomials are explicitly calculated. For example,

the polynomials of best uniform approximation to the function (az + j8)/(z — a)(l —äz),

|a| ^ 1, on the unit circle are given.

1. Introduction. For a complex-valued function/ continuous on a compact

set F in the plane, let pn(f, E) denote the polynomial of degree n, n e Z + , of best

uniform approximation to / on E and, let pn(f E) = max2eE \f(z)—pn(f, E)(z)\.

Also, let U denote the unit circle |z| = 1.

Pnif, E) and pn(f E) are known only for a small class of functions and sets, and

in particular, iff is a rational function and not a polynomial, the only relatively

nontrivial results in this direction have been given by P. Chebyshev [1, p. 58] who

calculated pn(\j(x — a), [-1, 1]), for a>\ or a< —1, and by S. Al'per [2] who

calculated pn(\¡(z-a), U) for |a| > 1.

In what follows, the author finds estimates for the deviation pn(f, E) for several

classes of rational functions and sets, and using these estimates, pn(f E) is cal-

culated for a class of rational functions and sets thereby generalizing the above

mentioned result of Al'per.

2. Preliminary results.    We begin by stating Al'per's result.

Theorem 1 [2]. For nsZ+, and \a\ > 1,

Pn(ll(z-a), U) = [\-Kzn(\-äz)\l(z-a),    where K = [an(\- \a\2)]~\

If\a\<\, pn(\¡(z — a), U) can also be found, in fact it is a constant for all n.

Theorem 2. For nEZ+ and \a\ < 1,

Pn(\l(z-a), U) = [l-K(l-äz))l(z-a),    where K = (1 - }a\*)-\

Proof. By letting w=\\z the problem of finding pn(\\(z—a), U), \a\ < 1, can be

shown to be equivalent to findingpniwn + 1Hl —aw), U) which can be calculated by

applying Theorem 1 to yield the indicated result.
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3. An estimate for pn(f U). Since U will be the set we will be mainly concerned

with, set pn(f U)=pn(f), and pn(f, U) = pn(f). We consider here a rational function

f(z) of the form/(z)=g(z) + A(z), where g(z) = a¡{z-á), h(z) = ßl(\-bz), \a\>\,

\b\ > 1, and where in addition, either a and b lie on the same ray from the origin or

|a| and |A| are sufficiently large, e.g. |a| >9 and |A| >9. Using Theorems 1 and 2,

we can calculate pn(g) and pn(h), which will give us an upper bound for pn(f) since

pn(f) S= pn(g) + Pn(A). To obtain a lower bound we start by defining

4>{z) = [(l-az)(z-A)(l-a)(l-5)/(z-a)(l-Äz)(l-aXl-A)]1/2,

where w^arg wll2> —-n. Now if we let 90 = maxzeU |arg* >f>(z)\, where wäarg* w

> — -n, we have, using the geometric restrictions placed on a and b, that 0 ^ 0O < 7r/2,

and the following:

Theorem 3.

[Pn(a/(z-a)) + pn(j3/(l-Äz))]cosö0 S Pn(*l(z-a) + ß!(\-bz))

<; [Pn(al(z-a)) + pn(ßl(l-bz))].

Before proving the above we note that if 0O = O, or equivalently, if a = b, we have

Pn(al(z-a)+ßl(l-äz)) = pn(*l(z-a)) + pnm(\-az)).

4. Examples of best approximation. Using the special case, mentioned above,

of Theorem 3, we can now explicitly calculate pn((cz + d)l(z — a)(\ —äz)).

Corollary 1. For neZ+ and \a\ > 1,

pn((cz + d)l(z-a)(l -äz)) = [cz + d-Kxzn(\ -äz)2-K2(z-a)2]l(z-a)(\ -äz),

where Kx=(ca + d)¡an(\-\a\2)2 and K2 = ä(c + dä)l(l-\a\2)2.

It should be noted that, by choosing appropriate values for c and din Corollary 1,

we have Theorems 1 and 2 as special cases. We will now give a more generalized

version of Corollary 1 in which the sets under consideration are lemniscates. Of

course, the unit circle U is itself a lemniscate.

Theorem 4. For neZ +, |a| > 1, p(z) a polynomial of degree X, A¿ 1, and E the

lemniscate {\p(z)\ = 1},

pn((cp(z) + d)l(p(z)-a)(l -äp(z)), E)rnw r\ >        ji\f\ /       i\ r\ j/,     i

= [cp(z) + d-LxP(z)\\ -äp(z))2-L2(p(z)-a)2]l(p(z)-a)(l-äp(z)),

where Lx = (ca + d)¡ak(\ -\a\2)2, L2 = a(c + da)¡(\-\a\2)2, and Xk^n<X(k+l).

In order to prove the above we need use of the fact that the polynomials of best

approximation to a continuous function of p(z) on E are polynomials in p(z),

that is, they contain only powers of p(z). Then Theorem 4 will follow directly from

Corollary 1.
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Lemma 1. Let G(z) be a continuous function of piz) defined on E, i.e., if pizx)

=piz2) then Gizx) = G(z2). Then pniG, E)iz) is a polynomial in piz).

Proof. Let T¡: F-^ F, for /'= 1, 2,..., A, be functions which have the property

that if z0 e F then

piz)-piz0) = a^iz-Wizo))
i = l

where aK is the leading coefficient of p(z). The existence of such a set of functions is

guaranteed by the Fundamental Theorem of Algebra.

Furthermore, by Newton's Formula we have that, for 1 ¿j^X— 1,

(4.1) t 2 TO)]'= *y   for all ze E,
i=l

where B¡ is a constant independent of z.

Now since p(z) =/>(1Fi(z)) for z e F and i= 1, 2,..., A, we also have that G(z)

= G(x¥i(z)). So letting pn=pn(G, E) we have that, for i= 1, 2,..., A,

(4.2) \\G(z)-pn(z)\\E ^ \\GiTi(z))-pn(%(z))\\E = |G(z)-/7nCFi(z))||£.

Now let F„(z) = (l/A) 2!lipn(Ti(z)). Using the triangle inequality we have

||G(z)-Pn(z)||E ï l'f \\G(z)-pnQ¥i(z))\\E,
A i = l

and now using (4.2) we can write

(4.3) ||C7(z)-Fn(z)||£ S \\G(z)-Pn(z)\\E.

Now since pn(z) and p(z) are polynomials of respective degrees n and A, we may

write pn(z) in the form

Pn(¿) = Qo(p(z)) + zQ1(p(z))+ ■ ■ ■ +z*-1ßA_1(/>(z)),

where k\^n<(k+ 1)A and where Q¡ is a polynomial of degree k for i=0, I,...,

A—1. Thus Pn(z) becomes

PÁZ)=   Q0(P(Z))+T   IX^ÁZ)ïfâ*
+ l[Ît^)ri

QAp(z))+---

OA-r(Mz)).

But then by (4.1) we have that

Pn(z) = Q0(p(z)) + BxQx(p(z))+ ■ ■ ■ +BÁ_xQx.x(P(z)).

Thus Pn(z) is a polynomial, and in particular a polynomial in p(z), so by (4.3) and

the uniqueness of pn(G, E) we have that pn(z)=Pn(z).
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Theorem 4 can be made even more general if we consider functions of the form

g(z)= p(z)s(ap(z)' + ß)l(l — ap(z)t){p(zf — a) on E where a,p(z), E are as before and

where / and s are integers with 1 ̂  s< t. Then if we let

A(z) = (ap(zy + ß)l(l-ap(zy)(p(zy-a)

we get that pn(g, E)(z)=p(z)spM(h, E)(z) where M=mtX and where (mt + s)X

^n<((m+l)t+s)X. Using Theorem 4 we can find pM(h, E) and thus we can also

find pn(g, E).

5. Proof of Theorem 3. Before proceeding we will give the proof of Theorem 3,

which in itself is quite interesting.

Proof. We first consider the case where the polynomial is of even degree or

where n — 2m. Let/(z), g(z), h(z) be as before.

Set q2m(z)=p2m(g)(z)+p2m(h)(z), px = p2m(g) and p2 = p2m(h). Then

f(z)-q2m(z) = g(z)-p2m(g)(z) + h(z)-p2m(h)(z)

= P-iPiZ2m(l -az)l(z-a) + fi2p2(z-b)¡(l-bz)

= zm<p(z)[Kxzm(\ -äz)l<p(z)(z-a) + K2<p(z)(z-a)lzm(\-äz)],

where |jLtl| = |/n2| = 1, Kx=pxpx and K2 = p,2p2{\ -a)(l -b)¡(\ -a)(\ -b).

Since the function Y(z) = zm(l —az)¡<f>{z)(z — a) maps U onto itself m+\ times,

the function [Kxx¥(z) + K2¡^¥(z)] maps U onto an ellipse centered at the origin m+\

times, and so its maximum modulus on U is attained at the 2m + 2 points where

[xF(z)]2 = (/:2/^1)/|á:2/A'1|. Let {Zi}fTt2 denote these points and label them in such

a way that 0^argzx<argz2< ■ ■ ■ <argz2m+2^2n and

KxV(zk) + K2IV(zk) = (- l)k + 1K0   for k = 1, 2,..., 2m + 2,

where |/sr0| = |^i| + |^2| =Pi + />2.

Now let r2m(z)=p2m(f)(z)-q2m(z), and e = px + p2-p2m(f), (0^e^Px + p2). Then

\f(zk)-p2m(f)(zk)\ = |[/(zj-a2m(zk)]/z£-r2m(zk)/z£|

= \<p(zk)[KxV(zk) + K2IW(zk)] - r2m(zk)jzZ\

= \<p(zk)(-iy + 1K0-r2m(zk)lzZ\ Í Px + p2-e,

for k= 1, 2,..., 2m+ 2. Thus we see that r2m{zk)¡K0zk is contained in the disc

\w-(-\)k + 1<p(zk)\ ú(px + p2-e)l(Px + p2),    fork= \,2,...,2m + 2.

Letting 7; = Arc sin [(px + p2 — e)l(pi + p2)] and 9Q as before, we can see that if

Öo + ij^tt/2, then r2m(zk)IK0z% is in the half plane (-l)fc + 1 Re w^O for

1 ̂  k ¿ 2m + 2. This is impossible since it implies that the trigonometric polynomial

of degree m, Re [r2m(z)IK0zm], has 2m+ 2 zeros on U. Thus, we must have

0o + V > W2, or Arc sin [(px + p2 — e)l(px + p2)] > t¡2 — 60. Thus it follows that

Pi + P2-£>(px + p2) sin (tt/2- d0) = (Px + P2) cos 60.
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Now if n is odd, consider instead the function F(z) = G(z) + H(z) where

G(z)=g(z2) and H(z) = h(z2). Replacing z by z2 in the foregoing argument yields

(ft>»(G) + />2»(#))cos d0 g P2n(F),

and by applying Lemma 1, we can show that

P2n(G) = pn(g),    P2n(H) = Pn(h)   and    p2n(F) = Pn(f).

Thus the proof of our theorem is complete.

6. Other estimates for />„(/, U). We now give another technique for estimating

Pn(f U) for some rational functions/ Although we consider only rational functions

having two poles, this technique has wider applications, which we omit, since they

simply constitute repeated applications of the arguments given below.

By Theorem 4, we know that if |a| > 1 then pn(a/(z-a))= |a/an(|a|2 — 1)| and if

|é| < 1 then pn(ßj(z — b))=\ßj(\ — \b\2)\. The following theorem permits us to

estimate the quantity pn(aj(z — d) + ßj(z — b)).

Theorem 5.

\(a-b)l(l-ba)\Pn(al(z-a)) í Pn(al(z-a)+ßl(z-b))

è Pn(*l(z-a)) + Pn(ßl(z-b))   if\a\ > 1, \b\ > 1,

and

Prfßliz-bj)  Ú  Pn(al(z-a)+ßl(z-b))

è Pn(ai(z-a)) + pn(ßl(z-b))   if\a\ > 1 and\b\ < 1.

In case (1), we have equality on the left if

ß = -abn(\ -äb)(\ - \b\2)¡an(\ -ba)(\ - \a\2).

In case (2), we note that pn(al(z — a)+ßl(z — b)) converges to pn(ßf(z — b))

= ||3/(1 —1¿?|2)| as n increases, since pn(a¡(z — a))=\a¡an(\a\2—\)\ converges to zero

as n increases.

We now consider rational functions having a pole of multiplicity two at a point

outside U.

Theorem 6. Let \a\ > 1, then

|8/a«(|a|2-l)2| ^ pn(yl(z-a) + 8l(z-a)2)

è \8¡an(\a\2-iy\

+1 [y + (8[(n + 2)\a\2-n])la(l - |fl|2)]/fl"(l - \a\2)\.

Again we have equality on both sides if ya(\ — \a\2)= —8[(n + 2)\a\2 — ri\, in this

casePn(y/(z-a) + 8/(z-a)2)=|S/a'l(|a|2-l)|.

Since the proofs of Theorems 5 and 6 are almost identical we shall prove only

Theorem 6 and then given an indication of how that proof can be applied to

Theorem 5.
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Proof. As with polynomials of degree n, there exists a unique rational function

Qn,a(z) of the form Qna(z) = CI(z — a)+pn(z), of best uniform approximation to

f(z) = yl(z — a) + 8l(z — a)2 on U, where pn(z) is a polynomial of degree n. In fact,

Qn.a(z) is given by

Qn.a(z) = {y(z-a) + 8-Kz%\-äz)2]l{z-af,

where K=8¡an(\ - \a\2)2.

In order to demonstrate this we employ a method developed by T. J. Rivlin [4].

Since \f(z)-Qn,a(z)\ = \Kz"(l-äz)2l(z-a)2\ = \K\, the deviation f(z)-QnJz)

attains its maximum modulus everywhere on U, and thus by Kolomogorov's

Theorem it is sufficient to show that for any rational function Rn(z) of the form

Rn(z) = CI(z — a)+pn(z) (where pn(z) is a polynomial of degree n),

(6.1) min Re Rn(z)[Kzn(l -äz)2j(z-a)2] ^ 0.
26 U

Now since z= 1/z for ze U,

Re Rn(z)[Kzn(\-äz)2l(z-a)2] = Re Rn(z)[Kz-n(z-a)2l(l-äz)2]

is harmonic in the extended region |z| > 1 and has a zero (at a) there, so by the

minimum modulus principle for harmonic functions, (6.1) must hold.

To obtain the left side of our equality, we note that the set of polynomials of

degree n is included in the set of rational functions of the form C¡(z — a)+pn(z),

and so ||/-ß,..||l,= |A:| = |S/a»(l-|a|a)|a/>»f/).

To arrive at the right inequality we note that Qna(z) = C0l(z — a)+qn(z), where

C0 = y+S[(« + 2)|a|2-«]/a(l — |a|2) and qn(z) is a polynomial of degree n. Thus

Pn(f)i\\f- QnJu + Pn(Col(z-a)). Since Pn(C0l(z-a))= |C0/a"(l - |a|2)|, the right-

hand inequality follows.

To prove Theorem 5 we employ the same methods, approximating /(z) by

rational functions of the form C/(z — b)+pn(z), to obtain the left inequalities. The

right inequalities are immediate.

7. An estimate for pn(l/(x-j8), [ — 2,2]). We conclude by obtaining an estimate

for a simple rational function, namely l/(x — ß), on the interval [ — 2, 2]. It should

be noted, however, that this estimate can be applied to the above function on any

closed bounded line segment in the plane provided of course that ß is not on that

segment. Now, for ß<£ [ — 2, 2], choose b, \b\ > 1, where b+l/b = ß. The number b

is uniquely determined and we have the following:

Theorem 7. P/|A|n+1^Pn(l/(x-/3), [-2, 2])^P/|6|"-1, where

R= \(llb-b)(l-\b\-2)\-\

Proof. We use the fact [3] that

Pn(\¡(x-b), [-2,2]) = p2n(,z« + íl(z-b)(z-llb), U),

and then apply Theorem 5, case (2), to arrive at our desired estimates.



1971] best approximation to rational functions 135

References

1. N. I. Ahiezer, Lectures on the theory of approximation, OGIZ, Moscow, 1947; English

transi., Ungar, New York, 1956. MR 10, 33; MR 20 #1872.

2. S. Ja. Al'per, Asymptotic values of best approximation of analytic functions in a complex

domain, Uspehi Mat. Nauk 14 (1959), no. 1 (85), 131-134. (Russian) MR 21 #3577.

3. S. J. Poreda, Best approximation to some rational functions, Thesis, University of Mary-

land, College Park, Md., 1970.

4. T. J. Rivlin, Some explicit polynomial approximations in the complex domain, Bull. Amer.

Math. Soc. 73 (1967), 467-469. MR 35 #3068.

Clark University,

Worcester, Massachusetts 01610


