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CONSTRUCTION OF MEASURES AND INTEGRALS

BY

B. S. THOMSON

Abstract. The systems introduced by R. Henstock and later by E. J. McShane to

provide powerful generalizations of the Riemann integral are used to construct outer

measures and upper integrals and to develop a Lebesgue type theory in quite general

settings.

In this paper we present an introduction to the theory of measure and integration

in division spaces. These spaces were first introduced by Henstock [3] in order to

generalize the classical Riemann integral to a setting which permitted limit theorems

of Lebesgue power; most of the results are essentially due to Henstock. The

presentation here is concerned only with the construction of measures and of a

Lebesgue-type integral. For the Riemann theory which permits a definition of the

integral for functions with values in a topological semigroup and for the generalized

limit theorems see Henstock [4] and McShane [5].

1. Division systems. Let F be a set, 93 a semi-clan (semiring) of subsets of F,

and (S the clan (ring) generated by 93. The elements of © will be called the elementary

sets and the pairs in 93 x F will be called bricks. Any finite subset S3 of 33 x F will be

called a division provided the collection of 7 e 93 with (7, x)e% for some x e F is

disjointed. We write a(%) = (J {7 : (7, x) e 1)} for any division 1) and call 1) a

division of the elementary set E where F=ct(Î>). Also a subset 5 of 93 x Fis said to

divide E if 5 contains a division of F.

For any subset 5 of 93 x F and any family 9f of subsets of 93 x F we shall require

a notation for the following collections relative to a subset A'ç F.

(1.1) S[X]={(I, x) e S : x e X},

(1.2) ,H[X]={S[X];Se'ñ},

(1.3) 5(A-) = {(7,x);7<=A-},

(1.4) W(X) = {S(X) : Se21}.

Definition 1. An ordered triple (T, 91, 93) is said to be a division system if 9Í is a

collection of subsets of 93 x F such that

(i) ( 0, x) e 5 for every 5 e 21 and every xeT.

(ii) 91 is directed downwards by set inclusion.

A division system (F, 51, 93) is said to be fully decomposable (resp. decomposable)
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if for every family (resp. countable family) {A"¡ : ie 1} of disjoint subsets of T and

every {S¡ : i e 7}ç?( there exists an S in 91 with 5[Ari]c5j[A'¡] (i e I).

Any real-valued function p. on 93 x T will be called a brick function; a brick

function p which has the property that /—*p(/, x) is additive on the semi-clan 33

for every fixed xeT will be called an additive brick function. In particular if m is

an additive function on 93 and/is a function on Tthe function/w: (/, x) ^f(x)m(I)

is certainly an additive brick function. If D^^&xT is a division we shall write

{%) 2 p-il x) for the sum 2 {p(I x) : (I, x) e %}, replacing an empty sum by zero.

Let S be an arbitrary subset of 93 x T and let 91 be an arbitrary family of such

subsets. Then for a brick function p we have the following concepts for the variation

of ¡j. relative to S and 9t.

(1.5) V(p, 5) = sup{(®)2 |p(/, *)J : $SS, <$> a division}.

(1.6) Vip., 9l) = inf{K(p, 5) : Se 9.1}.

Theorem 1.7. Lef p. be a brick function on a decomposable division system

(T, 91, 93) asrf denote p*(X)=V(p., 9I[A"]) (AçT). F«e«

(i) p*(0) = O, 0^p*(X)^+od, and

(¡o A*f*)ázr-:i /**(*,) (*=ur=i *i)-
Proof. In standard terminology this theorem asserts that p* is a measure (or

outer measure) on F. Assertion (i) is trivial. For (ii) let £>0 and choose S¡ e 9( so

that V(¡x, Sj[X,])<ip*(Xj) + e/2i for each integer/

By the decomposable property choose Se 9t such that S[Aí\A%/_1]sS/[Arí\A^_1]

for each/ where Xk = [JJák A",.

Then if 3>ç,£[jfj| is a division write 1); = ®[A'J\A^J_1] so that

CD) 2 Hi x)\ = 2 (®i) 2 KA *)l
CO CO

s 2 np,sAxf]) á 2/**(*-,)+«.
í=i ;=i

Thus /x*(A')áF(zí,S[A'])á2r.iM*(A'í)-l-e and since e>0 is arbitrary the result

follows.

This method of constructing measures is apparently not widely known and is due

to Henstock. Division systems as we have defined them are quite general: the

necessity for 93 to be a semi-clan can always be arranged by taking 93 as the collec-

tion of all subsets of F. It is in the following definition and in particular in §3 below

that this requirement assumes force.

Definition 2. A division system (F, 91, 93) is said to be of type A or type B if

the corresponding property holds:

A. For every S e 91 and every J e 93 if (/, x) e S then (/ nj,x)e S

B. For every Je 93 there exists an Se 9J such that if (I, x) e S there is a finite

disjointed sequence Iu I2,..., In in 93 such that I — IJJJ = i Ik and each (Ik r\ J, x)e S

and (Ik\J, x) e S.
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Every division system of type A is evidently of type B. Certain properties of

spaces of type A have been investigated by McShane [7] while Henstock has

essentially used condition B in his investigations of the theory in Euclidean spaces.

The principal result which we obtain now (Theorem 1.13) is that for these types

with p an additive brick function the measure p.* has a property which usually

requires a "regularity" assumption.

Lemma 1.8. Let p. be an additive brick function on a division system (T, 9Í, 93)

of type B. Then V(p, 91) = V(p, 91(F)) + V(p, 9l( \E)) (E e (£).

Proof. Suppose that E=JX u J2 u- ■ -uJh for a disjointed sequence {/} from

93, and let 5¡ e 91 be chosen by the hypothesis B relative to Jt e 93. Let Se 91 such

that 5^P)i = i Ski tnen if ®-S ¡s a division and (7, x) e D there is a disjointed

sequence 7,, 72,..., In from 93 with /=/i UiaU- ■ -U/B and each (Ik n Jx, x),

(Ik\Ji, x) belongs to 5; applying the arguments again to each one of these latter

bricks relative to J2, J3 etc. in turn we get (inductively) a disjointed sequence

Ii, I2,..., In with 7=7i u 72 u ■ • • u Im and each (7/ n E, x), (7/\F, x) belongs to 5.

Since p. is additive then

m

\p(I, x)\ ¿ 2 Wí n E> x)\ + Wi\E, x)|.

If we apply this argument to each (7, x) e "35 we obtain

(») 2 HI x)\ S K(.x, S(E))+ V(p, S( \E))

so that V(p, S)=V(p, 5(F)) + K(/x, 5( \F)). As this holds for every 5^0?=! $

the lemma follows.

Corollary 1.9. If p. is an additive brick function on a division system (T, 9Í, 93)

of type B then E —> V(p., 21(F)) is additive on &.

Proof. If Ex and F2 are disjoint elementary sets we apply the lemma to the

division system (F, 21(F), 93) (F=F, u F2) to get V(p., 91(F)) = V(p., 2t(F1))

+ V(p., 9I(F\F,)) and so F -+ V(p, 21(F)) is additive on ©.

Lemma 1.10. Let p be an additive brick function on a division system of type B. If

V(p., 5) ^ V(p., 91) + £ < + oo for some SeWandoO then V(p,, S(E)) ^ V(p, 21(F))

+ e for every E e ©.

Proof (Henstock [3, p. 231]). For any 5 e 21

V(p,S(E)) ^ V(p.,S)-V(p,S( \E)) S V(p,K) + e-V(p.,K( \E))

and Lemma 1.8 completes the proof.

Corollary 1.11. Let p be an additive brick function on a division system of type

B. If V(p., 9f(F)) = 0/or every E e @ and V(p, 91) < +oo then V(p, 91) = 0.
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Proof. This follows directly from the lemma.

Corollary 1.12. Let p be an additive brick function on a division system of type

B. // V(p, A)<+oo then V(p, 9t) = sup£e<i V(p, 91(F)).

Proof. If e > 0 choose S e 91 so that V(p, 91) + £ ̂  V(p, S) and let % Ç S (a(î)) = F)

so that CD) 2 HI x)\ ^ V(p, S) — e and thus using the lemma

V(^, 91(F)) + e £ K(¿ S(£)) ê CD) 2 l**tt *)l

ä   V(p,S)-e è   K(p, 9I)-£

and the result follows.

Theorem 1.13. Leí p ¿ze a« additive brick function on a decomposable division

system of type B. Then for every increasing sequence A^Ç A"2çr • ■ ■ of subsets ofT

P*(ûxk) im f,*(Xk).

Proof (Henstock [3, p. 231]). Let e>0, choose Sk e 91 so that V(p., Sk[Xk])

fip.*(Xk) + e/2k for each integer k and then, by decomposability, choose Se 91 so

that SfA^A^lsSJA^A^] (where X0= 0).

If3?çS[U"=i Xk] is an arbitrary division write pk=5>[Xk\Xk-x] and Ek = oC&k),

and let m be the least integer for which r£>k= 0 (k>m).

Define pk(I, x)=p(7, x) if x e Xk and zero otherwise; then pk is also an additive

brick function.

Now using 1.10, 1.9 and the definition of the Sk we compute

m m

cd) 2 Hi, x)\ - 2 cd*) 2 Hi x)\ i 2 *vfc, sk(Ek))

m m

¿ 2 *v*. «(£*))+« ̂  2 v(p.m,%(Ek))+e
k=l k=l

á   K(pm,91) + eâp*(A-m) + £.

Hence

rWÜ **) ¿ ^(p.sfÜ **1) á lim p*(A-,) + e.
\Zí = i      / \ U = i      J/        fc-.»

This result together with 1.7 proves the theorem.

We introduce now a concept which provides a link between the values of the

measure p* and the values of the brick function p. In particular if m is an additive

function on 93 the function in the literature which usually serves as the variation of

m is defined on E by v(m, F)= V(m, 91(F)) (cf. Dunford and Schwartz [1, p. 97])

and the concept in Definition 3 provides a condition sufficient to ensure that

P*(F) = zj(«i,F).
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Definition 3. Let p. he a brick function on a division system (F, 2Í, 93) and let

XçT.

(i) p. is said to be regular from above at X if V(p, 9l[A"]( \A")) = 0.

(ii) p. is said to be regular from below at X if V(p, 2i[ \X](X)) = 0.

(iii) p. is said to be regular at X if both (i) and (ii) are true.

Among the immediate consequences of the definition we note the following:

/x is regular from above at A* if and only if p. is regular from below at \A"; p. is always

regular from above at the empty set 0 and is regular from below at 0 if and only

if/x(0,x) = O for every xeT; the collection of sets at which p is regular is closed

under finite unions and intersections and under complements; if in addition the

system is decomposable this is true for countable unions and intersections.

The importance of the concept lies in the following theorem.

Theorem 1.14. Let p be an additive brick function on a division system of type B.

Then if p is regular at an elementary set E

(i) F is p*-measurable, and

(ii) p*(E)=V(p, 21(F)).

Proof. If p is regular at an elementary set F then the relations

V(p, 2I(F)[Fj) á  V(p,, 21(F)) g K(/x, 91 [E](E))+ V(p,K [ \E](E))

and

v(p,nE]) = v(p,nE](E))+v(p,nE]( \e»

imply that p*(E) = V(p., 91(F)) as required for (ii).

Similarly it follows that p*( \E)=V(p, 9l( \F)). Let X^T he arbitrary and

write p0(I, x) = p(I, x) if x e X and zero otherwise. Then if p is additive and regular

at F so also is p.0.

Thus, using 1.8 and the above results,

P*(X) = K(-x0,9I) = V(p.0, 91(F)) + KW 9i( \F))

= p*(E) + p*(\E) = p.*(XnE) + p*(X\E)

so that E is /j.*-measurable as required.

We complete this section by stating a concept which is useful in applications

of the above theory.

Definition 4. A division system (F, 9Í, 93) is said to be compatible with a topology

t on F if for every open set G in r there is an 5 e 91 such that S[G]^S(G).

It should be noted that the division system on the real line associated with the

classical Riemann integral is not compatible with the usual topology on the real

line but that the system in [2, p. 21] is. We mention the following fact as well: if

(F, 9Í, 93) is a decomposable division system which is compatible with a topology

on F given by a metric d then for any pair of sets A, B^T if d(A, B)>0 then

p.*(A u B)=p*(A)+p*(B), so that p.* is a metric outer measure on T.
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2. The upper integral. If p. is a brick function on a division system there is a

natural way of defining an upper integral on T relative to p. An upper integral is a

function Nu: RT+ -» R+ (where 7?+ denotes the nonnegative extended real numbers

and RT+ the class of all functions/: T-> R+) which satisfies certain of the properties

expressed in Theorem 2.1 below.

Definition 5. If p is a brick function on a division system (F, 9Í, 93) and if

fe RT+ we define

Nu(f) = sup V(fmp, 21)
m

where fm(x)—f(x) if/(x) < +oo and/m(x) = /z/ if/(x)= +oo (and as usual fmp is the

brick function (7, x) -^fm(x)p(I, x)).

Theorem 2.1. Let p. be an additive brick function on a decomposable division

system of type B. Then

(1) Nu(f)=0 if and only ///(x) = 0 a.e.-p.*.

(2) Nu(f) < +00 implies that f(x) < +oo a.e.-p*.

(3) Nu(Xf) = XNß(f) for every X>0.

(4) Iff(x) è Z?= ! gk(x) then N„(f) g S?, i #..(.?*)•
(5) 7//(x)á/2(x)¿/3(x)^ ■ • ■ a7/7z7/(x) = sup,/fc(x) then Nu(f) = supk Nu(fk).

Proof. (1) If Xk = {x :f(x)^\lk} then ft*(Xk)¿kN„(f)=0 so that setting

A"o = {x :/(x)#0} = Uf=i Jf* we have fz*(I0)á2t"=i i**(**)=0 as stated.

(2) If Xa={x :/(x)=+oo} then using the notation of Definition 5 we have

p.*(Xa>)^m~1V(fmp, 2í)á/M"1A/(,(/) for every m and so p.*(Xx) = 0 as stated.

(3) is trivial.

(4) Let/m(x) be defined as in Definition 5 and for each x e Fand each integer m

let n(x, m) be the least integer for which ((m—l)lm)fm(x)Sl**im)gk(x). Set

Xnm = {x : n(x, m)fín} and then

((//z-l)/m)K(/ra/x,21[A-nm]) <  J Nu(gk) g  f N„{gk).
k=i fc=i

Letting first n -> oo (by 1.13) and then m -> co we obtain AfX/) = 2"= i Nu(gk) as

required.

(5) Let/m be defined as in Definition 5 and for each x e Fand each integer m let

n(x, m) denote the least integer for which fn(xm)(x)^fm(x)((m— \)¡m).

If Xnm = {x : n(x, m)^n} then we have

(~£) V(f^> ^Xnm])   =   &.(/»)   á   SUp Nu(fk).

Again letting n -> co (use 1.13) and then m —s- co we obtain Nu(f) ^supk Nu(fk); as

the opposite inequality is obvious this completes the proof.
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3. Integration. For a theory of integration we require more structure than has

been necessary above; in particular we shall need sufficiently fine divisions of every

elementary set.

Definition 6. A division system (T, 91, 93) is said to be a division space if every

Se 9t divides every elementary set.

There is a fully developed Riemann theory of integration in division spaces

(Henstock [3], [4]; McShane [5]) which has the advantage over previous integrals

of defining an integral for brick functions assuming their values in topological

semigroups and which nonetheless possesses limit theorems of Lebesgue power.

We shall consider only the Lebesgue theory for these spaces and we are hence

confined essentially to the real-valued case as in all Lebesgue theories.

Definition 7. A brick function p on a division space (T, 91, 93) is said to be

absolutely integrable (McShane [5, p. 15]) if for every c > 0 there is an S e 9( so that

(®x!D')2 HirM', x)-p.(F ni, x')| â e

for every pair of divisions "D and D' contained in S

If P is a fixed brick function then the class of all real-valued functions f on T

for which/p is absolutely integrable and Nu(\f\)< +00 is denoted by L(p); this

collection is an ordered vector space under the usual pointwise definitions and we

shall write L+(p) for the cone of nonnegative functions in L(p).

Theorem 3.1. Let p be a nonnegative additive brick function on a division space

(T, 91, 93) of type B. Then L(p) is a Riesz space and Nu is an additive functional on

LAP)-

Proof. If r: R2 -> R is any function satisfying the condition \r(xy, x2) — r(yx, y2)\

á M(\xy—yy\ + |x2— y2\) for some positive constant M then it is easy to show

that for any pair of absolutely integrable brick functions p.x and p2, the brick func-

tion r(py, p2) is absolutely integrable. Thus if/,/2 eL(p) it follows readily that

sup (/,/2) and inf </i,/2) both belong to L(p).

Suppose/ and/2 belong to L+(p): since both/jp and/2p are additive we have by

1.12 that ArM(/) = sup££(£ F(/p, 91(F)) (i= 1, 2). Choose F0 e © so that

(/(/p,9t(F0))ê/VA(/)-£/6       (i =1,2)

and choose S e 9t so that

CD x S)') 2 |/2(x)p(/ n /', x)-/2(x>(7 n /', x')| â i/3

for all %, %'zS.
Let w and $>' be divisions of F0 chosen from S so that

(1))Xfy(x)p(I,x) ä K(/p,S(F0))-e/6

and

(2)') 2/2(*>(F, x') ^ F(/2p,S(F0))-e/6.
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Then using the additivity of p and the above computations

CD) 2 ifiix)+f2Íx))p(I x) = CD) 2fy(x)p(I, x) + (®') 2/2(x')p(/', X')

+(® x®') 2 [/2(x)p(/n F, x)-/2(x')p(/n /', x')]

^ A'„(/i) + A'B(/2)-^

Hence K((/i+/a)/x; S)^Nß(f) +Nu(f2)-e so that Wi+/a)*Wi)+ #.<#■

Since the opposite inequality is obvious it follows that Nu is additive on L+(p.) as

required.

As a result of this theorem there is a unique linear extension of Nu from L+(p)

to the whole of the vector space L(p) and we write this extension as JV/dp (fe L(p)).

Note that we have \(Tfdp\ á/V„(|/|) so that /-* JV/dp is a continuous linear

functional on the space L(p) where this latter is equipped with the seminorm

f^Nu(\f\).
Normally the Lebesgue theory now proceeds by forming the completion of the

space L(p) and by extending the integral \Tfdp. by continuity to this enlarged space.

The principal feature of this present theory is that this step is unnecessary; the

space L(p) is already complete and so the class of functions to be integrated is

completely characterized by Definition 7.

Lemma 3.2. Let p be a brick function on a decomposable division space. If f„

is a sequence of functions in L(p) and Nu(\fn—fm\) -»■ 0 as «, m —> oo thenfn contains

a subsequence which converges almost everywhere-pA.

Proof. For every £>0 define the set

Xmn(e) = {x : |/n(x)-/m(x)| > £}

so that

F*(A-mn(£)) á il!e)V((fn-fm)p,nXmnie)])  á il/e)Nu(\fn-fm\)-

Choose an integer «(e) so that Nß(\fn-fm\) <e2 for every m, n^n(e), and then for

such m, n we have p*(Xmn(e))^E. Let nx <n2 <       be an increasing sequence of

integers satisfying nk^n(l/2k) for each k and define the sets Xk = Xnknk + 1(l/2k),

Ffc=LU*iand 7o = nr=1 Y{.
Then if x e F\ Ym we have from the above that

\fnkix)-fnrix)\ < 2 ll2' = ll2k~1    forp> k^m.
i = k

Thus the sequence {/nfc(x)} converges at every point of F\ Ym and so at every point

of F\ Y0. But

P*(T0) ^ p*(Tm) 5S 2 H*(*fc) ̂  2 1/2* = 1/2"-1
kzm k^m

for every integer «? so that p*( T0) = 0 and {f„kix)} converges almost everywhere-p*

as required.
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Theorem 3.3. Let p. be a nonnegative additive brick function on a decomposable

division space (T, 21, 93) of type B. If fn is a sequence of functions in L(p) such that

Nu(\fn—/ml)—>0 ai n, m —> oo then there exists a function f in L(p) such that

Nu(\fn-f\)->Oasn^cc.

Proof. Let {/„J, {Ym} and Y0 be constructed from {/„} as in the proof of the

lemma, and set/(x) = limfc_œ/nk(x) (x e T\Y0) and/(x) = 0 (x e Y0).

Define the additive brick functions pk by setting p.k(I, x) = (fnk(x)—f(x))p(I, x)

and note that Vfa-ii*., V)-*■ 0 as k, k'^cc. But for A"çF \p.t(X)-p.*.(X)\

<; V(pk-pr, 2t[A"])á V(p.k-pk,, 2Í) so that liir^..«, pf(X) = v(X) exists uniformly

for A"^F and it can be thus verified that v is a measure on F which inherits the

property of Theorem 1.11 from the measures p*.

Define the sets Atj = {x : \f(x)\ ^ 1/y'} and then p*(Aij)^jV(fp., 21) < + oo; now

from the construction of the sets {Ym} in the lemma

t4(A{i\Ym) è 1/2*-V*(^,)       (k è m)

and hence v(A„\Ym) = \imk.,x pk*(AiJ\Ym) = 0 so that using the monotone property

of v and the fact that p*( Y0) = 0 we also get

v(Ai}) = v(Al]\Yo) = lim v(Au\Ym) = 0.

Finally if
CO 00

A0 = {x : f(x) * 0, some /} = U U Au
i=l; = 1

then v(A0)Sj.i,jv(Alj) = 0, so that

lim V((fnk-f)p, 21) = lim p*(A0) = v(A0) = 0
fc-a CO fc-a CO

and hence N^f^-fl) -^0 as k^co. Standard arguments show that

Nu(\fn-f\) ~> 0 as n -+ co as well.

It remains only to show that/belongs to L(p). Certainly Nu(\f\)iks\xpn Nu(\fn\)

< +00 so that we need only show that fp is absolutely integrable.

If e > 0 choose/70 so that Nu(\fno -f\) < e/6 and choose 5 e 21 so that V((fno -f)p-, 5)

ZNM0-f\)+*l6 and

(S) x Î)') 2 \fn0(x)p(I n I', x)-fno(x')p.(r n 7, x')| ^ ./3

for all divisions 1), 15'E 5.

Now if'S, ®'ç5 are arbitrary divisions we use the additivity of p. and the above

computations to obtain

(® x S>') 2 |/(x)/x(7 n 7', x)-/(x>(7 n 7', x')|

á (S> x 3)') 2 {|/(x)-/no(x)|M(7 n 7', x)+ |/(x')-/,0(x')|<x(/ n 7', x')}

+ (3) x ®') 2 |/0(xK7 n 7', x)-/„0(x')m(/ n I', x')\

tk2V((f-fna)p.,S) + eß^s
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so that /p is absolutely integrable as required which completes the proof of the

theorem.

It follows as well from the theorem that §Tfdp, = limn_„„ \Tfndp\ other limit

theorems, in particular the Lebesgue monotone convergence theorem and the

Lebesgue dominated convergence theorem follow now by standard arguments and

it is quite evident that at this point the present theory can merge with the classical

approaches.

In most cases the space L(p) corresponds to the usual Lebesgue space associated

with the measure p*, but this is not true in general. We can however prove the

following: if M (p.) denotes the family of sets X^T for which xx e Lip) then (for

additive brick functions p on a decomposable division space of type B) M(p) is a

semi-tribe, p* is countably additive on M(p), every function in L(p) is measurable

with respect to the semi-tribe M(p) and ¡Tfdp (fe L(p)) is equal to the measure

theoretic integral off with respect to the measure p* on M(p.). For spaces of type A

the sets in M (p.) are p*-measurable but even if X is p*-measurable and p*(X) < + oo

it does not follow that X e M(p) ; thus the measure theoretic integral may be stronger

than the integral defined here.
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