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NONSTANDARD ANALYSIS OF DYNAMICAL
SYSTEMS. I: LIMIT MOTIONS, STABILITY!;1)

BY

A. E. HURD

Abstract. The methods of nonstandard analysis are applied to the study of the

qualitative theory of dynamical systems. The nonstandard notions connected with

limiting behavior of motions (limit sets, etc.) are developed, and then applied to the

study of stability theory, including stability of sets, attracting properties, first pro-

longations and stability of motions.

0. Introduction. Nonstandard analysis originated in 1960 when A. Robinson

developed a logical procedure whereby the usual limiting operations of the calculus

could be dealt with using a language of infinitesimals and indefinitely large quanti-

ties similar to that employed by Leibniz and other early developers of the calculus

[7]. In order to do this Robinson imbedded the real numbers R in a larger structure

*R which shared all of the formal properties of R that could be expressed in the

lower predicate calculus, and which contained infinitesimals and infinitely large

quantities (and hence was non-archimedean). The enlargment *R was shown to

exist using the compactness principle of the lower predicate calculus (but an explicit

construction for *R can be given using ultrafilters [4]).

Since Robinson's first paper nonstandard analysis has developed in many

directions. Three books ([4], [5], [8]) and a recent symposium [2] have been devoted

to the subject. W. A. J. Luxemburg has developed the ultrafilter techniques which

in particular show the power of saturation in the construction of enlargements [3].

It is now clear that many branches of analysis can be profitably developed using

nonstandard analysis as a tool. The general idea is to imbed the given mathematical

structure in a larger one, an enlargement, which is analogous to a compactification

or completion in that certain "ideal" elements have been added. Analysis in the

enlargement is usually considerably simpler than in the standard structure.

Information can then be carried back to the standard structure by means of a trans-

fer principle, which says that the enlargement and the original structure are formally

the same in a specified logical sense (involving higher order languages and type

theory in Robinson's framework [8]).
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Although nonstandard analysis almost always yields a simplification of the

methods of proof of standard results, its full power seems to appear with the

introduction of new concepts in the enlargement, which have no immediate or

obvious counterpart in the standard structures. This is certainly the case in the non-

standard theory of dynamical systems. In this paper we will lay the foundations for

the theory, which will be developed further in later papers.

After a short introduction to nonstandard analysis in §1, we show how to con-

struct the nonstandard dynamical system in §2.

§3 is devoted to the basic nonstandard notion of limit motion. A standard motion

can be considered nonstandardly as still proceeding even when the time is infinite.

Many standard notions, for example, limit sets and Lagrange stability, can be

characterized in terms of limit motions.

In §4 we present the nonstandard analysis of the basic notions of stability. This

allows us to unify the treatment, and extend results from the compact to the

noncompact case. We also indicate how the theory of prolongations might be

treated nonstandardly, but a full treatment is reserved for a later paper, as are

other applications and extensions of the theory.

In this paper we have restricted ourselves to the analysis of dynamical systems

over metric spaces, but much of the analysis could be carried through to systems

over more general topological spaces, and at several places we indicate how this

could be done.

I am indebted to Louis Narens for many helpful conversations during the

preparation of this paper.

1. Nonstandard analysis.

1.1. Higher order structures and languages. We present here an introduction to

nonstandard analysis, which is obviously not complete, but which will hopefully

provide an intuitive guide to the sequel. Our basic reference is A. Robinson's

book [8].

Mathematical structures consist of a basic set (the set of individuals), together

with certain subsets of the basic set, relations between its elements, relations

between relations, etc. (bearing in mind that functions are special types of re-

lations). A systematic description of relations of higher order (i.e., relations

between relations, between elements and relations, etc.) may be given in terms of

the class of types T which are defined inductively [8, §2.6]. A mathematical structure

M—{Bz}xeT, stratified by types, where B0 = A and the elements of B% are relations of

type t, is called a higher order structure. For technical reasons Robinson allows

the possibility that relations may be repeated, and calls the structure normal if this

does not happen. For our purposes it suffices to assume that all structures are

normal. If M contains all the relations of each type, then it is called full If M is

full and normal, it will be called the complete structure oí A, and will be denoted by

M={AX}KT.
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We will use a formal language A to make statements about higher order struc-

tures. The atomic symbols of A are (i) constants, (ii) variables (countably many),

(iii) connectives (—,, negation; V, conjunction; A, disjunction; ->, implication;

==, equivalence), (iv) quantifiers ((V), universal; (3), existential), (v) brackets

([ > ])» (vi) relation symbols <£,( ,..., ), one for each type t==0, where if

T = (Ti» • • •> Tn) then 4>, has n+1 places. Well-formed formulae (wff) and sentences

are defined inductively in a natural way [8, §2.1]. A subclass of the well-formed

formulae and sentences will be consistent with respect to type in the following sense.

With each place of a relation symbol i>%( ,..., ) we assign a type ; the type of the

first place is t, and if t=(t1, ..., rn) then the type of the /cth place is rk_1

(k = 2,..., n +1). A wff or sentence is then said to be stratified if any given constant

or variable appears in its atomic formulae only at places of the same type. A set K

of sentences is stratified if each sentence in K is stratified, and the places in the

sentences of K at which a given constant occurs are all of the same type.

In order to use A to make statements about M (either true or false) it is necessary

to have a consistent way of naming entities in M by constants in A. We suppose

that there is a naming map C from a set of constants of A onto all of the individuals

and relations of M. If C(ß) = b for a given entity b in M then ß is a name for (or

denotes) b (note that a given entity may have many names). A stratified sentence X

is admissible in M if every constant ß, occurring in X at places of type t, denotes

some element of B%. Starting from the atomic sentences and proceeding inductively,

it is now easy to define what is meant by saying that an admissible sentence X is

true (or holds) in M (with respect to the mapping C). In applications this notion will

be clear and so we will not elaborate [8, §2.6].

Let Abe a stratified set of sentences in A, and M a higher order structure. If there

is a naming map C such that the sentences in K are all admissible and true in M

with respect to C, then we say that M is a model of K. A basic tool in Robinson's

development of nonstandard analysis is the following compactness theorem, which

for higher order model theory is due to L. Henkin, and is proved in §2.8 of [8].

Theorem -1.1. If K is a stratified set of sentences such that every finite subset K'

of K has a model, then K has a model.

In general the model M of K will not be full. For example, if A is the set of

individuals of M, one would normally interpret a statement containing the phrase

"for all subsets of A" to refer to all subsets. However, in the model M such phrases

must be read "for all admissible subsets of A ", where the admissible subsets do not

necessarily include all subsets of A. Similar remarks apply to entities of any type

t==0. The admissible entities will be called internal.

1.2. Enlargements. Given a higher order structure M={Bz}zeT, and a naming

map C with respect to the language A, the basic idea of nonstandard analysis, as

developed by Robinson, is to construct an appropriate higher order structure

*M={*Bz}xsT and a naming map *C (again with respect to A) which
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(i) is such that any sentence which is admissible and true in M is also true in *M,

and any sentence which is true in *M, and admissible in M, is true in M itransfer

principle),

(ii) can be regarded as a proper extension of M in the sense that the set of

individuals *B0 in *M properly contains the set of individuals B0 in M.

The structure *M will be called an enlargement of M. The mapping *C is a

mapping from some of the constants of A onto all of the entities of *M, so that A

must be supposed initially to have sufficiently many constants. It is natural from

(ii) that we require an agreement between C and *C on the individuals of M: if a

denotes an individual am M (i.e. C(a) = a) then *C(a) = a. Thus when transferring

true statements from M to *M, the individuals carry over unchanged. However, if

ß is the name of an entity b in M of higher type, then *C(ß) is not in general the

same as b and will be denoted by *b. For example, if ¿j is a set of individuals in M,

then *b will be a set containing b, i.e., an extension of b. Entities of this kind in *M

will be called standard.

Before indicating how the enlargements *M are shown to exist it may be helpful

to note the manner in which they are used in practice. The construction is in fact

reminiscent of many similar procedures in classical analysis in which one enlarges a

mathematical structure by the introduction of new "ideal" elements which com-

plete the given structure in a natural way (i.e., which are closely related to its

structure), and which make the analysis much easier. As examples from different

areas, we may take the theory of compactifications of Riemann surfaces and the

theory of distributions. The problem is then to see how results obtained in the

enlargement are related to results in the original structure. In the standard theory

this is usually dependent on the particular manner in which the ideal elements are

introduced, whereas in the nonstandard theory the connection is achieved by use

of the transfer principle.

The enlargements *M are shown to exist using the compactness theorem.

Enlargements, in the technical sense of the word as used by Robinson, are richer

structures than is implied by (ii). To construct them we need the notion of a

concurrent relation. Let b be a binary relation of type (tu t2) = t in M={Bl}zeT.

We define the domain and range of b by dorn b = {x e BZl : there exists a. y e B%2

such that bix, y) holds in M}, ran b = {y e B%2 : there exists an xeBZl such that

z3(x, y) holds in M). Then b is said to be concurrent or finitely satisfiable if, for every

finite set xlt.. .,xne dorn b, there is a y e ran b such that bixh y) holds in M for

all /=1,...,«. A similar definition can be given for n-ary relations, n>2. The

relation of inequality ^ on the real line is an example of a concurrent relation. For

every concurrent relation b in M, Robinson requires that there exists an entity y

of type t2 in *M such that */3(x, y) for all x e dorn ¿>çM.

Given the higher order structure M={Bt}zeT, we choose a language A and a

naming map C such that the constants not in the domain of C form a set of cardin-

ality greater than 2ier |#i|> where |jB,| is the cardinality of Bz. Let K be the set of
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sentences in A which are true in M under C. By the cardinality assumption, a

constant ab not in the domain of C may be assigned to each concurrent relation b.

Let K0 denote the collection of all sentences Ot(f3, g, a„) where ß is a name for b,

b ranges over all concurrent relations in M, and g ranges over the preimage under

C of the domain of b. Finally let H=Ku K0. Then it is not too hard to see, using

the concurrentness of the relations, that M itself is a model of any finite subset of

H. Hence by the compactness theorem H has a model M'. An individual a' e M'

which is denoted by a name a already denoting an individual ae M can be replaced

by a. By making corresponding changes in relations of higher type we obtain a new

model *M={*BZ} of Hin which B0 is imbedded in *B0. The model *M is then called

an enlargement of M.

The fact that *M is a model of H, and in particular of K, immediately ensures

that (i) holds. More far reaching implications follow from the fact that *M is a

model of K0. For example, let b be a fixed concurrent relation of type (0, 0) whose

domain is all of A. The fact that *M is a model of K0 now ensures the existence of

an individual ab in *B0 such that *A(x, ab) holds for allx e B0, where *b is the binary

relation corresponding to ß in *M. Thus, for example, if B is infinite then the

relation of "not-identical" of type (0,0) is concurrent, and so in this case *B0

contains individuals which are different from all individuals in B0, so that (ii) holds.

Any element of *BZ will be called an internal relation of type t. In general, as

remarked before, *M will not be a complete structure, and we will call elements of

*AZ— *BZ external. Each internal element R of *Mhas a name p in L. If palso denotes

an element S of M then R is called standard, and will be denoted by *S. A function

of n variables in M can be represented by an («+ l)-ary relation R, and it is easy

to see that *R defines a function */in *M which will be called a standard function.

Also */"is an extension of/in the obvious sense. Strictly speaking, all extensions of

standard entities should be starred. However, when it is clear that we are in the

enlargement, and no confusion will result, we will often omit the star (see §1.6).

1.3. Enlargements of the reals. We will use the symbol R to denote the standard

real numbers, both as a set and as a mathematical structure, namely an archi-

medean totally-ordered field; the context will resolve any possible confusion. The

relations of equality and inequality are binary relations of type (0, 0), and the

operations of addition and multiplication can be defined by ternary relations of

type (0, 0, 0).

Enlargements of the reals are discussed in [8, §3.2]. An enlargement *R of R is a

totally-ordered field, but it is not archimedean, since it is a proper extension of R.

The numbers in R^*R are called standard. The relation of inequality is concurrent,

so there are numbers in *R which are larger in absolute value than any standard

real number. Such numbers are called infinite, and the set of infinite numbers will

be denoted by Rœ. The positive and negative infinite numbers will be denoted by

R£ and Rz respectively, or by R%, where a> may be either + or —. They are both

external sets. A number t e *R is finite if it is not infinite. The set of finite numbers
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will be denoted by M0, and we have

M0 = {/• e *R : \r \ ^ b for some b e R}.

Similarly there are numbers in *R which are smaller in absolute value than any

standard positive real; such numbers are called infinitesimal, and will be denoted

collectively by Mj so that

Mj = {r e *R : \r \ ^ e for all e > 0 in R).

M0 is a ring, Mx is a prime maximal ideal in M0, and MQ/M1 is isomorphic to R.

If two numbers r and s in *R are infinitesimally close, i.e., r — s is infinitesimal,

then we write r~.y. The relation ~ is an (external) equivalence relation on *R.

For every finite number r e*R there is a unique standard number °r, called the

standard part of r, such that r~°r. We will sometimes denote °r by st r.

Robinson has shown that topological notions in R can be defined in terms of

monads in *R. The monad £(r) of any r e *R is defined by

£(r) ={te*R: t ~r}.

Monads will be fundamental to our discussion.

*R may be divided into galaxies. Two numbers r and s are in the same galaxy if

\r — s\ is finite. This equivalence relation divides *R into disjoint subsets, each of

which is called a galaxy. The finite points of *R constitute the principal galaxy.

If N denotes the higher order structure of the natural numbers as a substructure

of R, and *N is the corresponding structure in *R, then *N is an enlargement of N.

There are individuals in *N which are greater than all individuals in N. The numbers

in N are called standard, while the numbers in *N— N are called infinite. The sets

N and *N— N are external in *N.

1.4. Enlargements of metric spaces. Let X denote a metric space (as a point set)

with metric p. The definition of a metric space involves the real numbers R as well

as X, and the full structure based on Xo R, in which the metric function has been

singled out as of special importance, will be denoted by (A, R, p). The nonstandard

theory of metric spaces is developed in an enlargement *(A', R, o) of (A", R, p) (see

[8, §4.3]). Enlargements *X and *R of X and R respectively will be contained in

*(A, R, p). The individuals in X<=*X will be called standard points. The metric

function in *(A", R, o) will again be denoted by p.

A point y e *X is finite if there is a standard point x such that p(x, y) is finite.

*X is divided into galaxies, each galaxy consisting of points which are finitely far

apart. The finite points constitute the principal galaxy.

We say that x~y if pLv, y) is infinitesimal. The relation ~ is an equivalence

relation. For any point x e *X, the monad of x is defined by

Kx) = iy e *X : x ~ y}.
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Note that the monads are defined for nonstandard as well as standard points. A

point xe * X is near-standard if there is a standard point _y suchthat x~y. The point

y is unique and is called the standard part of x; we will denote it by °x or st (x).

If E is any subset of *X (internal or not) then st (E), the standard part of E is the

set{x : x e X and there exists a y e£'with;c~j>}. According to a result of Robinson

[8, Corollary 4.1.15] a standard set 5 is compact if and only if every point y e *S

is near-standard to some point in S.

In §4 we will need two types of " monads" of sets of points E<= *X. The first is a

direct generalization of the monads of points defined above. We put

p.(E) = {y £ *X : y ~ x for some x e E}.

To introduce the second type of monad, which is new, we denote the open sphere

of radius £>0 about an arbitrary set E<^*Xby

S(E, e) = {y e*X : there isanxe£ such that p(x, y) < e}

and define

V(E) = fl {SiE, e) : s > 0 and standard}.

It might be supposed at first glance that the two types of monad are identical,

but this is not the case. For example, if E is the set {1/n : «= 1, 2,...} on the real

line then ¡¿(E) does not contain 0 but v(E) does. However, we do have

Theorem 1.2. (a) For any set E^*X, p(E)çv(E).

(b) IfE is standard then E=st (p.(*E)) = st (v(*E)).

(c) If E is standard then p.(E)^p.i*E).

Proof, (a) Suppose that x e p.(E). Then there exists aje£ such that x~y. In

particular p(x, y)<e for all standard e > 0 and so x e v(E).

(b) We have *E^p.(*E)^v(*E) and so st (*£) = ££st (/*(*£))£st (v(*E)), where

the first equality results from [8, Theorem 4.3.4]. Suppose that y is a standard point

which is not in E. Then piy) n *E— 0 by [8, Theorem 4.1.5], so that no point of

P-i*E) is infinitesimally close to y, i.e. y $ st (p(*E)), proving the first equality in (b).

To prove the second equality, we note that since y $ Ë, there is a standard e > 0 so

that piy, £)âs is standardly true. Thus in *X there is no point z e*E such that

p(y, z)<e. On the other hand, if y e st (K*£)) then there is a point z' in v(*E) such

that yaz', and z' e S(*E, e) by definition of v(*E), so that there isaze*£ with

p(z, z') < e and hence p(y, z)<e (contradiction).

(c) If x e fi(E) then x is infinitesimally close to some point in E, which itself is

infinitesimally close to some point in *E by Theorem 4.1.6 in [8], showing that

xspt(*E).    |

Part (c) of Theorem 1.2 can be strengthened if E has a compact cover, i.e., if

there is a compact set K=> E.

Theorem 1.3. If E iß a standard set with a compact cover, then p(*E) = p.iE). In

particular, if E is compact then pi*E) = p,(E).



8 A. E. HURD [October

Proof. By virtue of (c) of Theorem 1.2 we need only prove that ni*E),= p.(E). If

x e p(*£) then x is infinitesimally close to a point in *E, which, by virtue of the fact

that E has a compact cover, is infinitesimally close to a standard point y. Now y

must lie in E since st i*E) = E by Theorem 4.3.4 in [8], completing the proof.

1.5. Enlargements of topological spaces. Most of this paper will be concerned

with dynamical systems in metric spaces, but we will in several places indicate how

the results can be generalized to hold for systems in topological spaces. The

generalizations will invariably involve the substitution of topological monads for

metric monads.

Let (A", t) be a topological space, where A is the basic point set, and t is the

collection of open subsets of X, which can be defined by a relation of type ((0)). We

identify (A, t) with the full structure which is based on X, and which we will also,

for convenience, sometimes denote by X, again letting the content clear up any

ambiguities.

Let *(X, t) be an enlargement of (A, t) with *X being its set of individuals and

*t being its open sets. Some sets in *t are standard, being the extensions * U of open

sets U e t, while others are internal.

If x is any standard point and Qx is the set of neighborhoods of x, i.e. the sets E

which contain an open set U e t continuing x, then we define the monad

^(x) = CM*E:EeC,x).

Robinson has shown how the standard topological properties of (A, t) can be

defined in terms of these monads of standard points. However, in working with

dynamical systems we almost immediately encounter the need to define monads

for nonstandard points. The appropriate definition for metric spaces is in terms of

infinitesimals as in §1.4. Now Luxemburg [3, Chapter III, §1] has given a definition

of monads for an arbitrary x e *Aas follows. If x e *X, let Q.x denote the collection

of all subsets E of X for which there is an open set U such that x e *£7<=: *E, and

define p,(x) = H (*£ : Es Q.x). A similar definition is given for the monad p,(S)

of an arbitrary nonempty subset S<^ *X.

We use such definitions in the nonstandard characterization of limit sets in §3,

and remark how they may be used in extending our results on stability to the

topological context in §4. However, the status of such possible generalizations is at

present unclear, for the following reason. For standard points the two types of

monads coincide, and hence for metric spaces they both coincide with the metric

monads. However, for nonstandard points in a metric space, Luxemburg's definition

of monads is in general different from the metric monads.

1.6. Conventions. In writing down statements about our structures we will use

an informal language rather than the full formal language of §1.1; it will be clear

that these statements could be written formally.

The star notation is used to refer to an entity or fact about the enlargement. Thus

we shall use expressions like *open, *true, etc., to mean "open in the enlargement",

"true in the enlargement", etc. Also, standard entities in the enlargement, that is,



1971] NONSTANDARD ANALYSIS OF DYNAMICAL SYSTEMS. I 9

entities which are extensions to the enlargement of standard entities, are usually

starred. Thus if E is a (standard) subset of B, then it becomes *£"in the enlargement.

However, we will not be entirely consistent in this notation. Thus, when it is clear

from the context whether a given standard entity is being considered in the standard

structure or in the enlargement, we will sometimes omit the star.

The cu notation which was briefly used in §1.3 will be used extensively throughout

this paper. The symbol w is to be interpreted as either + or —, but the interpreta-

tion is supposed to be consistently the same in a given context (e.g., theorem or

formula).

2. Dynamical systems. In this section we will present the basic definitions

concerning dynamical systems, and show how they are nonstandardized. Excellent

basic references for this section and the sequel are the books by Nemyckiï and

Stepanov [6] and Bhatia and Szegö [1]. These books deal with dynamical systems

in metric spaces, and most of our results will be established in that context. How-

ever, several of our more basic results on limit orbits will be proved in the more

general topological context, and we will remark on possible generalizations to the

topological case which the nonstandard methods allow.

Let A be a Hausdorff topological space with topology t. A dynamical system

£¿ on X is a pair (X, -rr), where ir is a mapping from Rx X into X satisfying the

following conditions :

(a) 7r(0, x) = x for all x e X;

(b) 77(r2, -rrit1, x))=-rrit1 +12, x) for all x e X and tlt ?2 e R (this is called the group

property);

(c) -rr is continuous.

For each xeX the mapping n induces a continuous mapping -nx: i?-> X,

defined by 7rJ.(í) = 7r(í, x), which is called the motion through x. For conciseness we

will usually write -rrx(t) as xt. If -nx is restricted to the set S^Rv/e obtain the motion

over S. In the special case that S=R0' (w= + or — ) we obtain the positive and

negative motions through x.

For any motion -nx we may consider the orbit of the motion over a set S^R,

defined by
YxiS) = [xt : te S].

If S is either R, R + , or R~ respectively we obtain the orbit through x, and the

positive and negative orbits through x, which we denote by yx, y£, and yx,

respectively.

For each t e R the mapping -n induces a continuous map »*: X^- X defined by

Trtix) = -rrit, x) and called an action. It is easy to see that ir* is a one-to-one bi-

continuous map from A onto Ai with inverse sr"', and that the set of actions form a

group which is called the flow defined by 2.

We now construct a nonstandard enlargement of the dynamical system 3>. If M

is the complete higher order structure based on the set of individuals A0 = R u X

then all of the notions in 2 can obviously be defined in M. The nonstandard theory
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of a® can then be developed in any enlargement *M of M, and the "nonstandard

dynamical system" so obtained will be denoted by *3>. By Theorem 2.11.4 in [8],

*M contains substructures which are enlargements *R and *X of the structures R

and X respectively.

*3> consists of a mapping *n: *Rx*X^> * X which agrees with ir when restricted

to Rx A'(i.e., *7T is an extension of n) and which satisfies the obvious extensions of

conditions (a), (b) and (c) above. We will usually omit the * and write *n as n,

letting the context clear up any possible ambiguity.

In *3> there are motions through every x e *X, with the associated positive and

negative motions, orbits, etc. If x is standard the motions, orbits, etc., in *S¿ will

be termed standard, where it is to be remembered, of course, that a standard

motion xt in *S> is defined for all t e *R, and not just for standard t. Similarly, if

S is any set in *R (not necessarily internal) then yxiS), the orbit over S, is well

defined in *2>. If S is the extension *A of a standard set A<^R and x is standard

then yxiS) is standard, and if S is internal then yxiS) is internal for any x e*X.

The continuity of the mapping n translates to a simple nonstandard statement

using Theorem 4.2.7 in [8]. Let a denote the product topology on Rx X. Then

we have

Theorem 2.1. If x and t are standard then n(fj.a(t, x))<=p.z(Tr(t, x)).

Noting that p.a(t, x) = lit)x¡j.z(x) for standard x and t, we obtain the following

obvious corollaries:

Corollary 2.1.1 (Continuity in time). Let xeX and tQeR be fixed. Then

xt e nz(xt0)for all t e l(t0).

Corollary 2.1.2 (Continuity of actions). Let x e X be fixed. If y s (¿z(x)

then yt e p-Axt) for all standard t.

In metric spaces the second corollary may be strengthened. Using the compact-

ness of finite time intervals, Corollary 2.1.2 can be shown to hold for all finite (not

necessarily standard) t. Also if X is a metric space, we can prove, using Theorem

4.5.3 in [8], the following corollary.

Corollary 2.1.3. If X is a metric space and B is a compact subset of X, then for

all x e *B, if y e fi(x) then yr e /x(xr)/or all finite r.

3. Limit motions and orbits.

3.1. Introduction. The notion of the limit set of a motion plays a central role in

the standard theory of dynamical systems. The nonstandard model *3> provides a

larger and more general setting in which to analyse the behavior of the motion as t

approaches infinity.

Definition 3.1. The positive (negative) limit motion (orbit) of xe*X is the

motion (orbit) of x over Ri (/?„). The limit orbits will be denoted by Ü™ (a>= +

or-).
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In the standard theory motions may not be followed for an infinite length of time.

The structure of the limit sets is then used to convey information about the limiting

behavior of the motion. However, the limit set is often not an orbit, even locally.

Indeed, the limit set may coincide with A itself. On the other hand, in the non-

standard dynamical system the limit orbits and motions have the nonstandard

equivalent of the structure of orbits and motions, and this fact can be used very

effectively to study the limiting behavior of the motion. The notion of limit motion

has no counterpart in the standard theory and will be used, in particular, to study

standard motions in the limit set.

In general the limit orbits are external, but they are closely related to the standard

notion of limit set.

Definition 3.2. The limit sets (positive and negative respectively) of x e *X

are the standard sets A™ = st (Q.%) (to = + or — respectively).

Theorem 3.1. If x is standard then Ax (cu= + or — respectively) coincides with

the standard limit set ipositive and negative respectively).

Proof. According to the standard definition (see [1, §2.2.15]), the limit sets are

given by Ä™ = pl [y%t : t e R01]. Suppose that y e st (Ü™); then xt0 e pt(,y) for some

t0 e iC. If y $ A% then y $ y%T for some standard T e Ra, and so there is a standard

neighborhood U of y such that U n y%T = 0. Thus the statement

(Ví)[[í e R A ojt ä ojT] -+xt$U]

is true in 2¿¡ and hence, by transfer, in *3), where it reads

(Vr)[[f e *R A œt â; cuT] ->xt$ *U].

But t0>T and xt0 e fit(y)c*u [8, Theorem 4.1.4], which contradicts the last

sentence.

Conversely, suppose that y e Ax. Then the statement

(VK)(Vr)[[F an open set containing y A Te R"] -> (3r)M ^ wT A xt e V]]

holds in 2. This transfers in *3> to the statement

(VF)(VT)[[K a *open set containing y h te *Rm] -> (3/)M ^ ojT A xt e V]].

Now by [8, Theorem 4.1.2], there is a *open set F containing y and contained in

Pj(>0- Using this V and a Te R% in the last statement, we see that xt0 e p(>>) for

some t0eR^, i.e., j» e st (£î£).    |

3.2. Applications. One disadvantage of working with limit sets is that they may

be empty. Such will be the case when, loosely speaking, the motion xt goes to

infinity (i.e., leaves any preassigned compact set) as t approaches infinity. Thus we

may expect to study such phenomena more effectively using the limit orbits rather

than the limit sets, even though the former are not, in general, internal sets.

To indicate how limit orbits are used we will give nonstandard proofs of some
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familiar properties of limit sets. In order to do so we need to know the following

fact about standard limit sets.

Lemma 3.2. If x is standard and z e *A£ and V is any *open set in *X containing

z, then V intersects Q.%.

Proof. By looking at the standard definition of A™ we see that the statement

(Vz)(VK)(vT)[[z eAJa F is an open set in X containing z A wT > 0]

-* (3t)[wt ^ ojT a xt e V]]

is true in Qi and hence in *S>. Letting T be an infinite number we obtain

(Vz)(VK)[[z e *A£ A V is a *open set in *X containing z]

-* (3t)[t e Kg, and xt e V]]

as desired.    |

Notice that the lemma is true, by definition, for all points z e A£. When X is a

metric space the same method of proof yields the following corollary.

Corollary 3.2.1. If X is a metric space and x is standard then every point in

*AX is infinitesimally close to some point in f2™.

Simple examples show that the converse of the corollary is not necessarily true,

even if "infinitesimally" is replaced by "finitely". In this connection we have the

following result.

Theorem 3.3. If X is a metric space, x is standard, and Ax is not empty, then

every point in Q.% is infinitesimally close to some point in *A% if and only if

lim(^moo pixt, A™) = 0.

Proof. Suppose that every point in Q,x is infinitesimally close to some point in

*AX. Let £>0 be a fixed standard number. Then the statement

(3T)[œT > 0 A (VOIM è -T] -> i3y)[y e *A% a P(xt, y) < e]]]

is true in *3>, as we see by taking Tío be any number in R%,. Transferring this state-

ment to S¿ yields the desired standard statement.

Conversely suppose that lim,.,^ pixt, A£) = 0. Then the statement

Qfe)[e > 0^(3T)[wT> 0 A (VOM > o,T-+(3y)[yeA% A pixt, y) < e]]]]

is true in &. With e and corresponding T fixed and standard we thus obtain

(V/)[f e R%> -> (ßy)[y e *K a P(xt, y) < «]]

in *3>, i.e., any ball of standard radius e about xt intersects *A™. Thus the internal

set {n e *N : S(xt, I In) n *A™/ 0} then contains all standard integers, and so

must contain some infinite n, since otherwise the set of standard integers would be

internal, contradicting [8, Theorem 3.1.7]. Thus every point in O™ is infinitesimally

close to some point in *A% as desired.    |
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Nemyckiï and Stepanov [6, p. 401] say that in this case the «z-orbit through x

approaches the limit set uniformly (not to be confused with the notion of uniform

approximation of the limit set—[6, Definition 9.0.4]). This suggests the following

definition.

Definition 3.3. We say that the motion xt approaches its limit set A% uniformly

if for all z e O™, p,(z) intersects *A£.

This definition is applicable in the topological case.

As an illustration of nonstandard techniques, we now use our nonstandard

results to prove the following standard and well-known result.

Theorem 3.4. If x is standard then A™ is closed and invariant.

Proof. To prove closure we need to show that if y e *A"is a standard point which

is not in A™, then ¡¿¿y) does not intersect *A% [8, Theorem 4.1.5]. If this is not true

then there isaze *A£ such that z e p,(>0- Now by [3, Corollary 2.1.6], there is a

*open set F<=px(j) containing z. By Lemma 3.2, V intersects Q.%. But then

y e st (Q£) = A% (contradiction).

To prove invariance suppose that y e A%. We want to show that yt0 e Ax for any

standard i0. But xt e p,(j) for some t e R%, and hence x(?+ /*<,) e fj.ziyt0) by Corol-

lary 2.1.2 and the group property. Clearly t + t0eRIZ> and so xit + t0) e 0.% and

hence yt0 e A™.    |

The rest of the results in this section will be devoted to dynamical systems on

metric spaces. Some extensions to the topological case are possible but will not

be pursued here.

Among the more tractable motions in the standard theory are the Lagrange

stable ones, those whose orbits have compact closures [1, Definition 2.5.1]. These

can be characterized nonstandardly as follows.

Definition 3.4. The motion xt is co-Lagrange stable if every point of £1% is

near-standard (to some point in A").

Theorem 3.5. If x is standard then the motion xt is oj-Lagrange stable in the

standard sense if and only if it is oj-Lagrange stable In the sense of Definition 3.4.

Proof. Suppose that the motion xt is co-Lagrange stable in the standard sense,

i.e., yx is compact. Now the sentence (Vi)[? e Ra ^-xt e yx] is true, and hence by

transfer the sentence (Vf)[i e *Ra -> xt e *y%] is *true. In particular, xt e *y% for

t e R%. But since y% is compact, every point in *y% is near-standard [8, Corollary

4.1.15] so that every point in Q.x is near-standard.

Conversely suppose that every point in Q.% is near-standard. If y% is not compact

then *yx has a point y which is not in the monad of a point in fx. Now yx = y% u Ax,

and so *y% = *y% u *A%. Suppose that y e *A™. Then y is infinitesimally close to

some point in Q.x by Corollary 3.2.1. But every such point is near-standard to some

point in Ax and hence to some point in yx (contradiction). Finally, suppose that

y e *y%, i.e., y = xt for some t e *Ra. If t is finite then y~x°t e y% (contradiction),
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while if t is infinite then y e Q.x, and we reach a contradiction as above. We conclude

that y% is compact.    |

Corollary 3.5.1. If the motion through the standard point x is w-Lagrange

stable then lim(_ „ p(xt, A™) = 0.

Proof. Every point in Ü™ is near-standard by Definition 3.4, hence infinitesimally

close to a point in A" (Definition 3.2). Apply Theorem 3.3.    |

If X is locally compact we obtain a stronger result.

Theorem 3.6. If X is locally compact and A™ is compact for a standard x, then

every point of Qx is near-standard.

Proof. Since X is locally compact and A™ is compact, there is a neighborhood

of A™ whose closure K is compact. Now for some T we must have y£rc K; other-

wise, for each t, yxt n dK+ 0 and so Ç\ y%t n dK^= 0 since dK is compact. Then in

*!2i we have *yxTcz*K and in particular QX<^*K and every point of *K is near-

standard since K is compact [8, Corollary 4.1.15].    |

Corollary 3.6.1. If X is locally compact then Ax is compact iff the motion

through x is w-Lagrange stable.

3.3. Finite motions in the limit motion. Given a motion xt (t e *R) through a

point x 6 *X, we may define a collection of what might be called finite motions

associated with it. Recall that if t0 e *R then the galaxy containing t0 is the subset

of *R consisting of those t such that \t — t0\ is finite. The principal galaxy is defined

by a finite t0. If S is any galaxy in *R we call the motion (orbit) over S a finite motion

(orbit). In particular, if S is the principal galaxy in *R we call the motion (orbit)

over 5 the principal motion (orbit).

If some point xt0 e *yx is near-standard to a point y in X, then it follows from

Corollary 2.1.2 that each point in the finite orbit over the galaxy defined by t0 is

also near-standard, and in fact x(t + t0) G p-iyt) for all t such that \t —10\ is finite.

Such finite motions (orbits) will be called near-standard finite motions (orbits).

Each near-standard finite motion (orbit) in the motion xt is clearly associated with

a standard motion (orbit), i.e., the motion through the standard point y defined

for all standard t, but a given standard motion may be associated with many near-

standard finite motions in the motion xt. All standard motions in the limit set A™

are associated in this way with (perhaps many) near-standard finite motions in Í2™.

The near-standard finite motions are obviously ordered in time, giving us another

tool for the analysis of the motions in the limit sets.

4. Stability.

4.1. Introduction. The classical work on stability initiated by Liapunov has

recently been extended to a stability theory for arbitrary closed sets in X (see [1]

for references). However, the development for noncompact sets is more difficult,

and still somewhat incomplete, due mainly to the standard difficulty with limit
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sets, namely that they may be empty. In this section we present a unified treatment

of the theory using nonstandard analysis. The definitions are the same for non-

compact (and also, incidentally, for not necessarily closed sets) as for compact sets.

The insight which is provided by the method allows us to generalize many of the

results of the standard theory, with proofs which are much more geometrical and

intuitively clear.

4.2. Stability of sets. We begin with the nonstandard definitions of stability of

arbitrary sets M<= X (see [1] for the standard definitions).

Definition 4.1. Let M be a standard set in the metric space X. M is said to be

O)
(a) stable if y$<=v(*M) for all y e p(M),

(b) uniformly stable if y£<= v(*M) for all y e p(*M).

Theorem 4.1. The nonstandard Definitions 4.1 are equivalent to the standard

definitions [1, Definition 2.12.1].

Proof. According to the definitions in [1], Mis standardly called

(1) stable if

(W)(Vx)[[E > 0 A x e M] -> (3S)[8 > 0 A (Vy)[/>(x, y) < 8 -> -ft c S(M, e)]]]

(2) uniformly stable if

(V«)[e > 0^(3S)[8 > 0 A (Vx)(Vy)[[x e M A P(x, y) < S]^y» c S(M, «)]]].

We will only prove equivalence in case (2) since the other case is similar. Suppose

that M is standardly uniformly stable. Let e > 0 and the corresponding 8 > 0 be fixed

standard numbers. Then in *3i we obtain by transfer the statement

(Vx)(Vy)[[jc e *M A p(x, y) < 8] -> y» c S(*M, e)].

In particular,

(Vjc)(v>)[[* £*M A x~ y]->y% <= S(*M, #)].

Thus

(VjOLv 6 M*M) -> y» c 5(*M, «)J.

This is true for all standard e>0, and hence for ally ep(*M) we have y%<=v(*M),

i.e., M is uniformly stable in our sense.

Conversely, suppose that M is uniformly stable in the sense of Definition 4.1.

Let e > 0 be fixed and standard. Then the sentence

(38)[8 > 0 A (Vx)(Vy)[xe*M,A P(x,y) < 8^y™ c S(*M,e)]]

is *true, as we see by taking S~0. Transferring back to 3> yields the desired state-

ment showing that M is standardly uniformly stable.    |

An important simplification in the definition of stability results from the assump-

tion that M is (standardly) (o>-) invariant, i.e., if x e M then for all standard te K"

we have xt e M. In that case we can prove the following theorem.
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Theorem 4.2. If M is (co-) invariant then it is (co-) stable if and only ifQ.y<=vi*M)

for all y e p(M).

Proof. It is clear from Definition 4.1 that stability implies the given condition.

Conversely, let j> £ p(M); then Qy<=v(*M) and to show stability we need only show

that yt e vi*M) for all finite t e *Ra. Since y e p(M) there is an x e M such that

y~x. By invariance xt e M for all finite t and yt~xt by Corollaries 2.1.1 and 2.1.2,

so that yt e p(M)ç v(*A/) for all finite t.    |

4.3. Attractors. We next present the nonstandard definitions of the various

types of attractors.

Definition 4.2. Let M be a standard set in the metric space X. Then

(a) M is an (co-) semi-attractor if there is a standard open set F=> M such that

Cl^cv^M) for a\\ ye V,

(b) if there is a standard S > 0 such that we may take V= 5(/Vf, 8) (in the standard

sense) in (a), then we say that M is an (co-) attractor,

(c) if the conclusions of (a) and (b) are true for all y e * V, then we say that

M is a (co-) uniform attractor of the corresponding type (e.g., uniform semi-

attractor).

(d) if the conclusion in the above definitions is weakened to the condition that

O™ r\ vi*M) # 0, then we say that Misa weak attractor of the corresponding type

(e.g., a weak uniform semi-attractor is one for which Í2™ n v(*A/)# 0 for all

y e * V).

Theorem 4.3. The nonstandard Definitions 4.2 are equivalent to the standard

definitions [1, Definition 2.12.12].

Proof. M is standardly called an (co-)

(a) semi-attractor if

(3K)[Fopen A V => M

A iVy)[y e V^ (Ve)i3T)(Vt)[[ojT > 0 A wt ä coT] -> P(yt, M) < e]]],

(b) attractor if V=SiM, 8) for some S>0,

(c) uniform attractor if

(38)(Ve)(3T)[S >0A£>0acoT>0

A (Vy)[jz e SiM, 8) -> (Vs)[coi ^ coT^ P(yt, M) < »]]].

The standard definitions for the corresponding weak notions of attraction are

somewhat more complicated in that they involve sequences tn -> oo, and so we will

not explicitly present them here. We will establish equivalence in case (c) ; the proof

in the other cases is similar. Incidentally, the standard notions as presented in [1]

include no definition of uniform semi-attractor, although the standard definition

corresponding to the nonstandard one given above would be easy to formulate.
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Suppose that Misa standard (co-) uniform attractor. Let 8 > 0, e > 0, and the

corresponding Tin sentence (c) be standard and fixed. Then by transfer the sentence

Çdy)[y e *S(M, 8) -> Çit)[t e R% -> P(yt, *M) < e]]

holds in *3>. For any t e R% the last sentence is *true for all standard e > 0, and

hence Ci¿ cv(*M) for all y e *5(M, 8) as desired.

Conversely, suppose that M is a uniform attractor in the sense of Definition 4.2.

Then with V= SiM, 8) for the appropriate standard S > 0, and with e > 0 any fixed

standard number, the statement

(3T)(iy)[y e *V-> (V/)M ^ aiT-^piyt, *M) < e]]

is true in *2, as we see by taking TeR%. By transfer back to 2 we obtain the

desired result.    |

Associated with attractors and weak attractors of the various types are regions

of attraction defined as follows.

Definition 4.3. Let M be a standard set. The subsets of *X defined by

AaiM) = {y e *X : ü£ c V(*M)}

and

A"iM) = {ye*X : 0% n vi*M) * 0}

are called the (co-) region of attraction and the (co-) region of weak attraction of M,

respectively.

Theorem 4.4. The sets of standard points in Am(M) and A%iM), coincide with the

standard regions of attraction and weak attraction, respectively [1, Definition 1.6.12].

Proof. Suppose that y e AaiM) is standard. Then, with £>0 a fixed standard

number, the sentence i3T)iVt)[wt^coT^yt e 5(*M, e)] is *true, as we see by

taking Te R%. Transferring back to 2 yields the desired characterization of a point

in the standard region of positive attraction.

Conversely, suppose that y is in the standard region of co-attraction. Then the

sentence iVe)i3T)iVt)[wt^ojT^yt e SiM, e)] is true and so in *S> we have, in

particular, that [/ e R+ -^yt e Si*M, e)]. This is true for all standard e>0, and

hence y e AaiM).

The equivalence for regions of weak attraction is similarly established.

Theorem 4.5. (i) AmiM) is finitely invariant, i.e., if y e AaiM) and re*R is

finite, then y-r e AaiM).

(ii) AmiM) is co-invariant, i.e., if y e AaiM) and r e *Ra, then yr e AaiM).

Proof, (i) Let y e AaiM) and let t be finite. Then for any t e R% we see that

t + T e R% so that^(i+T) e Q£c„(*M). But any point in Í2™ is of the form yit + r)

for some t e R%, and we are through, (ii) is similarly proved.
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Corollary 4.5.1. 77ze standard regions of attraction are finitely invariant and

positively invariant.

In [1] Bhatia and Szegö present two different definitions of uniformity of

attractors, one for compact sets in Definitions 1.5.6 and 2.6.1, and one for general

closed sets in Definition 2.12.12. It is the second version that we have used in our

nonstandard characterization. A nonstandard characterization of the first type of

uniformity would be given by

Definition 4.4. The standard set M is a (u>-) uniform attractor if for all compact

sets K in the standard (co-) region of attraction we have ü™<= v(*M) for all y e *K.

This definition is in some senses weaker and in other senses stronger than the

previous definition.

More interesting results are obtained when various combinations of stability and

attraction are assumed to hold jointly. Such combinations lead to various notions

of asymptotic stability. For example, a standard set M is said to be uniformly

asymptotically stable if it is both uniformly stable and a uniform attractor. Com-

binations of the two kinds of stability and eight kinds of attraction lead to sixteen

possible types of asymptotic stability (they are not necessarily all different) which

will not be separately studied here.

4.4. Comparison with the standard definitions. Some comments are now in order

concerning the relation between the above definitions and the standard ones. The

first significant difference is that the standard definitions are formally very different

when M is compact and when it is not compact. This is most clearly evident for the

definitions of attractors. When M is compact the standard definitions of attractors

are suggestively similar to ours. For example, M is a positive attractor if there is a

8>0 such that for yeSiM, 8), A+# 0 and A + <=M. Thus we see A + playing

somewhat the same role as Q + in our definition (but even here notice the extra

assumption that A+==0). For noncompact M the possibility that the limit

sets may be empty is crucial, and so attraction is characterized, not in terms of

these, but by certain limiting conditions, which are more difficult to deal with.

For example, the closed set M is a positive attractor if there is a 8 > 0 such that

p(yt, M) -»■ 0 as t -*■ +oo for each y e <S(M, 8). One then has to show that the two

definitions coincide when M is compact or has a compact cover. Our unification of

the definitions employs limit orbits in place of limit sets ; the geometric concepts

and intuition associated with the notion of limit orbit can then be used effectively

in proving theorems.

Secondly we should note that the above definitions lead to other natural defini-

tions of stability and attraction which seem to have no counterpart in the present

standard theory.

(i) In the conclusion of the definitions of stability and attraction we could

replace v(*M) by /¿(*Az). This would lead to a stronger (i.e., more restrictive) form

of stability and attraction.
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(ii) An even more restrictive definition would be obtained by replacing v(*M)

by v(M) or p.(M) (i.e., we could remove the stars in the definitions).

This in fact leads to natural definitions of stability and attraction for arbitrary

sets M<= *X. Thus we could say that Mc *X is stable if y^<=v(M) for all y e p.(M)

(or y e v(M)). This possibility is interesting because it would allow us to discuss,

for example, the stability and attracting properties of limit orbits.

(iii) We could replace the two types of metric monads, p, and v, by topological

monads p.z.

The last alteration yields definitions which would be significant for dynamical

systems on topological spaces. The alternative definitions suggested above will,

however, not be studied in this paper, since our main concern is to provide con-

nections with the standard theory. We hope to devote a later paper to topological

dynamics.
»

4.5. Simplifications in special cases. Before proceeding further we will note the

simplifications in the definitions and corresponding theorems which result when M

is subject to certain commonly occurring assumptions.

(i) M is invariant. Recall that the standard set M is «¿-invariant if for any xe M

and any t e Ra we have xt e M. In this case we see that for any x e *M and any

t e *Ra we have xt e *M. Thus to check stability it is only necessary to check that

Q£cy(*Af) for all y e pt(M)-M. For uniform stability we require that y$<^v(*M)

for all y e p.(*M) — *M. Similarly, to establish that M is an attractor (of the various

types) it is only necessary to check that £2™ <= V(*M) for all y e V—M(otye*V— *M

for uniform attractors).

(ii) M is compact. In this case, as noted in Theorem 1.3, we have p.(*M) = fi.(M).

Thus there is no distinction between stability and uniform stability under the

assumption of compactness.

(iii) M has a compact cover. This means that there is a compact set K=> M. We

see easily from standard compactness arguments that the distinction between semi-

attractors and attractors disappears in this case. A second consequence, if X is

locally compact, is that the assumption Q.f¡^v(*M) fot y e Kcan be replaced by the

standard condition A™<=M, showing that our definitions are consistent with

Definitions 2.6.1 in [1] (in fact are slightly more general since they apply to sets

which are not necessarily closed). For if Ay<^M<^p(M) = p.(*M) then A™ is com-

pact. Also, by Theorem 3.6, every point of Í2™ is near-standard to a point in A£

which, by the above inclusions, is near-standard to a point in p,(*M)^v(*M), i.e.,

Í2£c„(*M).

(iv) Motions approaching the limit set uniformly. There is a second case, not

involving compactness, in which the condition Q.%<=v(*M) can be replaced by

A™c M for y e V. Assume that for each (standard) y e V the limit set A£ is non-

empty, and suppose that the motion yt approaches A™ uniformly for each y e V

(Definition 3.3). If A™<=M then *A£<=*M. But for each zeü° there is a point

x e *A™ such that z~x, and hence z ep.(*M)<^v(*M), i.e., 0.y<^v(*M).
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4.6. Applications. It is not our intention to reprove all known standard results

in dynamical systems using nonstandard analysis, although this could be achieved,

usually with considerable economy as compared with the standard methods of

proof. We shall, however, give here the nonstandard proofs of several standard

results for the sake of illustration.

Theorem 4.6. If M is closed and w-stable then M is m-invariant.

Proof. Let y e M^¡x(M). Then for all t e *Ra we have yt e v(*M). But if t e R +

is standard then yt is standard, so that, by Theorem 1.2, yt e st (v(*M)) — M = M.

From the definitions we obtain the fact that if M is uniformly co-stable and y e *M

then yt e v(*M) for all t e *R + , which shows that *M is "almost invariant" in an

obvious sense.

Theorem 4.7. If M is positively invariant and uniformly semi-attracting, then M

is stable.

Proof. We must show, using Theorem 4.2, that íí+c„(*M) f°r ah y e HÍM).

Now if V is the open set in Definition 4.2, then y e * V and the result is immediate

from Definition 4.2.    |

4.7. Characterizations in terms of negative orbits. It is possible to characterize

positive stability and attraction in terms of the negative orbits. In this section we

will distinguish standard and nonstandard orbits by stars.

Theorem 4.8. The standard set M is positively stable if and only if *yx n ¡¿iM)

= 0 for all x $ vi*M), and positively uniformly stable if and only if *yx n p(*M)

= 0 for all x i v(*M).

Proof. Suppose that M is positively stable, and let x $ v(*M). If there is a

y = xt {t e *R~) such that y e *y~ n p(M), then y( — t) = x and so *yx is not con-

tained in vi*M), contradicting stability. The converse and the uniform case are

proved similarly.

Theorem 4.9. If the standard set M is invariant, then it is positively stable if and

only if Q.x n p(M) = 0 for all x i vi*M).

Proof. Similar to the proof of the previous theorem.    |

As an easy corollary of Theorem 4.8 we obtain the following result.

Theorem 4.10. If the standard closed set M is positively uniformly stable then

y~ n M= 0 for all x$M.

Proof. Since M is closed there is a standard r¡ >0 such that x $ S(M, ??).Then

the statement (Vy)[>> e M-s* pix, y)^r¡] is true, and hence in *S>, Çiy)[y e*M

-*■ PÍX> y) = y] ; m particular x<fvi*M). \i~yx n M/ 0 then either yx n M# 0

or A¿ n M# 0. In the first case *y~ n *M# 0 so that *yx ri/xi*M)yí 0,

contradicting Theorem 4.8. In the second case * A~ n *M# 0, and so Qx n p(*M)

#0 by Corollary 3.2.1, i.e., *y~ np(*M)#0, again contradicting Theorem

4.8.    |
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From Theorem 4.8 we also obtain the following standard characterizations of

stability.

Theorem 4.11. (i) The set M is positively stable if and only if, given r¡>0 and

y e M, there is a corresponding 8 > 0 such that p(yx, y) è 8 for all x $ SiM, rf).

(ii) 77ze set M is uniformly positively stable if and only if, given r¡ > 0, there exists a

o > 0 such that Piyx, M) à S for all x$S(M, r¡).

Proof, (i) Suppose that M is positively stable, and let the standard x f SiM, rf)

for some standard 77 >0. Then as in Theorem 4.10 we see that x^v(*M). By

Theorem 4.8 *y* n M-*0= 0- Let y be a fixed point in M. Then the statement

(38)[*y~ n Siy, S)= 0] is *true, as we see by taking S>0 infinitesimal. Transfer-

ring this sentence to @> yields the desired condition.

Conversely, let r¡ > 0 and ye M and the corresponding 8 > 0 be given standard

entities. Then by transfer to *S> the statement (Vx)[x <£ S(*M, r¡) -> *y~ n Siy, 8)

= 0] is *true, and in particular, *y~ n p(>0= 0■ The statement is true for each

y e M so that (Vx)[x^ 5'(*M, 77) -»■ *y~ n ¡j.(M)= 0] is also *true. Since the last

statement is true for all r¡ >0 we see that (Vx)[x £ v(*M) -> *y~ n p(M) = 0] is

also *true, and we conclude by Theorem 4.8 that M is positively stable.

(ii) Suppose that M is positively uniformly stable and let the standard

x$ SiM, rf) for some standard r¡>0. Then as in (i) we see that x$ vi*M), and

so by Theorem 4.8 we have *yx n p(*M)= 0. Thus the statement

(38)[*y* n Si*M, S)= 0] is *true, as we see by taking 8 infinitesimal. For if 8>0

is infinitesimal and y e *yx n 5(*M, 8), then there is a z e *M such that piy, z)<8

and hence y e p(*M). Transferring the last statement to 2¿¡ yields the desired

conclusion.

The proof of the converse is similar to the proof of the converse of (i).

It is clear that in the converse directions the assumption that x $ SiM, rf) can

be replaced by the weaker assumption that x e dS(M, rf), the boundary of SiM, rf).

Similar remarks apply in later results.

Part (ii) of Theorem 4.11 is Theorem 7 in Zubov [11], with whom the idea of

characterizing positive stability by negative orbits seems to have originated. In the

Russian (1957) edition of his book the theorem was stated as "a necessary and

sufficient condition for uniform positive stability of a closed invariant set M is that,

for all x$ M, Ax n M= 0." This condition is necessary but not sufficient, as

was pointed out by Lefschetz. The necessity follows trivially from our results, and

the insufficiency is seen from examples in Ura [10]. However, our original non-

standard Theorem 4.8, in its form, closely resembles Zubov's original (but false)

theorem, which in its simplicity was very appealing.

The characterization of positive stability in terms of negative orbits given by

Theorem 4.8 suggests a similar characterization of attractors.

Theorem 4.12. The standard set M is a positive semi-attractor if and only if there

exists a standard open set V=> M such that Qx n V= 0 for all x $ v(*M). With
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V=S(M, 8) for some standard 8>0 we obtain a characterization of attractor, and

ifO.~ n V= 0 is replaced by Q.x n *K= 0 we obtain a characterization of uniform

attractor of the corresponding type.

Proof. Suppose M is a positive semi-attractor. If for all standard K=> M there is

an x $ v(*M) such that Q.x n K,= 0, i.e., there is a y e Q.~ n F, then Qy contains

x contradicting the fact that M is a semi-attractor. The converse and the other

cases are similarly proved.

As corollaries we obtain the following standard results.

Theorem 4.13. If the standard closed set M is a uniform positive semi-attractor

then there exists a standard open set V^>M such that A ~ n V= 0 for all standard

x$M.

Proof. Let Kbe the open set given by Theorem 4.12. If x$ M is standard, we

see as in the proof of Theorem 4.10 that x $ v(*M), and so Í2^ n *V= 0. We

now claim that A~ n V= 0. Forif >>e A~ n V then since y e A~ there is a y' e Q~

with y—y', and since V is open and y e V, we see that y' e *V [8, Theorem 4.1.4],

i.e., y' e £2~ n * V (contradiction).

Corollary 4.13.1. If M is a closed uniform positive semi-attractor, then

A" n M= 0 for all x$M.

Theorem 4.14. If there is a standard open set V^M such that A~ n V= 0 for

all x^ M then M is a positive semi-attractor.

Proof. By transferring the given standard condition to *3> we see that *A¿ n *V

= 0 for all x $ *M, and in particular for all x e v(*M). We now claim that

Q~ n K= 0 for such x. For suppose that y e Q~ n V. Then j is standard and

hence in A^ n V<^*A~ n *K (contradiction).    |

It should be noted that the conclusion of Theorem 4.14 is not valid if we assume

the weaker condition that A~ n M= 0 for all x$ M, even if M is compact.

This is shown by Bhatia and Szegö's example [1, 1.5.22].

Corollary 4.14.1. The compact set M is a positive attractor if and only if there

exists an open set V~=> M such that Ax n V= 0 for all x $ M.

Corollary 4.14.2. If M is compact and positively invariant and there exists an

open set K=> M such that Ax n V= 0 for all x $ M, then M is positively stable

and a positive attractor.

Proof. Use the last corollary and Theorem 4.7.

4.8. Prolongations. The notion of prolongation was first introduced by T. Ura

[9], and has since been considerably developed by Ura, J. Auslander, P. Seibert,

N. P. Bhatia and others (again [1] is an excellent reference for these developments).

We will show how these ideas can be generalized using nonstandard analysis, and

how they fit naturally into the analysis developed thus far. It is not our intention
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to push the analysis as far as it will go; in particular we will not study higher order

prolongations. A later paper will be devoted to a more complete exposition.

Definition 4.5. For any xe*X v/t define the first (co-) prolongation Daix) by

D%x) = U {y? : y a x).

If M is any subset of *X, then we define

DaiM) = U {Daix) : x e M}.

Theorem 4.15. If x is standard then the standard first oj-prolongation iDefinition

2.3.1 in [1]) is given by st (Z>M(x)).

Proof. We will only prove the result for the positive prolongation. Suppose that

the standard point y is in the standard first prolongation. Then there exists a

sequence (ijcjf and {tn}^R such that xn->x and xntn->y. Thus given any

standard e>0 there is a standard Nsuch that p(x, xn)<e and piy, xntn)<eîorn^N.

In particular, we see that for n infinite, p(x, xn) < e and p(y, xntn) < e for all standard

e>0, i.e., xn~x and xntn~y. Thus xntn e yjn and y e st (y+„).

Conversely if ye st (Z> + (x)), then for some z~x, and some te*R + , we have

zt ~ x. Thus given e > 0 and S > 0 standard but otherwise arbitrary, the sentence

(3z)(3i)[z e *X A pix, z) < e a te*R+ A pizt, y) < 8]

is *true. Transferring this sentence to 2 shows that y is in the standard first positive

prolongation.

It is clear that Definition 4.5 could be adapted to arbitrary topological dynamical

systems in the spirit of Ura.

Notice that the relations \x(M)^ D%M) and p(*M)ç Dai*M) follow immediately

from the definition.

Theorem 4.16. The standard set M is (co-)

(i) stable if and only if DaiM)^v(*M),

(ii) uniformly stable if and only if /J)t°(*M)cv(*M).

Proof. Obvious from the definitions.

This theorem generalizes Theorem 2.6.6 in [1]. As a corollary we have a general-

ization of Theorem 2.6.5 in that book.

Corollary 4.16.1. If the standard set M is (co-) stable then st (£>ffl(M)) = M.

Proof. We have p(M)c/)w(Af)<=i'(*M) and hence the result follows by taking

standard parts and using Theorem 1.2.    |

Definition 4.6. For any x e *X we define the first (co-) prolongational limit set

J+ix)by
•/ + (*) = UW:j-*}.

If M is any subset of *X, then we define

J+ÍM) = U{-/+(*) : *eM}.
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Theorem 4.17. If x is standard then the standard first prolongational limit set

(Definition 2.3.6 in [1]) is given by st (J + (x)).

Proof. Similar to the proof of Theorem 4.15.    |

The following results follow immediately.

Theorem 4.18. The standard set M is a uniform (a»-) semi-attractor if and only if

there is a standard open set V^>M such that Ja'(*V)<^v(*M). If there is a standard

8 > 0 such that V= S(M, 8) then M is a uniform attractor.

Theorem 4.19. The standard invariant set M is (cu-) stable if and only if

yw(M)c:1/(*M).

Theorem 4.20. The standard set M is (oj-) stable (uniformly stable) if and only if

j-°>(*M) n /x(M) = 0       (J-<°(*M) n p.(*M) = 0).

This theorem generalizes results in Exercises 2.6.76 in [1].

4.9. Stability of motions. The notion of a stable motion (as opposed to a stable

set) is very important in the study of almost periodicity. This notion can be charac-

terized nonstandardly as follows :

Definition 4.7. The motion through x e *Xis said to be positively (negatively)

stable if for all y such that y~x we have xt~yt for all t e*R+ (te *R~).

Theorem 4.21. If x is standard then the motion through x is stable in the sense of

Definition 4.7 if and only if it is stable in the standard sense [1, Definition 1.11.1].

Proof. The motion through a standard point x is positively stable in the standard

sense if given e>0 there is a 8>0 such that for all y e X such that p(x, y)<8we

have p(xt, yt)<e for all t e R + . Suppose that this condition is satisfied. With e>0

and the corresponding 8 > 0 standard and fixed, the sentence

(V*)(Vj)[[v. e X A p(x, y) < 8] -> (Vt)[t e R+ -* P(xt, yt) < e]]

is true in 2 and hence, by transfer, in *Si. In particular we have

(Vx)(Vj)(V?)[[j e*X A x~y A te*R + ]-+ P(xt, yt) < «].

This is true for any standard e > 0 and hence the desired result.

Conversely, suppose that the nonstandard condition of Definition 4.7 is satisfied.

Then given e > 0 and standard, the statement

(VvO(38)(Vi)[S > 0 A P(x, y) < 8 A t e *R+ -> P(xt, yt) < e]

is *true, as we see by choosing 8 infinitesimal. Transferring to S> yields the desired

standard condition.    |

Before proceeding we make several remarks concerning Definition 4.7 :

(i) The definition can be adapted to motions in topological spaces by using

topological monads rather than metric monads.
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(ii) If x is standard then we need only have xt~yt for all t e Ri, since the

condition is automatically satisfied for all finite ?S0 by continuity.

Definition 4.8. The motion through xe *Ais uniformly positively inegatively)

stable if for all re*R and all y such that y~xr, we have x(t + r)~yt for all

te*R+ ite*R-).

Theorem 4.22. If x is standard then the motion through x is uniformly stable in

the sense of Definition 4.8 if and only if it is uniformly stable in the standard sense

[1, Definition 1.11.3].

Proof. Similar to the proof of Theorem 4.21.    |

We get a more general version of the definition by restricting t to *R+ (or t e R£

in the case of standard x).

Corresponding to the above definitions we have the following more general

notion of stability with respect to a set S.

Definition 4.9. The motion through x e *X is positively inegatively) stable in

Sc *X if for all y e S such that x~y we have xt~yt for all t e *R+ it e *R~), and

uniformly positively (negatively) stable in S if for all t e*R and all y e S such that

y~XT we have x(t + r)~yt for all t e *R+ it e *R~).

If x is standard and B is a standard set in X, then Definition 4.9, with S=*B,

can be shown to be equivalent to Definition 1.11.9 in [1].

Definition 4.10. If R is a set in *X then we say that the motions in R are

positively (negatively) stable (uniformly stable) in S if the corresponding conditions

of the definition are satisfied for each xe R.

This definition should be compared with Definition 2.10.3 in [1], in which Bhatia

and Szegö introduce the notion of the motions through a standard set A contained

in a standard set B being uniformly stable in the set B. It is not too hard to see that

this notion is equivalent to a special case of Definition 4.10, namely that the motions

in *A are stable in *B. A stronger sort of uniformity would be obtained if we in-

sisted that the motions in *A were uniformly stable in *B. If, however, A is invariant

then this latter sort of uniformity coincides with the former since xt e *A for each

x e*A and each t e *R.

We could obviously go on to define attracting motions and asymptotically stable

motions, and study their properties, but we will not do so since no special difficulties

are involved.
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