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CRITICAL MARKOV BRANCHING PROCESSES
WITH GENERAL SET OF TYPES

BY

H. HERING

Abstract. This paper is concerned with the asymptotic behaviour of critical,

quasi-positively regular Markov branching processes. Several results which have

been established with restrictions on the set of types or on the parameter are proven

on slightly different moment assumptions for an arbitrary set of types and continuous

as well as discrete parameter. The methods employed are analytic and rest upon the

properties of probability-generating functionals constructed from the given transition

function.

The asymptotic behaviour of critical, positively regular Markov branching

processes with general set of types has already been studied for discrete parameter

by Mullikin [9]. For arbitrarily large finite set of types a corresponding continuous

parameter theory had previously been given by Cistjakov [1]. A few years later,

Joffe and Spitzer [5] weakened the moment assumptions underlying the theory for

processes with finite set of types and discrete parameter. In the following a treat-

ment of critical, quasi-positively regular processes (§1.4) with general set of types

is given, which applies to continuous as well as discrete parameter.

I. Preliminaries.

1.1. Setup. Every state of the kind of branching system we are interested in may

be conceived as a finite population of objects each of which is characterized by a set

of properties called its type. Let X be the set of types and X{n) the symmetrization

of Zn: = (g)?=1 Xt with Xt = XfoT i= 1,..., n. The element <x1;..., xn> e Xin) may

then be regarded as representing the unordered population of n objects with the

types Xy,...,xn respectively. Denoting by 6 the state in which "no object is

present" and setting Xm:={6}, we define

X:= © X™
n = 0
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as our state space. Let 91 be a cr-algebra on X. Writing xa for the indicator function

of A <= X and defining

N(A, x) : = 0, x = 6,

n

: = 2 Xa(xÙ,       x = <xi,..., xny,
i=i

for A<=X, (xu ..., xny e X, and «>0, the a-algebra t on 1 induced by 91 is

identical with the Borel extension of

{{xe X : N(At, x) = «¡, i = I,..., m} : Ate 9Í, «¡ ^ 0, / = 1,..., m, m > 0}

where Alt..., Am may be taken mutually disjoint. For details see [8], [2].

Denoting the set of nonnegative integers by Z+ and the set of nonnegative reals

by R+, suppose that either T=Z+, or T=R+, and let Pt(Â\x) be some homogeneous

transition function defined for t e T0: = T— {0}, Âe &, and xe X. That is, we

assume that Pt(Â\x) is a probability measure on â for each t e T0 and x e X, an

91-measurable function of x for each t e T0 and Â e 91, and that it satisfies the

Chapman-Kolmogorov equation

(1.1) Pt+s(Â\x) = £ Pt(Â\x')Ps(dx'\x)

for Â e 91, x e X, and í, s e J0. If in addition Pt( ■ | • ) satisfies the condition of

branching without immigration

Pt(X™\6) = 1,

Pt({N(Ait x) = n¡,i = \,...,m}\ <*,,..., xk»
(1-2)

2 II ^({^(^i. x) = «iv> ; « = 1, • • •, m} | <xv»
n<,1> + -+n<f = n, v = l

i = l.m

for re r0, each decomposition {Au ..., Am} of A'with ^(¡£91, «(^0, i=\,..., m,

m>0, and each (x%,..., xky e X, k>0, then it is called a branching transition

function. Any Markov process {xt ; t e T} in (X, 91) having such a transition function

is called a Markov branching process.

We suppose to be givçn a branching transition function. We shall use the term

"process" although we shall be dealing almost exclusively with this transition

function and functionals constructed from it. Only the proof of Theorem 1 ' pre-

supposes the existence of a corresponding process for discrete parameter or for a

discrete skeleton imbedded in the parameter set. The existence of such a process is

guaranteed without restrictions. The problem of constructing Markov branching

processes will not be treated. (See e.g. [4].)
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1.2. Generating functionals. Denoting by SS the Banach algebra of all bounded

21-measurable, complex-valued functions £ on X with norm ||£||: = sup*6X |f(x)|

and writing

fi-n, x) := 1, x = 6,

(1.3)
'■=   11  viXv), X = <X1; ...,Xn>,

v = l

for ij e 38 and x e X, we follow [8] in defining by

(1.4) Ffy\x] : = £ /0?, x')Pt(zix'|x),

at least on if: = {r¡ e á? : ||^|| ^ 1}, the generating functional Ft[- |x] associated with

Pt( • |x) for í e T0 and x 6 X. By

*iMi(*) : = Ft[v\<x}]       ^eP,xeX,

we further define for each t e T0 a generating mapping Ft[]y from ^ into ^ [9].

As illustrated by [9], generating functionals and mappings are a useful tool in

the investigation of Markov branching processes. This is due mainly to the fact

that the basic relations (1.1) and (1.2) for the branching transition function may be

replaced by an equivalent set of simple functional relations for the associated

generating functionals [8] :

The branching condition (1.2) is equivalent to

Ft[r,\x] = 1, x = 6,

(1.5)
= n Ftbi\<xv>],   x = <x15..., xn>,

v = l

for t e T0, 7] e ¿r°y and x e X. iProofi Taking any decomposition {Ay,..., Am} of X

with At e 91, i= 1,..., m, m>0, inserting i? = 2í"=i Kxa, into (1.5), and comparing

coefficients of Ylm=1 A"v yields (1.2). This conclusion may be reversed utilizing the

completeness of the set of stepfunctions in J1 and the continuity of generating

functionals on ¿?. The latter is obtained by means of a dominated convergence

argument.)

Given (1.5), the Chapman-Kolmogorov equation (1.1) is equivalent to

(1.6) Ft+S[v\x] = Fs[Ft[v]y\x]

for t, s £ T0, t] e ¡f, and xeX. iProof Representing .Fi+S[7)|x] as the limit of a

sequence of Lebesgue-Stieltjes sums with finitely many terms each, replacing

Pt+si • |x) according to (1.1), using dominated convergence to interchange integration

and limit operation, finally applying (1.4) and (1.5) yields (1.6). By insertion of

ii = 2r=i X¡xA¡ into (1.6) and comparison of coefficients as above, (1.1) is recovered

for a class of sets countably generating $L and thus, by a monotone convergence

argument, for all Â e WL)
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According to [8] every generating functional is analytic [3] on

SP:={teS8: |]¿|| < 1}.

The kth Fréchet-differential of Ft[r]\x] becomes

OkFt[V,   Í1,  -  -  -,   h\X\    =   J    /ft.ftO?,  ̂ P^' l ̂

/ftaa-aftfe^t-O, /VÏX, *')    <   /C,
Tl

(1.7) :=    2       I £vOO» *' = <*i> • ••»*»>> « = *>
«1.in)  V=l

1 k n

:=7r7-icv 2 n &(*..) n ^iU).
yn    K,): (il.(n) v = 1 « = k + i

x  = <(x1;..., xn), n > k,

where summations extend  over all permutations (/,, ...,/„)  of the  numbers

1,2,...,« [8].

In agreement with the assumptions in [9], even every generating mapping is

analytic on Sf. Given the analyticity of generating functionals, this follows im-

mediately from the fact that any functional F which is analytic and bounded by 1

on if satisfies

(1.8) JB±iflz£hL>yEt;fl Win
(i-bll)O-bll-IAHIfll)

whenever |ij| + | A| • ||||| < l with A a complex number and r¡, | e 3S. The estimate

(1.8) is easily obtained by expanding F[r¡ + Xi] in powers of A and estimating the

coefficients by means of Cauchy's integral formula [3]. (Remark. A more direct

procedure yielding analyticity for generating functionals and mappings simul-

taneously starts from the explicit representation (1.4) with (1.3) and employs

estimates as those used e.g. in the proof of [4, I, Lemma 0.1].)

Analyticity on Sf implies strong continuity on Sf. An additional continuity

property of generating functionals and mappings arises from the cr-additivity of the

associated probability measures: Suppose £,, %e38 V? e T and write Tr-lim»...,, £t

= £ if lim(_00 it(x) = g(x) Vx e X. A functional F defined at least on 3)<^38 will be

called TT-sequentially continuous on 2 if limv_OT F[ÇV]=F[Ç] for every sequence {fv}

in 2 with Tr-limv-aoo Çv = £ e 2. (Remark. Since the space of complex numbers is a

metric space, 7r-sequential continuity of F on ® entails lim^oo F[£t] = g if £t e 2

VieÄ+ and TT-lim»^«, $t=£e2.) It now follows from (1.4) by the dominated

convergence theorem that F,[-J36] is 77-sequentially continuous on 6? for every

t e T0 and íeí.An analogous argument applies to PFfy', &,..., èk\x] on closed

partial sets of if ® J*.



1971] CRITICAL MARKOV BRANCHING PROCESSES 189

1.3. Factorial moment-functionals. For (£1(..., i;k) eâSk, zV>0, and x e ÍTet

Nm(£y,...,£k,x):=0, N(X,x)<k,

(1.9) 1 fc

[n — K)i «!...,(„) v = i

where the summation extends over all permutations (i'i, ...,/„) of 1,2,...,«.

Employing this, we define by

(1.10) MbSJtu ■ ■ •> Ux] ■■= J tf«(fi, - - -, L x')Pt(dx'\x)

the kth factorial moment functional associated with P((-[x) if the integral on the

right exists for & = f 2 = ■ • • = èk = 1 : = Xx and therewith for all (f 1;..., ffc) e 3Sk [8].

By convention M^- |x]= :M'[- |x].

Every /cth factorial moment-functional is symmetric, zc-linear, bounded, and

therefore continuous on ¿%k. In consequence of the a-additivity of P¡(- |x) it is also

^-sequentially continuous on bounded regions in 3Sk. Combining (1.7), (1.9), and

(1.10), we have

(1.11) MUèu ..., folie] = lim 8kFt[r,v; £u ..., tk\£\
V-» GO

for every sequence {r¡v} in if with Tr-lim,,.,,,,, i?v = l. Vice versa, if

lim 8kFt[Vv;l,...,l\x]
V-* GO

exists for some monotone sequence {r¡v} in y+: = {f e ¿? : £(x)}t0 Vxel} with

Tr-lim^oo ■ziv = l, then M^[$y,..., fk|x] exists.

If supx£Z M¡k)[l,..., l|<x>] <oo, then

MUtu ■■-, tkliix) : = Mtvtfi, ■■■, Ék|<*>]       V(&,..., Çk)e@k,xe X,

defines a mapping A/(ifc)[-]1 from âSk into J1 called the kth factorial moment at r.

Again Mt[]1:=Ml1)[]y, also Mt: = Mi[]1. (ÄewarzV. Mullikin [9] used the strong

limit s-lim|ll_„||^0 8kFt[r¡; £lt..., £k]y in place of the kth factorial moment. It can

be shown that the existence of M/k+ X)[-]y is sufficient for the existence of this limit.)

We now turn to the expansion of generating functionals in factorial moment-

functionals. For any ÇeSS and x! e X

1 -f($, x') = -"f l\ ¿/(I - *(1 - 0, *)U-o

(1.12) -^jV-Af-^/d-Ad-ax')

fc(_1V + i (_L>fc

= 2 —T— ̂ <v)d - f, • • •. 1 - f, *')+LTTL WOd - f» *)
v = i       V! AC!

JA
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with

rm(0(í, x') := 0,       N(X,x')úk,

'■-7~m   I    ft ¿XOÍl-fcfo-A)*-1  fl   [l-A(l-£(xiB))]aA
V~K)-Ul.i„)v = l \ Jo n = fc + l /

x' = <x1;..., xn>, n > k,

for t., f eSS. If M¡k)[- |x] and thus M'T)[- |x], v^/c, exists, we may integrate (1.12)

for i e if with respect to Pt(- \x) and obtain

(1.13) \-Ft[è\x] = J ÍZ¿\)^MUl-L...,Í-t\x] + (-^RUm-£\x]
v = i       »'i zc:

with

ÄW0KI*] := £ '<*>(£)(£. x')Pt(dx'\x)

for £e if and £ e á?. Relation (1.13) generalizes expansions used in [5] for the case

of finitely many types and refines an expression derived in [9] for zc = 2 on the basis

of analyticity and more stringent moment assumptions.

For every | e if the functional 7?'k)(|)[Ç|x] is a bounded continuous monomial

of degree kin I, e38.lt is 7r-sequentially continuous in è, e if and in £ on bounded

regions in S9. Writing i ^ i if £(jc) ̂  |(x) Vxel and defining 0 by 0(x) : = 0 Vx e X,

we have

(1.14) 0 S RUm\x] ï R\k)(Œ'\x] á M¡k)[í',..., ï\x]

if 0 ̂  I ^ f ' S1 and 0 ̂  £ g £'. Combining this with

(1.15) (zc+l)7*U£)[W|x] - Mtk+1)[l-t,...,l-t\x]-R[k+1)(0[l-t\x],

we obtain

aRWÍ)[l|í]        ̂        (l/||l-f||*)^tó(l-Hl-f||l)[||l-^|l|x]
ll.lO)

g(l/(A:4.1))M¿c+1)ri,..„I|je]|I-fl|

whenever 0s; £ ̂  1 with £# 1.

If Aí^t-li exists, then it follows from (1.14) that

tfUami« : = *íw(0K|<*>]       Vèe?,l.eS9,xeX,

defines a mapping 7?(w(-)[-]i from if ® SS into Sä.

We conclude this section with functional relations derivable from (1.5) and

(1.6) by means of (1.11). Equation (1.5) entails

(1.17) Ml[î\x'] m Na)(My]u x')       V| e SS, x' e X,

if Ml[]i exists. If in addition Ms[- \x] exists, for some xe X, then we may integrate

(1.17) with respect to Ps(-\x). Representing M'[||x'] suitably as the limit of a
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sequenceof Lebesgue-Stieltjes sums, utilizing dominated convergence to interchange

limit operation and integration with respect to Ps( • |x), and finally applying ( 1.1 ), we

are lead to

(1.18) Mt+S[£\x] = MTM'Ifliljc]       V£e#,

which is due to Moyal [8].

Equation (1.18) may be obtained more directly by differentiating (1.6) in r¡ e £f,

8Ft+s[r,\ m = M&KMiï W^î aW       Vf e *,

and subsequently letting 17 approach 1. To justify this procedure even if

3ve^: \\Ft[r,]y\\ = 1,

we differentiate i\?,tb)|x]:= ¿'«[«Ftfohli] for e 6 (0, 1) and afterwards let e tend to 1,

noting that 8Fs[r¡; £\x] has a continuous extension to £f ® á? if A/s[- |x] exists, and

using (1.8) to show that, for (-n, f) e y ® ¿g and 0< |A| <(1 - ||iy||)/||f ||,

|8fith;f|je]-aFt+,h;i|je]|

^ lAI-Hlf/.th + Aflxl-^^h + Allxll + lF^hlxJ-F^^lxiD + O^^A)

with limA_0 |0„pi(A)| =0 uniformly in e e (0, 1), that is,

limoF/>t[r,;f|x] = 8Ft+s[v; £\x].
e->l

Either method is applicable up to arbitrary order. The respective second order

recurrence relation for factorial moments is

(1.19) Mt$\J, f|x] = M'WUt, î]y\x] + MUMt[l.]y, M*[è]y\x]

which holds for £, f e 38 in case the functionals and mappings involved on the

right exist. If for some £, f e 38+ : = {-ne38 : r¡ ä 0} the formal procedure of deriving

this relation yields infinity on the right, then Mt+S[- |x] does not exist.

1.4. Quasi-positive regularity. If the first (factorial) moments associated with

the given branching transition function exist, then according to (1.14) and (1.18)

they form a semigroup of nonnegative, bounded, linear operators on 38. Certain

spectral properties of this semigroup are strongly reflected in the asymptotic

behaviour of the process and may therefore be used as a means of classification.

We restrict ourselves to positively regular and quasi-positively regular processes.

The former are defined as Markov branching processes whose moment semigroup

exists and satisfies the following three conditions:

(M.l) For each ife3$+ with f=/0 there exists a t(¿¡) e T0 such that

inf*eXM««[f|<x>]>0.

(M.2) For some t0 e T0 there is a compact operator V on 38 such that

||Mio-K||<pio:=limn^00 HMV'iiyi/".

(M.3) If T=R+, then ]]A/"'[lJx |] is bounded on bounded subsets of T0, and

M*[il<x>] is continuous in t e T0for every £e38 andxeX.
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Let SS* be the adjoint space of SS, further SS% : = {>!> eSS* : t#£]èO Vf^O},

Sá°+: = {ÍeSS+ : infxeX |(x) >0}, and S8a*; = {<¡,eSÍ% : </.[|]>0V^0, |==0}. For

real-valued t;, | e J we shall write 77»! if and only if 77- £ e á?°+.

Proposition. A Markov branching process whose moment semigroup exists and

satisfies (M.3) is positively regular if and only if Ml may be represented in the form

Ml = p<P+ Qt   with PQt = QtP = 0,

(1.20) P = qxp*, <peSä°+,<p*e SS°*, <p*[9] = I,

Hôill  ^ Kef, Oí K <oo,0 <a < p,

for all t e T0, where <p* is n-sequentially continuous on bounded regions in S8.

It is trivial that (M.l) and (M.2) are satisfied whenever (1.20) holds for all

/ e J0. The converse conclusion has been established for T=Z+ in a more general

setting by Karlin [6] in continuation of work done by Kreïn and Rutman [7],

Yosida and Kakutani [10]:

The reflexivity of SS, the nonnegativity of M1 with respect to the cone SS+, and

the nonemptiness of SS°+ and SS°* together entail the situation of p in the point

spectrum of M1, as well as the existence of a nontrivial eigenvector <peSS+ and a

nontrivial eigenfunctional 93* eSS*+ of M1 associated with p. Assuming (M.l), we

have p>0, <p* e 8$°£, and 99 e SS\ which implies that p is a simple eigenvalue [7].

If it is known in addition that M1 possesses no spectral points of modulus p

except a finite number of discrete eigenvalues with finite multiplicity each, then p

is the only eigenvalue of modulus p [6].

Given (M.2) and assuming the existence of a number C<oo such that |p~n7ifn||

¿CVn>0, the set of spectral points of M1 with modulus p does indeed consist of

an at most finite number of discrete eigenvalues of finite multiplicity each, and the

radius of the remaining part of the spectrum is smaller than p [10].

These results are linked to establish (1.20) for T=Z+ by the fact that />>0 and

<peS6°+ combined imply the existence of a number C<oo such that ||rj~'l.M't|| SC

V«>0[6].

The 77-sequential continuity of <p* on bounded regions in Se follows immediately

from (1.20) and the 7r-sequential continuity of M\- |<x>] on bounded regions in 86

for any xe X.

We now reduce the continuous parameter case in the proof of the Proposition

to the discrete parameter case.

Proof for continuous parameter. For each £eá?+ with |#0 and s e T0 with

s<t(£) there is by (M.l) a number e>0 such that M^fä^eM«0-^]! and

therewith

Ms[M^[è]i]i =? eMs[M™-s[£]i]i = eM™[{]i » 0

which entails Mi[|]1»0 Vz*^t(|).
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Choosing for every t e T(t0) : = {rt0 : r > 0 rational} a pair of positive integers

m(t),nit) such that t = mit)t0/nit), we have Vt:= MiomU)-(Mto- V)mil) as a compact

operator satisfying

\\Mmt)-Vt\\ = IKA/'o-K)"10'! ̂ llM'o-Fl"1"' < p(om(í) = pín(í)

for every t e J(z*0).

Given a proof of the Proposition for discrete parameter, we may therefore write

down a representation of the form

Mtn  =  ptnpt+Qtn     with PtQt,n =   ftiBPt = 0,

Pt = wf, <pt e 38\, cpf e 38°*, <p* [9t] = 1,

\\QtJ  Ú Ktaf, Ogkt <C0, 0 <at <p\

for te Tit0) and neZ+ —{0}. Since this immediately yields

\\Pt0-Pt\\ ̂  ¡p-'^Qt.nmA + Wp-^^Qto.^W^tO   for teT(t0),

we have even

M( = PtP+ Qt with ß(P=Pß( = 0,

(1.21) P = w*, <p e ^°+, <p* e 38°*, v*[<p] = 1,

||ßnto|   ^ Constado, 0  < a  < p,

for te T(t0) and neZ+—{0}, where <p* is again 7r-sequentially continuous on

bounded regions in 38.

Consistently with (1.21) we now define Qt: = Mt-ptP Vr e T0. Using PMl

= MiP = piP Vie r(/0) which follows from (1.21), and taking into account (M.3),

the TT-sequential continuity of 93*, and the fact that T(t0) is dense in J0, we have

PMt = MlP=otP V? e T0. This implies QtP=PQt=0 Vi e j8, It also entails g¡os

= ß(+s Vi, je J0. Since it follows from (M.3) that ||ß(|| is bounded on bounded

subsets of J0, we thus arrive at ||ßt|| = ||ßntoßs|| ú \\QnJ • ||6.|| =i const anio for

/=«i0+J e (m/o, (n + l)i0), zieZ+ -{0}, and consequently || Qt\\ ̂ Kof "it e T0 with

i«:<co.   n

Subsequently the conditions (M.l), (M.2), and (M.3) will not be used explicitly

but only through (1.20). In fact, we shall not always need the full strength of (1.20);

the disturbing restriction 95* e 38°* is not essential for the main results. We therefore

introduce so-called quasi-positively regular processes defined as Markov branching

processes whose moment semigroup exists and satisfies

(1.20') representation (1.20) with <p* e 38% instead of<p* e 38°*.

A positively or quasi-positively regular process is called critical if p = 1.

II. Limit theorems. In the following we are concerned with the asymptotic

behaviour of critical, positively or quasi-positively regular Markov branching
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processes. As indicated above the treatment applies to processes with continuous

parameter as well as to processes with discrete parameter. Apart from differences

in the moment assumptions the theorems and their corollaries extend results

given for discrete parameter by Mullikin [9]. Lemmata 2 and 4 generalize results

proven for finite set of types and discrete parameter by Joffe and Spitzer [5].

Recalling 7ri[0|<x>]=P(({ö}|<x» Vi e T0, x e X, we define the asymptotic extinc-

tion function

q : = 7T-lim Ft[0]!
(-.00

[8]. It always exists, since by (1.4) and (1.6) we have O^F^OL^F^O]!^! for

t'ét".

Given quasi-positive regularity, Ft[|]! certainly cannot be independent of f on

if for any re T0. However, F,[f],— F^O], may be linear and not vanishing iden-

tically in | for all t e T0, that is, we may have Pt(N(X, x) í 1 |<x» = 1 V/ e T0, x e X

with $t e T0 : Pt(N(X, x) = 0|<x»= 1 Vx e X. In this case

FJLih = F[0]i + M^]i       V/ eToAe SS.

For a critical, quasi-positively regular process this entails

lim Pt(N(A, x) = 1 |<x» - <p(x)<p*[xA]       VAe%xeX,
t-aoo

and

1 = q + qxp*[l].

Taking into account o?*[<p]=l, the latter yields <p*[q]=0. Hence there exists an

Ae% with <p*[xA] = 0 such that i7(x) = 0 VxeX— A. Since Ft[0]! is monotone

increasing in t, this implies Pi({0}|<x» = O Vz e T0, x e X-A.

We are left with those processes for which F,[f ], — F[0], is nonlinear in £ for some

t e T0. A Markov branching process having this property is called nonsingular.

Theorem 1. For every nonsingular, critical, positively regular process

(2.1) s-lim Ft[£]i = 1    uniformly in | e &.
í-aoo

Proof. Employing (1.6), 7r-sequential continuity of Ft[]u (1.13) for k=l, and

(1.14), we obtain

1 - q = 1 - Ft[q]i ¿M'[l- q]i       V? e T0.

By (1.20) with p = l we have

<P*[Mt[l-q]i-(l-q)] = 0       Vie TV

In view of op* e SS°? therefore

1 - q = 1 - Ft[q]i = M'[1 - q]x       Vf e T0.
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Again by (1.20) with p=l this implies

3c e R+ : 1 — q = c<p

and on account of (1.13) also

^i)(f)[l-?]i - 0       V/e70.

For ||?||<1 the latter can hold only if Pi(A'(n,[<x» = 0 Vf e T0, n>l,xeX, which

is incompatible with the assumed nonsingularity of the process. Hence ||y|| = l.

Because of cz»0 this entails c = 0, that is, q = \. Consequently

(2.2) limy*[l-Ft[0]1] = 0,
(-.GO

where it has been used that <p* is ^-sequentially continuous on bounded regions in

38. Combining (1.6), (1.13) for k= 1,(1.14), and (1.20) with P=l, we have

U-Ft+Mxl = n-Fs[Ft[Q]y]y\\

Ï \\M°[1-Ft[0]y]\\ ^ \\<p¡<p*\l-Ft[0]i] + K<*

with a<l. By (2.2) therefore s-lim^«, Ft[0]y = l. The estimate

lll-Fffhll ^ n-Ft[0]y\\ + \\Ft[\{\]y-Ft[0]i\\

^2\\l-Ft[0]y\\       Vfe^

completes the proof.    D

To secure a similar result for quasi-positively regular processes, we introduce

another condition on the first moments :

(M.4) There exist, for some t' e T0, a bounded measure C7()|9I and a bounded

function mv( • [ • ) | X <g> X such that

Ml'\xA\<.xy\ = I   mv(y \x)G(dy)       VA e%xe X.

(Note. It follows from the additivity and 7r-sequential continuity of M!['|x]

that M'[xa|x] is a measure on 91 for each t e 70 and x e X.)

For real-valued f, I e 38 we shall write f> J if and only if f(x) > £(x) Vx e X.

Theorem I'. If a critical, quasi-positively regular process satisfies (M.4) and

lue T0 : Fu[0]y>0,   then

(2.1') s-lim Ft[¿j]y = 1    uniformly in f e SP.
Í-.CO

The proof up to q = \ consists in the slightly adapted proofs of [3, III, Theorems

11.1, 11.2, and 11.3]. Having established q = \, we may employ the same argument

that was used in the proof of Theorem 1.

Recalling (1.5), we immediately have

Corollary 1.1. On the hypotheses of Theorem 1 as well as those of Theorem 1 '

lim Pti{6}\x) = 1
(-.GO

uniformly in x e X(n)for every n>l.
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We continue with several additional conditions and auxiliary statements pre-

paring further limit theorems.

Lemma 1. For every quasi-positively regular process

(2.3) |*i[fli|<l       Vier0,fe^.

Proof. From the relations defining generating mappings we read off |FTÍ[¿:]1|

SFífJíllx and Ff[|f|]1-Fl[0]1g||f||(l-F([0]1)> that is, l-|F([fla| ^(1-Ft[\i\]i)
£(1 - |í||)(l-F[0]i) for teToAeif. By F([0|<x>] = F(({0}|<x» we should have

Af'[l|<jc>] = 0 if 1-Ft[0|<x>]=0. On the other hand, (1.20') implies M'rili

^ \f\ -'AiM»fl VI e r0. Hence 1- |.Fi[f]i| >0 V? e T0, § e if.    \J

For the following we replace (M.4) by a more stringent condition:

(M.4') Condition (M.4) with G(A) = <p*\Xa] VA e 91.

We also impose

(R«,) 31* e 70 :      s-lim      ^"fflj1"^1 = 0       Vi ̂  ?".

For positively regular processes with finite X, condition (Ra)) is automatically

satisfied. In case of a quasi-positively regular process with general set of types there

are conditions on the first and second factorial moments dominating (R(d): For

example, let (M.4') be satisfied and assume that for some s e T0 there exists a

bounded function mf2)(l ; ■[■) \ X<gi X such that

M?2)[l, Xa\<x)]= J   mf2)(l;y\x)<p*[xdy]       VAe%xeX,

then (R(d) is satisfied. This can be seen as follows :

By (M.4') and (1.18) there exist a r'e T0 and a real-valued function Ci.(-)|2"o

such that

(2.4) M'bçA Í Ci(t)9*[XA]l       VI £ /', A e 91.

Given (1.20'), the existence of M(s2)[-, -]i entails the existence of M{2)[-, -]i for all

t e T0. This is easily verified, using (1.19) and the nonnegativity of factorial mo-

ments. Setting M°[i]i:=i Vfe^1 and choosing some integer «>0 such that

ns^t', we obtain from (1.19)

M%+t[l, xJi = M{2)[M™[l]u M™[xa\i]i

+ J M*->***[MMM*-™Wlu M^-^IxaÍiUi       Vr eT0,Ae 9Í.
v = l

From this with (1.20') and (2.4)

M?¿+t[l,XA]i â MUl,lUM+K)Pn'Cí(nsy9*]3uL

+ pt+(2n-i)S I p-»sqp\\+Ky sup \mUl;y\x)W*\XA]l      VteT0,Ae*.
v-i x,yeX



1971] CRITICAL MARKOV BRANCHING PROCESSES 197

Hence there exists a real-valued function C2(-)| J0 such that

(2.5)     M®+'[1,1-^á C2(t)9*[l-£]1       Vf e T0, f e P+ : = ? n 38+.

As a consequence of (1.15), (1.14), and (2.5), condition (Ra)) is satisfied.

Lemma 2. If a quasi-positively  regular process satisfies  (M.4'),   (R(10,  and

s-lim^o, Fi[0]1 = l, then

1-F«[fli
■¿*<p*[l-Ft[t]y] r       "■"■'—■"'   '"  *-~+-

(2.6) s-lim    *      'Ayi    = y   uniformly in Ç e &+

Proof. 1. By (M.4') and (1.20')

IlM^'tY^-r/^PMI  =   ||ßt[ß,[XJi]i||

á AV(sup |mt'(j|x)|+pí'||'Pll)<P*[xJ       Vf e T0, A e«.

Taking into account 0<a<p and 9>»0, it follows that there exists a nonnegative

function e(')|J> with

(-.CO

(2.7) lim e(0 = 0
(-CO

such that

(2.8) (1 -«(OVPfo] á ü/'Mi ^ (1 +«(0)/tf W       Vf > f, , e *+.

Given (R(i)), there is for each t e TQ a nonnegative functional gt[-]\^+ with

(2.9) lim    *,[£] = (>       Vie Jo
iii-cii-x)

such that

(2.10) 0 è Rhmi-Qx ^ gtmrfP[l-£]      V/Ü/',{:Oá{<l.

2. Combining (1.6) and (1.13), we have

i;-F,ra = î-^-jai,
= M»[Í-Fí_.[|]1]i-J%)(íi-,m1)Il-F{_.[í]1]1       Ví, í e J0, í e <?.

From this, by (2.8), (2.3), and (2.10),

il-eis)-gs[Ft-s[t]i])psP[l-Ft-smy]

(2.11) ^ i-F([f]x ^ (l+^ypti-F^tai

Ví > max (f', t"), t > s, $ e S?+

and, by applying ç>*, also

(ï'-ks)-g.[Ft-,[ï]1Wv*]l-Ft-,[t]l]

(2.12) H><P*[l-Ft[t]y]   Í   il+e(s))PSCp*[l-Ft^]y]

V* > max(í', í"), í>s,íey+.
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In view of (2.3) and <p* eSS* with <p*M = 1 we have «p*[l-Ft_s[f]1]>0 V/-i e T0,

i e Sr°+. By (2.11) and (2.12) therefore

2e(s)+gs[Ft_sU]1]   K    1-F.KL. 2e(s)+gs[Ft_s[£]1]

l+e(s) * = <p*[l -Fmj     <P=  l-fi(i)-g.[Ft_,[fl1f

Vä > max (í', í"), C > j, | e #,..

Recalling (2.7), (2.9), and the fact that s-lim,^ „ F^O], = 1 entails s-lim^ „ Ft[Ç]i = 1

uniformly in zf e if, this yields (2.6).    □

We further restrict ourselves to processes satisfying

(M(2)) The second factorial moment exists at each t e T0 and, in case T=R+, we

have lim^o 9*Wa)[l. l]i] = 0-

Given (1.20') and the existence of Ml(2)[\, 1], for some t e T0 it follows by use of

(1.19) and the nonnegativity of factorial moments that ||M(2)[1, l]i|| is bounded on

bounded partial sets of T0. Because of the ir-sequential continuity of 93* on bounded

regions it is therefore sufficient for lim(_0 93*[Af(i2)[l, l]i] = 0 that there exists an

A e 91 with <p*[xx-a]=0 such that limt^0 Mf2)[l, l|<x>]=0 Vx e A.

Lemma 3. If a critical, quasi-positively regular process satisfies (M(2)), then

(2.13) H-:=(ll2t)<p*[M{2)[9,<p]i]

is constant as a function of te T0.

Proof. By (1.19) and (1.20') with P = l

<P*[M&+»°[9, <p]i] = <p*[M&[<p, <p]i]+<p*[MU<P, ?>]i]

for k eZ+ —{0} and s e T0. From this

v'WSlrto, <p]i] = n9*[M^[9,9]i] = (nlm)<p*[M&[<p,9]i]

with n,meZ+ -{0} for T=R+, and neZ+ -{0}, m = 1 for T=Z+. In case T=R+,

it follows from Iim¡^0 9*[M&£1, l]i]=0 that lim(^0 9>*[Af<2)[<p, 9>]i] = 0, and from

this with (1.19) and (1.20') that <p*[M¡2)[<p, 95],] is continuous in t e T0. Combination

of these facts yields the proposed constancy of p..    □

As a last condition we postulate

(R(2)) For every monotone nondecreasing sequence {£„} in ¿f+ with s-lim^o, fv = l

there are a,eeT0 such that

(2.14) lim 9>*[^<2)(lv)[l]i] = 0   uniformly in t e [a, a + e] n T0.
V-aOO

For a quasi-positively regular process with discrete parameter this condition is

automatically satisfied if the second factorial moments exist. In case T=R+, we

certainly have ç>*[7?<2)(fv)[l]i]->0 for every t e T0 but not necessarily uniform

convergence on some nondegenerate ¿-interval. By (1.16), however, such a uniform

convergence is guaranteed at least if supíe[í,iíI+e] sup*^ M{3)[\, 1, l|<x>]<oo for
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some a, £>0 and an A e 21 with <p*[xx- J=0. Given (1.20'), it is sufficient for the

latter that M'3)[l, 1, l]j exists for some f e J0.

Lemma 4. If a critical, quasi-positively regular process satisfies the conditions of

Lemma 2 and in addition to these also (M(2)) and (R(2)), then

{2A5)   ä \ L*[i-W]"^fü]=** /or '^ •"f e ̂ +

anif" uniformly on {t;e Sf+; || 1 — £||/<p*[1 — f] < c, || 1 —1|| < e/c} for every c<co and

some e>0.

Proof. 1. By <p*e3$*+, <p*[<p]=l, (2.3), and (1.6) we have ?*[l-£]>0 and

<p*[l-F[C]i]>0 Vf e J0 whenever £ e ^+ or £=F,i£Ji with Ç e #>+ and s e J0. For

any such £ we may therefore write down the identity

^^L^^-a-^-F^^=r^'pé=¿

2i<P*[l-Q-<P*[l-Ft[Qy])       VfeJo
(<P*[W])

which, by means of (1.13) for k = 2, (1.20') with P= 1, and AK]: = (l-£)/V*[l-i],

is transformed into

(2-<p*[l-Q(<p*[M/2)[A[a AK]]X]-9>*[*!a)«)[A[£]]i]))

(2'16) "Uti-^Ktr^i-d
= 9Wa>[A[£], àfHîil-vn^iOiArâ]!]       Vf e J0.

2. Employing As[f]: = AfF^f],]-?) Vs e J0, f e ^ together with p from (2.13),

and <p»0, we have

W*lMt2)[±[Fs[{]y],A[Fs[e]y]]y]-2tp\

= W*[2Ml2)[<p, hs[i]]y + MUhsm, hs[£]]y]\

á <P*[MU<p, <p]y]icy\\hs[è]\\ +c2\\hs[£]\\2)       Vf, s e To, £ e ^+

with some constants c, <oo, c2 <oo. Since according to Lemma 2

(2.17) lim ||n,[f]|| = 0   uniformly in fe^+,

this yields

(2.18) lim <p*[Mt2)[à[FsU]y], A[Fs[Í]y]]y] = 2íp
S-> CO

uniformly in f e ¿?+ as well as in f on every bounded partial set of J0.

Using (1.14), (2.1) or (2.1') respectively, (R(2;), and (2.17), we get

üm|9>*[^2,(F.[fl1)[A[F,[í]1]]l]|

(2J9) S lim ?*[*í»rF.[0]i)[l]i](||9|| + |¡/zs[f]||)2 = 0
s-»co

uniformly in | e S?+ and in / e [a, o + e] n J0 with suitable o, e>0.
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3. It follows from (2.16) by substituting £ = FS[£], and applying (1.6), (2.18),

and (2.19) that

(120) ft Ui-Lmir^i-WJ =¥
uniformly in $ e ¿f+ and in z* e [a, ct + e] n F0. Defining the integral-valued function

n(f) | {fe J0 : t^o} by «(/)o-^/<(n(0 + l)cz Vi^o-, setting 8(t):=t¡n(t) Vía o- and

^o[f]i : == í V| 6 «$", and utilizing the uniformity of convergence in (2.20), we finally

obtain

,.    1 \ 1 _1_1
r™i[<p*[i-Ft[Ç]i] 9*[i-d

,.    j_n(^-1 r        i_i       i =

t™ »(1)8(1)   k4o   L^tl-^fc+iwttjtfli]    9>*[l-^W(o[fli]J       1

for every f e 5^. and with the proposed uniformity.    Q

The following results are of interest only for p>0 although they formally remain

true if p—>0, as long as s-lim,_œ Ff[0]1 = l is assured. By (2.13) and (1.10) we have

zt > 0 if and only if for some s e T0 there exists an A e 91 with 9>*ba] > 0 such that

Fs(Ar(n)|<x»>0 Vxe^ for at least one n>l or, equivalently, that Fs[£|<x>]

— Fs[0|<x>] is nonlinear in £ for x e A. A quasi-positively regular process having

this property will be called <p*-nonsingular.

Theorem 2. Let a critical, quasi-positively regular process be 9*-nonsingular and

satisfy (M.4'), (Ra)), (M(2)), and(R(2)). In case this process is not positively regular,

suppose further that 3zz e T0 : F„[0]!>0. Then

(2.21) s-lim iCl-F.tflO = 9/p-       Vfe-S^.
Í-.00

Proof. Taking into account Theorem 1 and Theorem 1' respectively, this result

is obtained immediately by combining Lemma 2 and Lemma 4.    □

Corollary 2.1. On the assumptions of Theorem 2

(2.22) lim tPt(X-{B}\x) = Nw(9, x)/p.
i-aoo

uniformly in x e X(n} for every n>0.

Proof. Using (1.5) and proceeding as in (1.12), we get

tPt(X-{8}\x) = z-(l-Ft[0|x])

= Na)(t(l-Ft[0]i), -<)-r<1)(F([0]1)(i(l-Ff[0]1), x)

which by (2.21) leads to (2.22).    □

The remaining two results which involve conditional expectations and distribu-

tions refer to the respective regular versions defined through the given transition

function.
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Corollary 2.2. On the assumptions of Theorem 2

(2.23) lim E(Na)(i' *l)     x, ==e,Xo = x\= p9*[$]
(-.GO \ f /

uniformly in x e Xm for every n > 0 and £e38.

Proof. Relation (2.23) is obtained from

M'[||x] = PtiX-{6} | x)EiNaÁi, xt) |%* 6, x0 = x)

by means of (2.22), (1.17), and (1.20') with P=l.    Q

Remark. The monotony of Ft[0]i with respect to f allows (R<2)) to be eliminated

from the assumptions of Corollaries 2.1 and 2.2.

Theorem 3. Let a critical, quasi-positively regular process be <p*-nonsingular and

satisfy (M.4'), (R(1)), (M{2)), and (R(2)). In case this process is not positively regular,

suppose further that 3« e J0 : Fu[0]i>0. Then, for any decomposition {Ay,..., An)

of X with Aie'H,i=l,...,n,n>Ç), and any xe X—{6}, the conditional distribution

of the vector

(2.24) - (N(Ay, Xt),..., N(An, xt))   given xt ^ 0, x0 = x

converges, as t —>■ oo, to the distribution of a vector of the form

(2.25) iv*[XAll-..,<PnXAj)rV

with

(2.26) PiW úz) = X(o..)(z)(l -exp [-z/p])       Vz e (-oo, oo).

Proof. For any f := 2"=i KxAt with A¡>0, i=l,..., n, and f(: = exp [-£/f]

Vf e J0 we have

limt<p*[l-tt] = <p*[Q
Í-.CO

According to Lemma 2

1-FfoL = <P*[l-Ft[v]y]i9 + ht[r,])       Vf e To, r, e ^+

with

and by Lemma 4

lim ||Ath] || = 0   uniformly in r¡ eS?+,
t->CO

with

^-™ll=i + ̂ f-^UhD     V'eJ°'^

lim fc(h] = 0   uniformly in 77 e {fs: 5>i0}-
Í-.CO
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for some s0 e T0. Combining these five relations we obtain

(2.27) s-lim t(l-Ft[$t]i) = , f [|]y   ■
i-aoo l+v*[ifr

Using (1.5), (1.12), (2.22), (2.27), and (2.1) or (2.1') respectively, the limit of the

Laplace-Stieltjes transform of the conditional distribution of (2.24), as / —>■ oo,

becomes

lim EÍexp f- f \ N(Ai' *()] I  xt # t?, xo = x)
Í-.00 \ 1 i = l t J   I /

= Iim Ft[{t\x]-Ft[0\x] = l    lim^.l(l-F,[fil^])
^œ      1-Ft[0|x]       "       lim^(ai(l-Ft[0|jE])

= l-y f v^lim Wi)('(i-^[f.]i).^T^^fóliXKi-íiC&Uje))

= !_f*_Na)(9, x)9*[i]_1_
N,»(<p,x)     l+9*[£h l+w*[fl

which is the Laplace-Stieltjes transform of the distribution of (2.25) with (2.26).

On account of the continuity theorem this entails the proposed convergence in

distribution.    □
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