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NEUMANN PROBLEMS FOR HYPERBOLIC EQUATIONS
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EUTIQUIO C. YOUNGC)

Abstract.    Conditions for uniqueness of solutions of the Dirichlet and Neumann

problems are obtained for a singular hyperbolic equation involving a real parameter.

1. Introduction. It is well known that the Dirichlet problem for hyperbolic

equations does not in general constitute a well-posed problem. In the case of the

two-dimensional wave equation utt-uxx = 0, for instance, it is known that in order

to determine the solution in a rectangle with sides having slopes ± 1, it is sufficient

to prescribe its values on only two adjacent sides of the rectangle. On the other

hand, Bourgin and Duffin [1] have shown that for rectangles with sides parallel

to the coordinate axes, uniqueness of solution of the Dirichlet problem holds if

and only if the ratio of the sides of the rectangle is an irrational number. Related

investigations of the well-posedness of this problem have also been conducted by

John [2] and Fox and Pucci [3]. More recently, the result in [1] has been extended

by Dunninger and Zachmanoglou to the zz-dimensional wave equation [4] and to

more general hyperbolic equations in cylindrical domains [5]. A similar result on the

Neumann problem has also been derived by Sigillito [6] for the zz-dimensional

wave equation. For singular equations of the fourth order, corresponding results

have recently been obtained by Dunninger and Weinacht [7].

In this paper we present conditions for uniqueness of solutions of the Dirichlet

and Neumann problems for the singular hyperbolic equation

(1) Lu = utt + (kjt)ut - (á'ux)x. + cu = 0

where the coefficients a'' and c are functions of the variables xlt..., xn alone and

k is a real parameter, —co<zc<oo. Here the repeated indices are to be summed

from 1 to n. The boundary value problems are considered in a cylinder Q = DxI,

where F is a bounded domain in the x = (xlt..., xn) space and 7 is the interval

0<t<T. Necessary and sufficient conditions for uniqueness are given for different

ranges of the parameter k.
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We assume that the coefficient matrix (a") is symmetric and positive definite

and that c jg 0 in D. Moreover, we assume that the functions a", c, and the boundary

8D of D are sufficiently smooth in order to allow the application of the divergence

theorem and to ensure the existence of a complete set of eigenfunctions for the

eigenvalue problems that arise in the sequel.

2. The Dirichlet problem.    Consider the homogeneous Dirichlet problem

(2) Lu = 0   in Q,       u = 0   on 8Q.

We shall prove uniqueness of solution by showing that every smooth solution of the

problem vanishes identically in Q. In the case when zV >0 however, we will see that

every smooth solution vanishes identically in ß whenever it vanishes at r = 0 and

on the lateral surface of the cylinder Q.

Theorem 1. Let k>0. If u e C2(Q) n C1(Q) is a solution of Lu = 0 such that

u = 0 at t = 0 and on 8D for 0 ^ t < T, then u = 0 in Q for any value of T.

In order to prove this theorem we shall make use of the fact that every solution

of equation (1) belonging to C2 for t>0 and to C1 for r^O satisfies the condition

ut(x, 0) = 0 for any nonzero k. In the special case when (a"') is the identity matrix,

this property was first established by Walter [8] for c = 0 and then by Fox [9] for

c/0. The method used in [9], which was due to Zaremba and Asgeirsson and later

improved by Walter, can be carried out here almost step for step to establish the

same result for the more general equation (1) using the cylinder Q.

Proof of Theorem 1. We integrate the differential identity

(3) 2utLu = (uf + aiíux¡ux¡ + cu2)t-2(aiiuXtut)Xj + (2klt)uf

over the domain ßs=ß n {0<t<s}, sfíT, and use the divergence theorem to

obtain

(4) |     [(«f + ai¡ux.uXi + cu2)vt - 2a"uXlutVj] dS + 2k (Y   ^-dxdt = 0
JdQs JJQs    t

where (v1;..., vn, vt) denotes the outward normal vector on 8QS. In view of the

boundary conditions satisfied by u and by the fact that h((x, 0) = 0, equation (4)

reduces to

(5) f iuf + auuXiux. + cu2)        dx + 2k\\   ^-dx dt
Jd t=s JJ<3S   t

,2

0.
iQs

Since (a") is positive definite, c^O, and k>0, it follows that both terms in (5) must

be zero. Thus

(6) J   iu? + a"uXiux¡ + cu2) dx = 0

for O^i^ F. This implies that « is a constant in Q. But « = 0 at t — 0, therefore u = 0

in ß for any value of F.
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Theorem 2. If k ̂ 0, then every solution u e C2(Q) n C1(Q) of the problem (2)

vanishes identically in Q if and only if

(8) a/<i-w,2(Ai/2F)^0

where Xm (m = 1, 2,... ) are the nonzero eigenvalues of the problem

(9) (aiivx)x-cv + Xv = 0    in D,        v = 0    in 3D,

andJp(z) is the BesseVs function of the first kind of order p.

Proof. Suppose there exists a nonzero eigenvalue Xp of the problem (9) such that

/(i _ k)i2(Xy2T) = 0. Let vp be the eigenfunction corresponding to Xp. Then the function

(10) w(x, t) = f°-*»Ja-Brt(*í"»>>»(*)

is a nontrivial solution of the problem (2) as is readily verified.

Conversely, if condition (8) holds, we integrate the differential identity

(11) wLu — uMw = (utw — uwt + kuwjt)t — [ai¡(uXlw — uwx¡)]Xj

over the cylinder QJ enclosed by Q between the planes t = s and t = T,0<s<T. The

operator M in (11) is the adjoint of F and is given by

(12) Mw = wu-k(wjt)t-(aiiwx)Xj + cw.

By the divergence theorem we obtain

(13) (wLu — uMw)dxdt= [(utw — uwt + kuwjt)i't — ati(uXlw — uwx)i'j]dS.
JJqÏ -W

If « is a solution of the problem (2) for k ^ 0 and if we choose

(14) w(x, t) = t'1 + k^'2Ja.k)l2(Xll2t)vm(x)

where Am is a nonzero eigenvalue of the problem (9) and vm the corresponding

eigenfunction, then Lu = 0 and

Mw = -?(1+fc>'V(1_w/2(A^0{[a"K),i],i-czJm + AmzJm} = 0.

Thus the left-hand side of (13) vanishes and so we have

(15) (utw — uwt + kuwjt) dx—     (utw — uwt + kuwjt)
Jd t=T JD

dx = 0
t=$

inasmuch as w vanishes on BD for s^t^T.

Now let s approach zero. Since both wt and wjt are bounded at ? = 0 and both u

and ut vanish there, the second term in (15) converges to zero. Hence in the limit

(15) yields

(16) F(1 + ">'% _ W/2(AJ/2F) Í ut(x, T)vm(x) dx = 0.
Jd
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In view of the condition (8), this implies that

(17) ut(x, T)vm(x) dx = 0,       m = 1, 2,....
Jd

By the completeness of the set of eigenfunctions {vm}, m= 1, 2,..., it follows that

ut(x,T) = 0.

Next, integrating the differential identity (3) over the cylinder QTS and using the

fact u(x, T) = ut(x, T)=0, we obtain

(18) f (uf + a^u^. + cu2)        dx-2k |Y    ^ dx dt = 0.
Jd ( = s JJqJ   t

Since kfíO it follows as in equation (5) that

(19) ^(uf + a"uXiuX) + cu2) dx = 0

for any s, O^s^T, which implies the conclusion of the theorem.

When k = 0 condition (8) becomes sin (AJ1'2P)#0 which yields the result X%2T

T^p-rr, p= 1, 2,..., previously obtained in [5].

Of special interest perhaps is the case when (a'A is the identity matrix, c = 0, and

D is the rectangle defined by 0<x¡<at, i=l, 2,..., n. Equation (1) then reduces to

the well-known Euler-Poisson-Darboux equation

(20) utt + (klt)ut-&u = 0       (A=2g2/&tA

The corresponding eigenvalue problem (9) in this case is defined by

(21) At) + Atz = 0   in A       v = 0   on 8D,

for which the eigenvalues are given by

(22) rr2 2 imMY
i = l

where (mlt..., mn) are «-tuples of positive integers. The condition (8) then becomes

(23) /(1_U-ZÖ/2

| 1/2

^ (Mi/fl,)8'
Li = i

kSO. In particular, when k = 0 this gives

1 1 1/2 -,

2^/^  -f|/o,

(24) r[|(ffliM)2]
1/2

j= m

for all («+ l)-tuples imlr..., mn, m) of positive integers, which is the result obtained

in [4].

3. The Neumann problem.    In the case of the homogeneous Neumann problem

(25) Lu = 0   in ß,       8u\8n = 0   on 8Q,
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where on the lateral surface of Q the derivative du/dn is defined by

dujSn = aliux^j,

("i> ■ ■ -,vn) being the outward normal vector on 3D, we have the following result.

Theorem 3. If u e C2(Q) n C1(Q) is a solution of the problem (25), then u = 0

(or u = const ifc = 0)for zc^O if and only if

(26) Ja + kv2(Xll2T) + 0

where Xm (m = 1, 2,. . . ) are the nonzero eigenvalues of the problem

(aiivx)Xl — cv-r-Xv = 0   in D,

(27) '   '
dv/dn = 0   on 3D.

Proof. The necessity of condition (26) actually holds for all k. For if there exists

a nonzero eigenvalue Ap of (27) such that

(28) 7(1 + W/2(AJ'2F) = 0

then the function

(29) w(x, t) = /(1-k,/V(fc_1)/2(A£'20zjp«,

where v, is the eigenfunction corresponding to Xp, constitutes a nontrivial solution

of the problem (25) for any value of k. Indeed by (27) it follows that Lw = 0 and

3w/Sn=0 on 3D for O^t^T. Moreover, since

dwjdt = -A¿'ar<1J™/a+kW2(A«afK(*) = 0(t),

it is clear that wt(x, 0) = 0 and by (28) wt(x, F) = 0. Thus the function (29) satisfies

the boundary condition in (25) as well.

On the other hand, let k^O and suppose that condition (26) holds. If « is a

solution of the problem (25) and if we choose

(30) w(x, t) = ta + k)l2Jik-i)l2(XU2t)vm(x)

then substitution of these functions in (13) leads again to equation (15). Since

wt(x, t) = [zc?<^1>'V(fc_1)/2(Ai'^)-Ai1'2z'<1+'£>'V(k+1)/2(A^0]fmW

it is clear that

-wt + kwlt = Ai'2a-<1 + *>'V(k+1)/2(A,V20ia*) = 0(t1 + k).

Therefore, as s is allowed to approach zero in (15), we obtain in the limit

(31) A^F" + *>«/«+ i)/2(Aà/2F) f u(x, T)vm(x) dx = 0
Jd

which by (26) implies that

(32) )   u(x, T)vm(x) dx = 0,       m = 1, 2,....
JD
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By the completeness of the set of eigenfunctions {vm} of the problem (25), this

implies that u(x, F) = 0 if c>0 or u(x, T) = const if c = 0.

Let us assume that c>0. There remains to be shown that w = 0 in Q. In this

connection, the sufficiency proof of Theorem 2 (see equation (18)) does not permit

us to make the desired conclusion since now /cäO, except of course in the obvious

case k = 0. Thus for k>0 we need to use a different approach.

We integrate instead the differential identity

•/.
dx

t = s

2tautLu = [ta(uf + aijuXiuXl + cu2)]t - 2t°(aiiuXiut)Xj

+1 " '1 [(2k — a)uf — aauUx¡UX) — acu2]

for any real a > 0 over the cylinder QTS to obtain

sa(uf + aiiuXiuXj + cu2)

(34)
+        ta~1[(2k — a)uf — aa"uXiuXj — acu2] dx dt = 0.

JJqï

Letting 5 approach zero in (34) and noting that the first term vanishes, we are then

left with the convergent integral

(35) [ t"-1[(2k-a)uf-aailuXiux¡-acu2]dxdt = 0

for any real a > 0. If we rewrite this in the form

(36) ilk-a) if  t"-H% dxdt = a if ta-1iaiiux¡ux¡ + cu2)dxdt
.'.'(.) JJq

it becomes clear that (35) can hold if and only if the integral on each side of (36)

vanishes. Thus in particular

(37) fÍ ta-\ai}uXiuXj + cu2) dxdt = 0

from which the conclusion that t/ = 0 in ß follows.

If c = 0 the discussion above implies that u=const in Q. In the special case when

(aw) is the identity matrix, c = 0, and k = 0, condition (26) gives the result obtained

in [6].
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