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SOME NEW CLASSES OF KERNELS
WHOSE FREDHOLM DETERMINANTS HAVE

ORDER LESS THAN ONE

BY

DALE W. SWANN

Abstract. Let K(s, t) be a complex-valued L2 kernel on the square ízís, f¿b and

{Xy}, perhaps empty, denote the set of finite characteristic values (f.c.v.) of K, arranged

according to increasing modulus. Such f.c.v. are complex numbers appearing in the

integral equation $»(.$) = Av j"a K(s, t)4>,(t) dt, where the <f>,(s) are nontrivial L2

functions on [a, b]. Further let zVi = J£ K(s, s) ds be well defined so that the Fredholm

determinant of K, D(X), exists, and let it be the order of this entire function. It is shown

that (1) if K(s, t) is a function of bounded variation in the sense of Hardy-Krause,

then p.¿ 1 ; (2) if in addition to the assumption (1), K(s, t) satisfies a uniform Lipschitz

condition of order a>0 with respect to either variable, then p.< 1 and &i = 2v 1/^vi

(3) if K(s, t) is absolutely continuous as a function of two variables and S2K/ds 8t

(which exists almost everywhere) belongs to class Lp for some p> 1, then p.< 1 and

ki = 1v 1/AV. In (2) and (3), the condition ky^O implies K(s, t) possesses at least

one f.c.v.

1. Introduction. Let K(s, t) be a complex-valued L2 kernel on the square

afks,t-¿b, by which we mean ¡a ¡I \K(s, t)\2 ds dt <co, and let{Av}, perhaps empty,

denote the set of finite characteristic values (f.c.v.) of K, arranged according to

increasing modulus. Such f.c.v. are complex numbers satisfying

(1) Us) = K f K(s, t)Ut) dt,
Ja

where the Us)are nontrivial L2 functions on [a, b]. If F does not possess additional

structure or fall into certain specialized categories (e.g., Volterra, normal, de-

generate, positive definite) the number of such f.c.v., at most countable, is generally

unknown.

Briefly stated, in this paper we show that if K(s, t) belongs to certain classes

of functions of importance in the study of double Fourier series (and hence of

physical as well as mathematical interest), then 2™=i 1 /[Av| <oo. For such cases, if

2™=i 1/AV#0, a condition easily ascertained as shown below, then K(s,t) will

have at least one f.c.v.
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To be more explicit, we shall assume here (in order to avoid essentially patho-

logical situations) that K(s, s) is both measurable and summable so that trace K

= kx =}ba K(s, s) ds is well defined. Consequently the Fredholm determinant of K

exists for such kernels and may be expressed as

oo co

(2) D(X) = exp (-kxX)  ] I (1 - A/Av) exp (A/Av) =1 + 2 d^>
v=l v=l

where for v ̂  1

(3)     </, =
(-l)v

■fJa

K(si, si)   K(sx, s2) ■■ ■ K(sx, s v)

K(s2, Sx)   K(s2, s2) ■■■ K(s2, iv)
dsx ds2 ■ ■ -dsv

K(sv, Sx)    K(sv, s2)  ■■■  K(s„ sv)

The order p. of this entire function D(X), at most 2(x), is given by

jzlog v
(4) p. = lim sup

log (l/|rf,|)

If Pt*=0, 1, K obviously possesses an infinite number of f.c.v.

In [3] we characterized, without reference to their analytic structure, those

kernels with only a finite number of f.c.v. In this paper, we impose conditions on

the structure of K(s, t) as a function of the two real variables s and t which permit

us to conclude that /x< 1, so that 2v°=i ll\K\ <00> ana" P*W assumes the form

(5) £>(A) = fi (1-A/A,),   withÂ:! = % !/Av

For such kernels, kx ¥=0 is then a sufficient condition that there be at least one f.c.v.

Fredholm himself [1] (see also Lalesco [4], [5], and Cochran [6]) showed that if

K(s, t) satisfies a uniform Lipschitz condition of order a, 0<a¿l (frequently

called Holder continuity with exponent a), in either s or t, that is, e.g.,

(6) | K(s, t2) - K(s, tx) | Ú A \t2 - h |a,       t2,tiin [a, b],

where A is a constant, then p.^ 1/(<* + £). If os>-1, therefore, p<l, and the repre-

sentation (5) is valid(2).

In order to extend results of the above type to wider classes of kernels, we

introduce in §2 functions of two variables of bounded variation, concentrating on

those satisfying the definition of Hardy-Krause [8], as well as functions of two

0) A fact established by Fredholm [1] for bounded, integrable kernels and by Carleman [2]

for general L2 kernels.

(2) Note that a> 1 in (6) implies K(s, t) is a function of í alone; the representation (5) then

holds automatically.
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variables which are absolutely continuous. The interplay between such classes of

functions and those satisfying uniform Lipschitz conditions is sketched. In §3, we

use a variant of Fredholm's method to estimate the magnitude of the coefficients

dv of (3) to prove the following for K(s, t) defined on the square S: a^s, t^b.

Theorem 1. If K(s, t) is a function of bounded variation in the sense of Hardy-

Krause, then pal.

Theorem 2. If in addition to the assumption of Theorem 1, K(s, t) also satisfies a

uniform Lipschitz condition of order a > 0, then p. < 1 and D(X) has the representation

(5).

Theorem 3. If K(s, t) is absolutely continuous and 82K/8s dt (which exists almost

everywhere) belongs to classLpfor somep>l, then D(X) may likewise be represented

as in (5)(3).

2. Functions of bounded variation; absolute continuity. Functions g(s) of

bounded variation (hereafter referred to as BV) of one variable defined for sim-

plicity on Soús^Sy are of great interest and usefulness because of their valuable

properties. Such properties, particularly with respect to additivity, decomposability

into monotone functions, continuity, differentiability, measurability, integrability,

and so on, have been much studied.

It is largely to the possession of these properties that functions of BV owe their

important role in the study of rectifiable curves, Fourier and other series, Stieltjes

and other integrals, and the calculus of variations. We recall that a complex-

valued function of a real variable, g(s)=gy(s) + ig2(s), is said to be of BV if and

only if gy(s) and g2(s) are real-valued functions of BV.

When we come to the question of extending the definition of functions of BV

to functions of two or more variables, we can proceed in many ways. Proposers

of definitions of BV for functions f(s, t) have been actuated mainly by the desire

to single out for attention a class of functions having properties analogous to some

particular properties of a function g(s) of BV. It has long since become apparent

that to preserve properties of one sort the definition of BV for g(s) should be

extended to/(j, t) in one way, while to preserve properties of another sort a quite

different extension may be needed. For further elucidation on this point, reference

is made to the two papers of Adams and Clarkson [9], [10] where seven different

definitions of functions f(s, t) of BV are introduced and the properties of the

functions in the seven classes are compared.

In this paper we choose to utilize a definition of functions f(s, t) of BV due to

Hardy and Krause [8], [9], [10] and we shall say that/(j, t) belongs to class 77 if

f(s, t) satisfies that definition. As for functions of one variable, we agree that

(3) Conditions under which the theorems are valid can be lightened to some extent. This

question is touched on briefly.
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f(s, t)=fi(s, t) + if2(s, t) e H if and only if fi(s, t), i= 1,2 e 77, where/¡(i, t) is real

valued.

Definitions. The function/(j, t) is assumed to be finitely defined in a rectangle

F: fláiáe, c^t^d. By the term net we shall, unless otherwise specified, mean a

set of parallels to the axes :

s = s¡   (i = 0, 1, 2,..., m),       a = s0 < sx < s2 < ■ ■ ■ < sm = b,

t = tj   (j = 0, 1, 2,..., n),        c = t0 < ti < t2 <■■■ < tn = d.

Each of the smaller rectangles into which F is divided by a net will be called a cell.

We employ the notation

Aio/(j., tj) =f(sl+i, ti)-f(St, tt),

Aoi/(s(, t,) = f(s„ tj+1) -f(s¡, t¡),

An/Os,, *,) = Axo(A0if(Si, tj))

= f(Si + l, tj+l)-f(Si + l, tj)-f(Si, tj+x)+f(s¡, tj).

The function/(i, /) is said to be of BV in the sense of Hardy and Krause, i.e.,

f(s, t) e H, if (a) the sum

m-l,n — 1

2      lAu/feOI

is bounded for all nets and in addition (b)f(s, t) is of BV in t for at least one s and

f(s, t) is of BV in s for at least one t.

Relevant properties of f(s, t)e H are:

H-l. If/Ly, 0 e H,f(s, t) is of BV in t for every s, and/(j, t) is of BV in s for

every i.

H-2. lff(s, t) e H, |/(i, /)| is bounded in F.

H-3. The class 77 is closed under addition and subtraction.

H-4. The class 77 is closed under multiplication.

H-5. The class 77 is closed under division if the denominator is bounded away

from zero.

H-6. If f(s, t) e H on rectangles Rx and F2 and if F = Fj u F2 is a rectangle,

then/(i, 0e# on F.

H-7. Iff(s, t) e 77 on a rectangle F and if Rx^R is a rectangle, then/(ä, t) e H

on the subrectangle Fj.

H-8. A necessary and sufficient condition that/(j, t)=fi(s, t) + if2(s, t) belong

to H is that the real and imaginary parts of f(s, t) each be expressible as the

difference between pairs of bounded functions fn(s, t), fi2(s, t) and f2l(s, t),

f22(s,t), i.e., fi(s,t)=fn(s,t)-fi2(s,t), f2(s,t)=f2i(s,t)-f22(s,t), where the

fj(s,t) are called "quasi-monotone" and satisfy A10/,(j, 0 = 0> A01/i;(i, 0 = 0,

Axxfij(s, 0 = 0, Uj= 1> 2. (Increments in s and t are supposed positive.)
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H-9. If fis, t) e 77, the discontinuities of fis, t) are located on a denumerable num-

ber of parallels to the axes, i.e., fis, í) is continuous in is, t) almost everywhere, (a.e.).

H-10. The double Riemann integral over F of a function/(5, r) e 77 always exists.

H-l 1. If fis, t)eH then d2f\ds dt exists a.e. in F.

H-12. fis, t) is called factorable if and only if in F we have/(s, t)=g(s)h(t), with

neither g nor h identically zero. Then An/(j, t) = Ag(s)M(t) and a necessary and

sufficient condition that a factorable function belong to class 77 is that each factor

be of BV. Note that a factorable/(î, t) e 77 functioning as the kernel of an integral

equation is automatically a degenerate kernel.

It is perhaps worth noting that the definition of a function fis, t) of BV in the

sense of Hardy and Krause is "the most restrictive" of any of the seven given by

Adams and Clarkson. The functions of class 77 are those which it is convenient to

consider in the study of double Fourier series.

Another important class of functions which plays a prominent part in the

Lebesgue theory of integration and differentiation (for functions of one variable)

is the class of absolutely continuous (AC) functions. We recall that a necessary

and sufficient condition that a function Fis), defined on an interval, may be an

indefinite integral of a summable function is that it should be AC. Extension of

the AC concept to functions of two variables is straightforward [8].

Definition. If a function fis, t), defined in a rectangle afís^b, c^t^d, is such

that, for any finite or infinite set of nonoverlapping cells o (any two of which may

have portions of their boundaries in common), the sum

a

is less than an arbitrarily fixed positive number ij, for all sets of such cells which

satisfy the condition that the sum of their measures is less than some positive

number e„, the function/(j, t) is said to be AC in the rectangle F.

The characteristic properties of functions of one variable which are AC are

also possessed by AC functions of several variables; viz., fis, t) e AC implies

fis, t) is continuous,/(j, t) is of bounded variation (more specifically fis, t) e H),

etc. All these properties follow from two fundamental relationships we quote

below. Proofs can be found in [8].

AC-1. The two-dimensional analogue of the property quoted above for AC

functions of one variable holds; viz., a necessary and sufficient condition that a

function of two variables, defined in a cell A, should be the indefinite integral of

some function, summable in the cell, is that it should be AC in the cell.

AC-2. The indefinite integral

fiS,  0=11     g (Si,  ty) dSy  dty

where g(s, t) is summable on F has the property that d2f\ds dt exists a.e. in F and

d2fjds dt = d2f\dt 8s=g(s, t) a.e. in F.
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We have already mentioned in §1 the class of functions of two variables satisfying

uniform Lipschitz conditions of order a in one variable or the other; such will be

referred to hereafter as of class L(a), 0<ag 1. Functions of one variable belonging

toF(l) are also of BV; on the other hand there are functions of one variable of BV

which satisfy no Lipschitz condition and functions belonging to L(a) with a < 1

exist which have unbounded variation [11]. Similar remarks apply to functions

f(s, t) eL(a); they need not be continuous, of BV, or even measurable.

3. Order of D(X) for various classes of functions.

Theorem 1. On the square S: a^s, tSb, let the L2 kernel K(s, t) belong to the

class 77 (functions of BV in the sense of Hardy-Krause). Then p., the order of its

Fredholm determinant D(X), satisfies ztá 1.

Proof of Theorem 1. Consider (3) in which the coefficients dv must be estimated

in order to discover the order of D(X). To condense the notation, define

(8) A, =

K(sx,Sx)   K(sx,s2) ■■■ K(sx,sy)

K(s2, Sx)   K(s2, s2) ■■■ K(s2, 5V)

K(sv, Sx)    K(sv, s2)  ■■■ K(sv, s,)

To begin, we modify Av in accordance with the laws for carrying out operations

on determinants, but in such a way that the value of Av does not change. First we

subtract the second column of Av from the first column, the third column from the

second,..., and finally the vth column from the (v— l)th, obtaining

(9) A,

K(s1,Si)-K(sL,s2)    K(si,s2)- K(si,s3) ■■■ K(slt sv-x)-K(su i„)    K(si,s,)

K(s2,s1)-K(s2,s2)    K(s2,s2)-K(s2,s3) ■■■  K(s2,sv^1) — K(s2,s,)   K(s2,sv)

K(Sv, Sx) — K(sv, s2)    K(sv, s2) — K(s„ s3) K(sv, s,-!) — K(sv, s,)    K(s„ j„)

Now perform a second series of operations on A „ in (9) by subtracting the second

row from the first row, the third row from the second,..., the vth row from the

(v— l)th. The value of Av is not altered by this series of operations. The resulting

form of Av is now unwieldy to write in display form, so we shall only specify its

elements which we denote by %:

(10)

(hi = AxxK(s¡, sA,

aiv = - A10F(í¡, Sy),

«v/ = - A0iF(iv, st),

an = K(sv, sv),

i,j = 1,2,.. 1,

l,2,...,v-l,

7= 1,2, 1,

where we have used the definitions (7).
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Let the cofactor of an element a{j be Aih so that in general we have for the evalua-

tion of Av:

V V

A* = 2 avAu= 2 aaAv-
í=l i = l

In particular we may expand Av by the vth column so that A = 2¡v=i aiv^¡v and we

may bound the absolute value of Av by

(H) Mvl ¿ 2 |fl,vl Kl ú f J Kl,
i = l i = l

where F is a constant, since by property H-2, K(s, t) e His bounded on S.

Next we estimate \Aiv\, where Aiv is the (v-l)x(v-l) determinant obtained

from Av by striking out its ith row and vth column. To carry out this estimation

we utilize the Hadamard inequality [12]: if F is an nxn matrix with elements bhk

then

(i2) idetFi2 * n J \bhk\2 = n 2 w,
Zl = l Zc = 1 Zt=l fc = l

the last equality holding because B and its transpose have the same determinant.

If we now apply (12) to estimate our determinant Aiv we obtain

v-l   (t — 1 v -\ v-1    V

n{2i^i2+ 2 wHni
i = l   Vk = l k = i + l ) j = lk = l

where the prime on the summation in (13) indicates the term corresponding to

k = i is missing. Referring to (10) and (7) we see that \aM\2 á C \akj\, where C is some

constant, while

(14) ¿' Kl = IAoiF(ív, i,)| +"2 I Au%, fy)|,        U;á"-1,
k = l fc = l

and the right-hand side of (14) is uniformly bounded (independent of the magnitude

of v) because K(s, t) e 77. Thus (13) becomes

(15) \Aiv\ =£ C-\

(13) Kl2 s n  2 \a*\2+ 2 Kl2rs n 2' l«wla.

where C is some (generic) constant not necessarily the same each time it appears.

Combining (15) with (11), (8), and (3) we find

(16) \dv\ ï C-V(v-l)!.

Using Stirling's expansion [13] for the factorial function, viz., (x— 1)!

= e-V-1'V(2?r)[l + l/12v-|-0(l/v2)] as z/^oo, we then have, for large v, 1/|</„|

^ Cv~ V-1'2, from which it follows readily by (4) that p.^ 1, as was to be proved.

Theorem 2. 7/z'n addition to the assumption of Theorem 1, Kis, t) e Lia), a>0,

then p < 1 and F(A) new ine representation (5).
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Proof of Theorem 2. The proof proceeds along the lines of Theorem 1 ; in

estimating the sum in (13), however, we now have

\akj\2 Ú C\si+1-Sj\a-\akj\,       lá/á»-l,

since K(s, t) e L(a). It follows that

(17) \AV\ ZrC'-iTÎfa+x-s,]**,
í=i

and since the determinant Av (8) is a symmetric function of the arguments

Sx, s2,..., sv, there is no loss of generality in assuming that a ¿ j, S s2 S ■ • • áí sv ̂  b.

A classical argument [1] shows the right-hand side of (17) is maximized if the s,

are spaced uniformly on the segment b — a. Hence

1/|</„| ä C-V-!)!("-l)a(v_1)/2,

and using once again the Stirling formula and (4), we conclude p. ¿ 2/(2 + a) < 1,

as was to be proved.

It is worth noting here that Fredholm's result for kernels of class L(a), cc>$,

mentioned in §1 can be proved with only slightly more effort under the weaker

condition \K(s, t2) — K(s, tx)\ ¿A(s)\t2 — tx\a, where A(s) is nonnegative and

summable(4). Consequently, our Theorem 1 can be established under the somewhat

weaker condition that

(18) 'f \K(s, ti+x)-K(s, t,)\ = "f \A0iK(s, t,)\ í B(s),
i=i i=i

where B(s) is nonnegative and summable. In the former case, we might say K(s, t)

satisfies a relatively uniform Lipschitz condition with a>^; in the latter that

K(s, t) is relatively uniformly of BV. In these terms, our Theorem 2 can be proved

if K(s, t) is relatively uniformly of BV in one variable and satisfies a relatively

uniform Lipschitz condition of order a>0 in the same or the other variable. The

precise relationship between the various classes of functions and the degree of

lightening of the conditions of validity for Theorems 1, 2 is not entirely clear,

however.

Theorem 3. On the square S: a^s, t^b, let K(s,t)eAC and assume that

32Kjds 3t (which exists a.e. by property AC-2) e Lp for some p>\. Then D(X) may

likewise be represented as in (5).

Proof of Theorem 3. We shall make our proof of this theorem depend upon

Theorem 2. We know K(s, t) e H; we shall show K(s, t) eL(ljq) where q is the

Lebesgue index conjugate top, i.e., ljp-r-ljq= 1 ;p, q> 1.

(4) These observations are due to Cochran [7].



1971]    KERNELS WHOSE FREDHOLM DETERMINANTS HAVE ORDER < 1     435

By property AC-1, there exists a summable function kis, t) on S such that

K(s, t) = k(u, v) du dv,
Ja Ja

and by AC-2, d2K\8s 8t = d2K¡dt ds = kis, t) a.e. on 5. For is, t) and (s, t + h) e S,

\K(s, t + h)-Kis, 0| Ú f Í      \kiu, v)\ du dv.
Ja Jt

Since zc(w, v) e Lp,p> 1, Holder's inequality in its two-dimensional form [12] yields

( rs  pt + h \llp    f rs  rt + h \llq

\K(s,t+h)-K(s,t)\ SU \k(u,v)\'dudvl    -U l«dudv\

=i(ff \kiu, o)|» du dv\llFib-ay<W

= Ah1'",

independent of s. Thus K(s, t) eL(\jq) with q>\, so Theorem 2 applies and the

desired result ensues.
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