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PRODUCTS WITH CLOSED PROJECTIONS. II

BY

N. NOBLE

Abstract. Conditions under which some or all of the projections on a product space

will be closed or z-closed are studied, with emphasis on infinite products. These

results are applied to characterize normal products up to countably many factors,

to characterize closed product maps up to finitely many factors, and to give conditions

under which products will be countably compact, Lindelöf, paracompact, Ttt-n-

compact, etc. Generalizations of these results to n-products and box products are

also given. Our easily stated results include: All powers of a Tx space X are normal

if and only if X is compact Hausdorff, all powers of a nontrivial closed map p are

closed if and only if p is proper, the product of countably many Lindelöf P-spaces is

Lindelöf; and the product of countably many countably compact sequential spaces

is countably compact sequential.

Introduction. All hypothesized spaces are assumed to not be indiscrete. In [19]

conditions under which one or both of the projections on a product space XxY

would be closed (map closed sets to closed sets) or z-closed (map zero sets to

closed sets) were investigated, and various applications were given. Closed and

z-closed projections have also been investigated and/or applied in [5], [12], [3],

[26], [28], [29], [20], [21], [22] and [30], always for finite products. In this paper

we consider conditions under which infinite products will have some or all of their

projections closed or z-closed (§1) and give applications to normal products (§2),

products of closed maps (§3), and products satisfying various compactness proper-

ties (§4). (By projections on a product space we mean the natural maps from the

product onto subproducts, not just those onto factors.) In the final section, we

note some generalizations of our results to certain nonstandard products (n-

products and box products).

1. Projections on infinite products. We begin with the description of those

products each of whose projections is z-closed. Recall that a space X is pseudo-

compact if each continuous real-valued function on X is bounded, and a P-space

if each G6 in A'is open. For X=TJaeA Xa, the subproduct T~[aeB Xa will be denoted

as XB and the projection from X to XB will be denoted as nB. Of course, XM and

ir{a} will be denoted as Xa and Tra.

1.1. Theorem. Let X=T~[a<¡A Xa be completely regular with A infinite. Each

projection on X is z-closed if and only if X is pseudocompact.
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Proof. If Xis pseudocompact, each projection is z-closed by [30, Theorem 1] or

[19, Theorem 3.4]. For the converse, write A = B u C with B and C disjoint and

infinite, and note that XB and Xc cannot be P-spaces (since, by our standing

hypothesis, no Xa is indiscrete and the product of infinitely many nonindiscrete

spaces is never a P-space). Since the projections on X= XB x Xc are z-closed, it

follows by [19, Theorem 3.4] that A'is pseudocompact.

It is shown in [9] that a product space is pseudocompact if and only if each

countable subproduct is pseudocompact, so to show that the projections are

z-closed only countable subproducts need be considered. For some conditions

under which infinite products will be pseudocompact, see [23].

Let m and n be infinite cardinals. A space is m-n-compact if each m-fold open

cover has a subcover of cardinality less than n, and a space is n-compact if it is

m-n-compact for each m. Thus X0-compact = compact, X1-compact = Lindelöf,

and X0-X0-compact = countably compact. Our next result will follow as a special

case of Theorem 1.6.

1.2. Theorem. Let X=\~[aeA Xa where card^ = n. Each projection on X is

closed if and only if X is n-H0-compact and, for each finite F^A, each projection

on XF is closed.

It follows that all powers of a space X have all of their projections closed if and

only if X is compact. (The projection along a compact space is always closed.)

For a cardinal n we adopt the following conventions: We identify n with the

smallest ordinal of cardinality n, so n is the ordered set of all ordinals of cardinality

less than n. When considered as a topological space, n (the ordinal) is assumed to

have the usual (interval) topology. Following [18] we call a net indexed by (i.e.,

with domain) D a D-net. Thus by our convention an n-net is a net indexed by the

ordinal n. Let 7)(m, n) denote the set of subsets 5 of m with card S < n, ordered by

inclusion. We call a net an nt-n-sequence if, for some m' satisfying n^m'^m,

it is a T>(m', n)-net. In [30], [18] and [11] n-X0-sequences are called, respectively,

n-phalanxes, n-nets and n-sequences. Clearly as instruments of convergence,

X0-S0-sequences are equivalent to sequences. Indeed, for any regular cardinal n,

n-n-sequences are equivalent, in this way, to n-nets. Our next result follows by a

straightforward adaptation of the proof of [18, Lemma 2] which is the case n = X0.

1.3. Proposition. A space X is m-n-compact if and only if each m-n-sequence in

X has a cluster point.

Incidentally, the same proof can be adapted to show that a space X is n-n-

compact if and only if each n-net in X has a cluster point. (For n=X0 this is the

familiar result: X is countably compact if and only if each countable subset has

an accumulation point.) Recall that a space is called n-discrete if each n-fold

intersection of open sets is open, and <n<liscrete if it is m-discrete for each m <n.

Thus X0-discrete = pseudo-discrete =7>-space. The 77-nets of a space are said to
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determine its topology if a subset is closed whenever it contains the limits of each

of its convergent D-nets (i.e., if it has the weak topology with respect to its

"convergent .D-nets" where "convergent D-nets" are assumed to contain their

limit points). A space whose topology is determined by its m-n-sequences will be

called an m-n-sequential space. Thus N0-^o-sequential = sequential, and

rrt-X0-sequential = the m-sequential of [11]. Note that if X is <n-discrete and

each point of X has a neighborhood basis of cardinality at most rrt, then each

point has an m-n-sequence of neighborhoods {{/A : A e D(m, n)}, with t/A2 £/r

for Aáy, which forms a basis for x. (Choose any basis indexed by m and adjoin

all <n-fold intersections.) Thus Zis m-n-sequential.

1.4. Theorem. The following conditions on X are equivalent:

(i) For each m-n-sequential space Y, n: Xx Y^> Y is closed.

(ii) For each subspace Y of an m-n-sequential space, tt: Xx F—>■ Y is closed.

(iii) X is m-n-compact.

Proof. (i) = (ii). If tt: Xx Y^- Y is closed and 7'c y, then the restriction of -n

to Xx Y' is closed.

(ii) = (iii). By [19, Theorem 2.2], a space satisfying (ii) must be n'-n'-compact

for each n' between tn and n.

(iii) = (i). This follows by Proposition 1.3 and the Theorem of [5] (or by the

obvious direct proof).

For a parallel result for z-closed projections, see [12, Proposition 5.3]. We will

give applications of Theorem 1.4 in §4.

1.5. Lemma. Let X=TJaeA Xa with card (A) = n, and let H^ X be n-H0-compact.

If U^H is open, then there exists a finite F^A and an open V3ttfH such that

VxXAF<=U.

Proof. For each finite subset B of A, let UB be the interior of

{xeXB: {x} x XAb £ U}.

For each y in H there exists a basic open neighborhood Tlacc Ua x XA\C ̂ U with

C finite, so y is in Uc. Thus {UB : B^A is finite} is an n-fold open cover of H, so

there exists a finite subcovering {UBl : lá/^n}. Then F=(Jn=1 B¡ and

V=7rc(Uî=i 7Tb,1(l/'b,)) have the desired properties.

1.6. Theorem. Let X=T\aeAXa where card/l = rt and let H=\~\aeAHa where

each Ha^ Xa. Each projection YlaeB Ha x XA\B -> XA\B is closed if and only if H is

n-H0-compact and for each finite F^A, and for each B^F, the projection

YlaeB Ha x XF\B ->• XF is closed.

Proof. First suppose each projection T~]aeB Ha x XA\B -» XA\B is closed ; it suffices

to show that H is n-N0-compact. Write A = B\J C where B and C are disjoint,

each of cardinality n, and set H' = T~[aeBHa, H" = YJa'CHa. Note that for each

infinite cardinal tn^n, XB contains a point x and a collection of closed sets
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{SA : A e m} such that x is in the closure of UAem SA but is not in the closure of

Ua<a0 Sk for any A0 in m (indeed, assuming without loss of generality that mg;3,

we may take SA to be a point whose ath coordinate coincides with that of x except

for those a em satisfying a> A). Since the projection H"x XB —> XB is closed, it

follows by [19, Theorem 2.2] that H" is m-m-compact. Since this is true for each

infinite m^n, 77" is n-X0-compact. Similarly, H' is n-X0-compact, so

7r: 77' x H" -*■ H" is a closed continuous map with n-X0-compact range and each

fiber n-X0-compact. It follows by [6, Proposition 1.1] that H=H' xH" is

n-X0-compact.

Now suppose that H is rt-X0-compact and that for each finite F^A and each

B^F, the projection FLes 77« x XF\B -»■ XF\B is closed. We first show that for F^A

finite the projection n: l~[aeA\F Hax XF —> XF is closed. Let S^ria^F EIax XF be

a closed set and let x be any point in the closure of nS. Let B^A be finite with

B n F= 0 ; since the projection rices Ha x XF -> XF is closed, there exists a point

xB in ELsb Tz"« such that (xB, x) is in the closure of the projection of S onto

YlaeB Ha x XF. For each such B, choose x'B in n<re¿\F Ha such that the ath co-

ordinants of xB and x'B coincide for each a in B. Since EL^f Tz^ is n-N0-compact,

the n-X0-sequence {x'B : BG:A\F is finite} has a cluster point, y. But (y, x) is

clearly in the closure of S, so x is in ttS. Therefore -rrS is closed.

Finally, let B^A be arbitrary, let Ss YJaeB Ha x Af^ be closed, and suppose

x is in XA\B\irS. Since 7r_1(x) is n-X0-compact, there exists a finite F^A such that

ÍTrFi*~1ix))xXA\F)nS=0 (by Lemma 1.5). Set C=Fn(A\B); clearly C±0.

Also, 7TC(x) is not in the closed set ircS, so for U=Xc\ttcS, Ux Xa\(BuC) is a neigh-

borhood of x which does not meet -n-S. Thus x is not in the closure of nS so nS is

closed. Therefore v is closed.

1.7. Example. For each infinite cardinal n there exists a space Y such that each

projection on Yn is closed, but for m > n Ym has projections which are not closed.

Proof. Let Y be the successor (as a cardinal) of n and note that each subset of

Y of cardinality n has compact closure. Since this property is preserved by products,

all powers of Y are n-X0-compact (using Proposition 1.3). Since each point of Y

has a base of cardinality at most n, Ym also has this property for m ^ n so by

Theorem 1.4 all projections on Yn are closed. Since Fis not compact, Y and hence

YY are not T-X0-compact so by Theorem 1.2 not all the projections on YY are

closed.

Note that Y= N, the natural numbers, is an example of a space such that Yn

has all its projections closed for each integer « while YN does not. The results

above, and those to come, raise the question: Under what conditions are n-fold

products n-X0-compact? We will consider this question in §4; our results make

use of the result below.

1.8. Theorem. Let X=\~laen Xa, where n is infinite. If for each a0 in n the

projection Y[aéa0 ^«-^EL^o %a is closed, then for each such a0 the projection

Vo: X -+\~[a<a Xa is also closed.
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Proof. Let S á X be such that nao(S) is not closed ; we show that S is not closed.

Choose a point x° in cl (y;o,S)\7riro>S' and for a <a0 let xa be the ath coordinant of x°.

Let ß be greater than or equal to a0 and suppose inductively that for each a<ß,xa

has been chosen so that for xB the point (xa) in VJa< ß Xa, xe is in the closure of rre(S).

Since for 77: Ylase Xa-> Yla<ß Xa the projection rr(c\7rß + 1(S)) is a set which

contains rrß(S), there exists a point xe in Xe such that (xe, x6) is in the closure of

TTe + 1(S). Thus we construct, inductively, a point x in X which is not in S (since

TTao(x) = x° is not in S) such that for each ß in n, tt^x) is in the closure of -rrß(S).

Clearly jc must be in the closure of S, so 5 is not closed.

The analogue of Theorem 1.8 for z-closed projections fails: If it held then (as

in the proof of Theorem 4.1) one could show that a product of pseudocompact

spaces is pseudocompact whenever each finite subproduct is. That this is false is

shown by examples in [2], [7] and [8].

2. Normal products.

2.1. Theorem. Let X=T~[aeA Xa where cardA=n and suppose each finite sub-

product of X is normal 7\.

(i) If X is n-)f.0-compact then X is normal.

(ii) If X is normal then some product of all but countably many of the factors is

n-H0-compact.

Proof, (i) By [12, Proposition 5.5] a projection on a normal 7\ space is closed

if and only if it is z-closed. Since each finite subproduct of X is normal 7\ and

pseudocompact, each finite subproduct has all of its projections closed, so by

Theorem 1.2 each projection on X is closed.

Let H and H' be disjoint closed subsets of X; since H is n-X0-compact, there

exists a finite FçA such that (ttfHx Xa\f) n H' = 0 (by Lemma 1.5). But then

ttfH and -nFH' are disjoint closed subsets of the normal space XF, so they have

disjoint neighborhoods U and V respectively. Then ttf\U) and ttf\V) are disjoint

neighborhoods of H and 77', as desired.

(ii) Since X is normal Tit there exists a countable subset B^A such that XA\B

is countable compact, hence pseudocompact (by the second Theorem of [24]).

By Theorem 1.1, each projection on XA\B is z-closed, so by the result quoted above

each projection on XA\B is in fact closed. By Theorem 1.2, XA\B is n-X0-compact.

2.2. Corollary. All powers of a T\-space Y are normal if and only if Y is

compact T2.

2.3. Corollary. A c-fold product of separable 7\ spaces is normal only if all

but countably many of the factors are compact. Thus assuming the continuum

hypothesis, the product of uncountably many copies of a separable Tx space Y is

normal if and only if Y is compact T2.
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Proof. For n the successor of c, each completely regular separable space is n-

compact—indeed it has a basis of cardinality c, the cozero sets. (Since each

continuous real-valued function is determined by its values on the countable

dense subset, there are only c"o = c such functions and hence only c cozero sets.)

It follows of course that if a product \~\asA Xa is normal where card A = c, then

for all but countably many a each countable subset of Xa has compact closure. By

a similar argument it follows that if Xm is normal for m ^ 2", then each rt-fold subset

of X has compact closure. In the converse direction, see Example 2.7.

Since countable products of, for instance, metric spaces are normal without any

of the factors being countably compact, part (ii) of 2.1 cannot be improved in the

obvious way. It can be improved in nonobvious ways—for example, Morita shows

in [17, Theorem 2.4] that for 7 the unit interval, Yx /" is normal if and only if Y

is n-paracompact and normal (a space is n-paracompact if each n-fold open cover

admits an open locally finite refinement). Thus if X=]~[aeA Xa is normal and, for

n > X0, rt-many of the Xa contain a copy of 7, the product Y of the countably

many factors not treated by (ii) must be n-paracompact. (And if Y is countably

compact normal, it will therefore be n-X0-compact by [17, Theorem 1.8].) At any

rate, Theorem 2.1 raises the question of when the product of two spaces, one of

which is countably compact, will be normal. Our next result will give some informa-

tion on this. We call a collection of open subsets of a space Y a hyperbasis for Y if

for each closed subset F of Y and each open V2.F, there exists a member V of the

collection with 7"ç Pg [/. I.e., a hyperbasis is a basis for the neighborhoods of the

closed sets. The theorem below follows by a straightforward adaptation of the

proof of [19, Theorem 2.2].

2.4. Theorem. Let X and Y be normal with -n: Xx Y-> Y closed. If for some

cardinal n, Y is n-paracompact and X has a hyperbasis of cardinality n, then Xx Y

is normal.

To apply Theorem 2.4, note that if X is n-compact and < rt-discrete, each basis

of X which is closed under < n-fold unions is a hyperbasis, and if A'is normal and

contains a dense subset of cardinality n, the cozero sets of X form a hyperbasis of

cardinality at most cn. (For sharper bounds on the cardinality of the family of

cozero sets, see [4].)

2.5. Corollary. If X is n-H0-compact normal and Y is any paracompact

space which can be embedded as a subspace of an n-it0-sequential space, then Xx Y is

normal.

This corollary is a slight improvement of [17, Theorem 4.1]. That the product of

a normal space with a sequential, indeed metrizable, space need not be normal is

shown by Michael in [15].

2.6. Corollary. Let X and Y be normal n-paracompact and suppose that X has

a hyperbasis of cardinality n and it: Xx T —>■ Y is closed. Then Xx Y is n-para-

compact (and normal).
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Proof. By Morita's characterization of n-paracompactness, we need only show

that Yx Xxln is normal; but since clearly Xxln has a hyperbasis of cardinality

n, and tt: Xxlnx ¥-*■ Y is closed, this follows by Theorem 2.4.

If X is collectionwise normal, then the hypothesis of Theorem 2.4 guarantees

that Xx Y will be collectionwise normal—this is shown by the proof of [17,

Corollary 2.3]. We close this section with an example showing that arbitrarily

large products can be normal without having compact factors.

2.7. Example. For each infinite cardinal n there exists a space Y such that Yn is

normal but Ym is not normal for m > n.

Proof. Let y be as in Example 1.7. By that example and Theorem 2.1, we need

only show that Yn is normal for each integer n. The space Y is normal. Suppose

inductively that Fn_1 is normal and let H and 77' be disjoint closed subsets of

n?=i Yu where each Y¡ is a copy of Y. Then there exists an index j and a A0 in Y

such that, for Y* the set of elements of Y} less than or equal to A0, either 77 or 77'

is contained in Y* x T\ {Yt : l^i^n, ij^j}', otherwise there would exist a sequence

yn increasing in each coordinate with yn in H for n even and yn in 77' for n odd, and

the coordinatewise supremum of the yn would be a point in 77 n 77'. Since Y* is

open and closed in Y¡, it suffices to show that Y* x Yn ~1 is normal. Since the

projection Yn ~1 x Y * ->» Y* is closed and Y * (being compact) is paracompact,

this follows by Theorem 2.4.

3. Products of closed maps. In this section, "map" will mean "continuous

onto function". By our standing hypothesis the range of an hypothesized map

cannot be indiscrete, so let us note that the class of closed maps whose ranges are

indiscrete is closed under arbitrary products, and furthermore the product of such

a map with a closed map is always closed. Recall that a fiber of a map p is a set

of the form p~1(y) for y a point in the range of p. A subset of a product YJasA X«

is called a product set (with respect to TJaeA Xa) if it has the form YlaeA Fa where for

each a, FaçXa. A neighborhood of a set F^X is a subset of X whose interior

contains F.

3.1. Proposition. Let {pa : Xa -> Ya \ a e A) be a collection of closed maps.

The map p = YlaeAPa is closed if and only if for each choice of fibers Fa ofpa, every

neighborhood ofYlaeA Fa contains a product set neighborhood.

Proof. Supposep is closed, choose fibers Fa ofpa and let f/be any open neighbor-

hood of F=YlaeA Fa. For H the complement of U, p(H) is closed and does not

contain the point p(F) so there exists an open neighborhood \~\aeA Va of p(F) which

does not meet p(H). (Where each Va is open and Va = Xa with at most finitely many

exceptions.) The set TlaeApâ 1(Va) is a product set neighborhood of F which is

contained in U.

Now suppose that each fiber of p has a basis of product set neighborhoods, let

-#==riasA %a be closed and let y be any point in the complement of p(H). Since the
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complement of H is a neighborhood of p~\y), it contains an open product set

neighborhood U = T\a£B UaxYJaeA\B Xa. Since the complement, 77', of U is

Uaefi ^ô" 1(A'a\t/a) it is clear that p(H') is closed. Since p(H)^p(H') and y is not in

PÍH'), it follows that y is not in the closure of piH). Thus piH) is closed, so p is

closed.

3.2. Theorem. Let p = ]~[a(¡A pa where card A = n. The map p is closed If and only

if each finite subproduct is closed and for each choice of fibers Fa ofpa, l~[aeA Fa is

n-H0-compact.

Proof. First suppose each finite subproduct is closed and each product of

fibers is n-X0-compact. Let F=\~[aeAFa be a product of fibers and let t/2Fbe

open in X=]~\aeA Xa, the product of the domains of the pa. By Proposition 3.1

it suffices to show that [/contains a product set neighborhood. But by Lemma 1.5

there exists a finite B^A and an open V=\ XB such that F£ Vx XA\B^ U and by the

hypothesis (and 3.1) there exists a product set neighborhood H/with Yla€B Faç W

Ç V. But then Wx XA\B is as desired.

Now suppose p is closed. Clearly each finite subproduct of p is closed. That each

fiber \~\asA Fa of p is n-X0-compact will follow from Corollary 3.6.

3.3. Theorem. Let p: X-* X' and q: Y'-> Y' be closed maps. If for each pair

of fibers F ofp and F' ofq the projections from Fx Y to Y and from XxF' to X are

closed, thenpxq is closed.

Proof. We will apply Proposition 3.1, so let W be an open neighborhood of

Fx F'. For x in F choose, for each y in F', neighborhoods Uy of x and Vy of y

such that Uy x Vy^ W. Since n: Xx F' ->- X is closed, there exists a neighborhood

Ux of x such that Û*Ç f) {Uy : y e F'}. Set Vx = \J {Vy : u e F'} and note that

{x} xf'çi/'xPçlf. Since v. Fx Y-> Y is closed, there exists a neighborhood

Vof F' such that Vç(~) {Vx : xeF}. But for U=\J{UX :xeF}, FxF'çUxV

ç W as desired.

3.4. Theorem. The map pxlY is closed if and only if for each fiber F of p the

projection Fx T—>- Y is closed.

Proof. That p x 1Y is closed when the projection along each fiber is closed

follows from Theorem 3.3, so suppose px\Y is closed. Then for any fiber F the

restriction ofpx ly to Fx Tis closed; but this restriction is just the projection.

3.5. Corollary, (i) px\Y is closed for each closed map p if and only if Y is

discrete.

(ii) p x 1 y is closed for each closed map p each fiber of which is Lindelöf if and

only if Y is a P-space.

(iii) p x \Y is closed for each closed map each fiber of which is countably compact

(i.e., for each quasi-proper map p) if Y is sequential (or a subspace of a sequential

space).



1971] PRODUCTS WITH CLOSED PROJECTIONS. II 177

(iv) p x ly is closed for each sequential space Y if and only ifp is closed and each

fiber ofp is countably compact.

(v) p x 1 y is closed for each P-space Y if and only ifp is closed and each fiber ofp

is Lindelöf.

(vi) p x ly is closed for each Y if and only ifp is proper.

(vii) pxqis closed for each closed map q if and only ifp is proper and the range of

p is discrete.

Proof. The necessary information about closed projections appears in [19].

Part (vi) is of course known. Indeed, it is Bourbaki's definition of a proper map.

For FÇ: X, let X\F denote the quotient space formed by identifying F to a point

and let pF denote the corresponding quotient map. Note that pF is closed when F

is closed. (And almost conversely; if pF is closed and x is in the closure of F but is

not in F, then x must be in the closure of each point of F.)

3.6. Corollary. Let F=TJtteA Fa where each Fa^Xa is closed and card A=n.

If each neighborhood of F contains a product set neighborhood, then for each B^A

the projection YlaeB Fa x T\asAB XJFa -* YlaeA\B XJFa is closed. Thus F is n-X0-

compact.

Proof. Clearly each subproduct of F also has the property that each neigh-

borhood contains a product neighborhood, so the map p = YJaeA pFa is closed

(by Proposition 3.1). For B^A, p = (lxBxUaSA\BPFa) ° (EUb/>*•„x 1 y) for

Y=T~[af¡A\B X¡Fa so the last factor is closed and hence, by Theorem 3.4, the pro-

jection Y]aBB Fa x Y\asAB Xa¡Fa -¥ Y\azA\B XJFa is closed. It follows as in the

proof of Theorem 1.2 that F must be n-N0-compact.

Recall that Wallace's Theorem [13] states that FxF' has a basis of product set

neighborhoods if F and F' are compact. Corollary 3.6, and the special cases Of

Theorems 3.2, 3.3 and 3.4 where each pa has the form pFa, may be thought of as

describing conditions under which generalizations of Wallace's Theorem will hold.

Thus Theorem 3.2 reduces the problem (when does F=T~[aeA Fa have a basis of

product set neighborhoods) to the finite case plus the requirement that 7^ be n-X0-

compact for n=card A, Theorem 3.3 gives a sufficient condition that such a basis

exists (which by Theorem 3.4 can also be necessary) and Corollary 3.6 gives a

necessary condition that such a basis exists.

3.7. Corollary. The proper maps form the largest class of closed maps which is

closed under arbitrary products.

Proof. Ifp is in such a class, then by Theorem 3.3 each fiber ofp is compact, sop

is proper. That products of proper maps are proper follows by 3.3 and 3.4 (and is,

of course, well known).

3.8. Corollary. Let p = TJneNpn where each pn is a closed map. If each fiber of

each pn is sequential and sequentially compact, then p is closed.
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Proof. A sequentially compact space is countably compact, each finite (indeed,

countable) product of sequentially compact spaces is sequentially compact, and the

projection along a countably compact space onto a sequential space is closed.

Thus 3.3 and 3.4 apply.

3.9. Example. For each infinite cardinal n, there exists an open and closed

map p such that />" is closed (and open) but for m > n, pm is not closed.

Proof. Let y be as in Example 1.7, let Y' be the disjoint union of two copies of

Y and let p be the map on Y' which identifies each copy to a point.

4. m-n-compact products. In this section we apply Theorem 1.8 to give

conditions under which products will be m-n-compact. Except for treating m-X0-

compactness (and compactness) this method applies only to countable products.

4.1. Theorem. Let X=Y\nXn, where each Xn is m-n-compact. If each Xn is

<n-discrete and each of its points has a neighborhood base of cardinality at most m,

then X is m-n-compact.

Proof. Recall that a space X is m-n-compact if and only if -n: Xx Y —> Y is

closed whenever Y is < n-discrete and each point of Y has a neighborhood base of

cardinality at most m. Note that if Y is such a space, then so is (I~l?= i1 Xt) x T so

the projection (FI?= i X)x Y -> (n?= Í X) x Y is closed and therefore, by Theorem

1.8, »r: Xx Y^ Tis closed.

4.2. Corollary. Each countable product of n-compact, < n-discrete spaces is

n-compact.

Proof. For each sufficiently large nt, the product is m-n-compact by Theorem

4.2.

Even the case n = X0 of Corollary 4.2 (that the product of countably many

Lindelöf F-spaces is Lindelöf) is new and answers affirmatively a question posed

(in conversation) by A. W. Hager. By providing a new class of spaces whose

countable products are paracompact, it also answers a question posed by E. Michael.

Indeed,

4.3. Corollary. Each countable product of completely regular, n-compact,

<n-discrete spaces is paracompact.

Proof. Let X=l~[n Xn be such a product. Since each compact space is para-

compact, we may suppose that n is greater than S0, so each factor is a F-space.

By complete regularity, each factor has a basis of cozero sets which, being F„'s, are

closed as well as open. Thus given any open cover of A'we refine and take subco vers

(using Corollary 4.2) so as to get a refinement %={Ua = n?iai Ulx Eh > n(a> Xt :ae A}

where each U¡¡ is closed and open, n(a) is finite, and card A < n. For each n, let

<%n={Ua : n(a)=«}; well ordere as {UÁ :\eW}andlet*'n={U^Jô<K Ut : XeW}.

Since n?iaí X is < n-discrete and card (<^n) < n, each member of %'n is open (and

closed) and the union of <W'n is closed. Thus %'n is locally finite in X, and therefore
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\Jn <%'n is a o-locally finite refinement of our original cover. Since X is regular, it

follows that X is paracompact.

The restriction, in Theorem 4.1, to countable products was necessitated by the

fact that infinite products are not, for n>X0, < n-discrete. Of course, for n = X0

this is no problem since every topological space is < X0-discrete. The other hy-

pothesis, that each point have a neighborhood basis of cardinality at most m,

is of course preserved by rrt-fold products. Thus, by the obvious adaptation of the

proof of Theorem 4.1, we have

4.4. Theorem. Let X= T~[aeA Xa where each Xa is n-H0-compact and each of its

points has a neighborhood basis of cardinality at most n. If the cardinality of A is

less than or equal to the successor ofn, then X is n-H0-compact.

In the case n = X0 we can give a somewhat stronger result. To do so, we need

4.5. Theorem. Each countable product of countably compact sequential spaces is

countably compact sequential.

Proof. Let X= fin Xn be such a product. As in the proof of Theorem 1.6, the

product of two countably compact sequential spaces is countably compact, and it

is shown in [16] that such a product is sequential. Thus, each finite subproduct of

X is sequential and, applying Theorem 1.8, X is countably compact. (A more

direct proof that X is countably compact is indicated in [23].) It remains to show

that X is sequential, so suppose that Ss X contains the limits of each of its con-

vergent sequences ; we will show that S is closed.

First suppose that for each n the projection, 7rn(S), of S onto 11"= i Xt is closed.

Choose x in the complement of S. If for some n, rrn(x) is not in nn(S), then

("">.) " XE!"-1 Xi\Trn(S)) is a neighborhood of x which does not meet S. On the other

hand, if irn(x) is in nn(S) for each n, then choosing xn in S with Trn(x) = -rrn(xn), the

sequence {xn} converges to x, which contradicts our assumption that 5 contains

the limits of its convergent sequences. Thus when each 7rn(S) is closed, S is closed.

Now suppose that for some integer m, -rrm(S) is not closed. Since 11™= i Xt is

sequential, it follows that some sequence {xn} in 7rm(S) converges to a point x in

the complement of 7rm(,S). Choose yn in Il¡>m Xt such that (yn, xn) is in S. Since

each X¡ is (like any countably compact sequential space) sequentially compact,

n¡>m Xt is sequentially compact so {yn} has a convergent subsequence {ynk}->y-

But then {(xnkynJ} -»• (x, y) so (x, y) is in S. Since x is not in 7rn(S), this gives the

desired contradiction.

We call a space subsequential if it can be embedded as a subspace of a sequential

space. Subsequential spaces form the smallest category containing metric spaces

which is closed under the formation of sums, quotients and subspaces. Surprisingly,

subsequential spaces are as well behaved under products as are metric spaces :

4.6. Theorem. Each countable product of subsequential spaces is subsequential.
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Proof. By Theorem 4.5 it suffices to show that each sequential space can be

embedded in a countably compact sequential space. We sketch the construction.

Starting with a sequential space X0, construct Xa, for each a^Xl5 as follows:

(i) If a is a limit ordinal, let Xa be the topological union of {X6 : ß<a}, i.e., the

quotient of the disjoint union induced by the embedding maps Xß -> X6 for ß < 8.

(ii) If a is not a limit ordinal, form Xa from Xa„y by adjoining a sequential

limit point, x5, for each sequence s^Xa-y which has no convergent subsequences.

(So in Xa, the sequence s converges to xs.)

Since quotients of sequential spaces are sequential, each Xa is sequential, and

in particular XKl is sequential. Furthermore, since each sequence in XVl is contained

in some Xa and therefore has a limit (in Xa+1), X^ is countably compact, and is

therefore as desired.

4.7. Theorem. Each 'Ay-fold product of countably compact subsequential spaces is

countably compact.

Proof. By Theorems 1.4, 1.8, and 4.6, the projection from such a product onto

each of its countable subproducts is closed, so by Theorem 1.2 such a product

must be countably compact.

4.8. Corollary (Scarborough-Stone [27]). Each Ay-fold product of sequentially

compact spaces is countably compact.

Proof. From Theorem 4.7 it follows that each Xi-fold product of spaces which

are continuous images of countably compact subsequential spaces is countably

compact. This class includes all sequentially compact spaces (a space is sequentially

compact if and only if it is a continuous image of a countably compact sequential

space).

Incidentally, the proof of Tychonoff's theorem using Theorem 1.8 is also of some

interest. Its use of the axiom of choice differs from that of other proofs in that it is

restricted to statements about the index set—see [25].

5. Generalizations to products with nonstandard topologies. In this section we

extend the results of previous sections to the n-products defined below. For n a

regular cardinal, the n-product is the natural product in the category of <n-

discrete spaces. These products have been studied in [10], [14] and [1].

The n-product Yll€A Xa of {Xa : a e A} is the set ]~laeA Xa endowed with the

smallest topology making continuous all projections ttb where B^A has cardinality

less than n. Thus the X0-product is the usual product and if n > card L4) the n-

product is the box product. If n is regular and each X is < n-discrete, then clearly

EIS Xa is < n-discrete. If n is not regular, i.e. if n is the union of fewer than n sets

each of cardinality less than n, then ]~[lem Xa is not < n-discrete for m ^ n. Of

course, for such n each < n-discrete space is n-discrete and hence < n'-discrete for

n' the successor of n, and n' is regular, so the n'-product is the natural product for

the category of < n-discrete spaces. The proofs of the previous sections adapt

easily, except where noted, to establish the following results.



1971] PRODUCTS WITH CLOSED PROJECTIONS. II 181

5.1. Theorem. Let n be regular and let X=TJ^em Xa where m is infinite and each

Xa is completely regular.

(i) Ifm~¿, n, then each projection on X is z-closed if and only if X is pseudo-n-

compact and <n-discrete.

(ii) If m<n, B = {aem : Xa is discrete}, and n' = card (\~]asB Xa), then each

projection on X is z-closed if and only if for some cardinal n" > n' the space

n„Em\B Xa is pseudo-n"-compact and <n"-discrete. (Note: n" will have to be larger

than 2oara(n,\B).)

5.2. Theorem. Let n be regular, and let X=YY¡tem Xa where tn^n and each Xa

is <n-discrete. Then each projection on X is closed if and only if X is m-n-compact

and each box product of fewer than n of the Xa has each projection closed.

5.3. Theorem. Let X= üLm Xa where m ^ n, each Xa is < n-discrete and each

box product of fewer than n of the Xa is normal 2"i.

(i) If X is m-n-compact, then X is normal.

(ii) 7/tn>n, if n is regular and for some n'<n one has 2n'^n, then X is not

normal (or m-n-compact).

(iii) If X is normal, if n is regular, and for each n' < n one has 2n' < n, then some

product of all but n of the factors of X is m-n-compact.

Proof. Part (i) follows by the obvious adaptation of the proof of the correspond-

ing part of Theorem 2.1 (Lemma 1.5 carries over easily).

(ii) It is shown in [1] that for n regular the n-product of more than n discrete

spaces each of cardinality n is not normal. Since each n'-fold box product (of

nontrivial Tx spaces) contains a closed discrete subset of cardinality 2n', (ii) follows.

(iii) By the result from [1] quoted above, all but n of the factors must be pseudo-

n-compact. But then, adapting the proofs of [24], some n-product of all but n of

the factors must be pseudo-n-compact. The projections on this product are z-closed

by Theorem 5.1, hence (by normality) closed, so by Theorem 5.2 the product is

m-n-compact.

5.4. Theorem. Let n be regular, and let p be the n-product of closed maps

{pa : a e m} where m^n and each fiber of each pa is <n-discrete. The map p is

closed if and only if each fiber of p is m-n-compact and each box product of fewer

than n of the pa is closed.

5.5. Theorem. Let n be regular, let X=TJaem Xa and let Y be any space. Suppose

that for each box product X' of fewer than n of the Xa, the projection X' xY-+ Y

is closed. If for each a0 in m the projection X„0 x (flu < a0 Xa) x Y ->- nS < au Xa x Y is

closed, then the projection from Xx Y to Y is closed.

5.6. Theorem. Let n be regular, and let X=Yl"exl Xa where each Xa is <n-

discrete and each box product of fewer than n of the Xa is m-n-compact. Let m'

be a cardinal such that whenever n' is less than n, (m')n' is less than or equal to m. If
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each point of each Xa has a neighborhood base of cardinality at most m', then X is

m-n-compact.

Note that the requirement that box products of fewer than n factors be m-n-

compact forces n to be X0 or strongly inaccessible, so any cardinal less than n

satisfies the hypothesis on m'. If n is strongly inaccessible and each Xa has a base

of cardinality less than n, then the theorem applies to show that FlSen Xa is n-

compact. Of course, strongly inaccessible cardinals need not be assumed to exist.
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