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CLOSURE THEOREMS WITH APPLICATIONS

TO ENTIRE FUNCTIONS WITH GAPS

BY

J. M. ANDERSON AND K. G. BINMORE

Abstract. In this paper we consider questions of completeness for spaces of

continuous functions on a half line which satisfy appropriate growth conditions. The

results obtained have consequences in the theory of entire functions with gap power

series. In particular we show that, under an appropriate gap hypothesis, the rate of

growth of an entire function in the whole plane is determined by its rate of growth

along any given ray.

1. Introduction. We consider nonconstant entire functions/(z) which have gap

power series expansions—i.e. expansions of the form

(1.1) f(z) = f anz»
n = 0

in which an=0 (n $ A), where A is a given set of positive integers. The maximum

modulus of/(z) on the circle \z\ =r will be denoted by M(r) = M(r,f). As is well

known, the function

(1.2) m(s) = m(s,fi) = log M(e°)

is a convex function of s.

The growth of M(r,f) will be measured by comparing it with that of a given

function H(r). We shall always suppose that H(r) is a positive increasing function

defined for 0 ̂  r < oo and that

(1.3) h(s) = log H(es)

is a convex function of s. We shall assume, in fact, that h(s) has a positive second

derivative at every point. This simplifies some of the proofs and is not an important

restriction. We shall also insist that, for each integer n,

(1.4) r~nH(r)^+oo       (r-^+oo).

This amounts to excluding the case of polynomial growth (see Theorem A of §2).

The set A is to be thought of as being lacunary in an appropriate sense. Our

theorems show that, under such an hypothesis, the behaviour of M(r,f) is deter-
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mined by the behaviour of f(z) along any given ray emanating from the origin.

We shall always suppose such a ray to be the positive real axis, but this, of course,

involves no loss of generality. Our theory applies to functions with an arbitrary

rate of growth, but, as some of our theorems are known in the case of functions

of finite order-—i.e. functions for which

.. log log M(r)
p = hm sup       .   —— < oo,

,-.«= logr

it may be advantageous to think of the functions H(r) as growing very rapidly

indeed.

Using the methods of [1], the following theorem is easily proved.

Theorem 1. Suppose thatQ)

(1.5) 2A«1<o°-

Then the hypothesis

(1.6) |/(x)| Ú H(x)       (0 S x < oo)

implies that, for each a> 1, there is a constant A such that

(1.7) M(r,f) è AH(ur)       (0 ^ r < oo).

This extends a theorem of Gaier [6]. In Gaier's theorem, condition (1.6) is

replaced by the hypothesis that / has finite order p and mean type t along a ray,

and (1.7) is replaced by the conclusion that /has order p and type t in the whole

plane.

Our initial aim in writing this paper is to examine the extent to which the gap

condition (1.5) can be relaxed if one takes into account the rate of growth of/(z).

This question is discussed in §2. The arguments used depend very strongly on the

work of Malliavin [11] concerning the completeness of systems of monomials

{xA»} in a weighted Banach space.

Let S h denote the Banach space consisting of all continuous functions f(x) on

[0, oo) for which/(0) = 0 and which satisfy limx^ + 00 \f(x)¡H(x)\=0. As norm in

the space we use

11/Ih = max \f(x)/H(x)\.
xiO

Let V denote the linear manifold consisting of all finite linear combinations of

the monomials {xA»}. In view of (1.4), Kis a subset of SH. Malliavin gives a necessary

and sufficient condition that Vhe dense in SH—i.e. that any/e SH may be approxi-

mated in the || • ||H norm by linear combinations of the {xx*}. A question which

Malliavin does not consider, but which is of importance for our application of his

work, is the following :

0) Where the symbol 2 appears with no indication of the range of summation it will be

assumed that the summation is from 1 to oo.
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Question. Suppose that V is not dense in SH. Then what is the closure VofV in SH ?

An analogous problem concerns the Banach space Co[0, 1] consisting of all

continuous functions f(x) on [0, 1] which satisfy/(0)=0, the norm being given by

11/11 =max0<x<1 \f(x)\. This problem was solved by Clarkson and Erdös [3] (see

also Korevaar [8]). It is well known that V is dense in Co[0, 1] if and only if

(1.8) 2 A"1 = oo.

If this is not the case (i.e. if 2 X~1 < oo) then the closure of V in Co[0, 1 ] turns out to

be a surprisingly small set—namely the set of all fie C0[0, 1] which are the

restrictions to [0, 1] of functions/(z) which are analytic in the open unit disc with

a power series expansion of the form

(1.9) f(z) = 2 Anz\

By using this result we may say something about the closure of V in SH in the

case when 2 Ar71<oo. If f(x) belongs to the closure of V in SH, then, for each

R>0, the function f(Rx) belongs to the closure of Fin the space Co[0, 1]. In view

of the result of Clarkson and Erdös mentioned above, we deduce that/is the restric-

tion to the positive real axis of an entire function/(z) with a power series expansion

of the form (1.9). Moreover, since fie SH, we have that

fi(x) = 0(H(x))       (x-^+oo).

On employing Theorem 1, we deduce that, for each a> 1,

(1.10) M(r,f) = 0(H(ar))       (r-* +oo).

For 0<<t<oo, let E„ denote the set of all entire functions/(z) satisfying (1.9)

and (1.10). From the above remarks we have that V^Ea (a> 1).

On the other hand, if/e Ea (a< 1), then it is easily seen (as in Theorem 4 below)

that the partial sums of its power series expansion converge to/(z) in the || • |[H

norm and hence that/e V.

If 2 ^n 1 < °°, we can therefore assert that

(1.11) Ea<=V^Ee

provided that 0 < a < 1 < ß. The more difficult case when 2 A,7l = oo is discussed in

§4. In neither case, however, are we able to give a precise characterisation of the

set V.

To conclude this section we remark that the case H(x)=ex of Malliavin's results

had been obtained earlier by Fuchs [5]. The question of noncompleteness in this

case has been discussed by Leont'ev [10] and our results of §4 complement his to

the extent that he deals only with the case of finite order.

2. Growth theorems. We begin with some definitions. As always h(s) is given

by (1.3). If A is a set of positive integers, we introduce the function

(2.1) Lh(x)=    2    A«X
A„<hOc)
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and define the quantities Dh and Dh by

Dh = Dh(N) = lim sup x-^*),       Dh = Dh(K) = lim inf x'1Lh(x).
X-* + CO X-* + 00

We shall refer to Dh and Dh as the upper and lower «-densities of the set A. Note,

however, that these numbers may exceed one.

The set A will be said to be //-measurable if Dh = Dh, in which case the common

value will be denoted by Dh. We may call Dh the «-density of the set A. Following

Kahane [7], we may associate with Dh a "densité extérieure" D*. This number is

defined by

(2.2) D* = D*(N) = inf Dh(p)

where the infimum is extended over all «-measurable sets p. which contain the set

A. To be consistent with what seems to be the English speaking usage, we shall

refer to D* as the maximum «-density of the set A. The following inequality clearly

holds for all « and A:

DhúDhí D*.

The case when « is the exponential function has been considered, for example,

by Edrei [4] and by Malliavin [11]. They refer to the densities involved as

"logarithmic". We remark that the "maximum logarithmic density" Z>*xp(A)

of a set A admits the following alternative definition—namely

A*xp(A) = Hm lim sup iffX)~^X%
expV  J     {^_ x^ + xr\(l-£)logxj

where L(x) = 2xn<xXñ1.

Suppose now that/(z) is an entire function and that m(s) = m(s,f) is given by

(1.2). We shall say that/(z) has «-order p (in the whole plane) if

..           h-\m(s))
p = hm sup-    v    ■

S-.0O s

The «-order reduces to the usual notion of order in the case when « is the exponen-

tial function. We shall also speak of a function having «-order p "along a ray" or

"in an angle", the definitions being the obvious ones.

Two increasing convex functions, h(s) and k(s), will be said to be comparable if

the limit

(2.3) / = Hm A»
S-co J

exists. Here O^/^oo. If 0</<oo, then an entire function/(z) has «-order p if and

only if it has fc-order pi'1.

In a number of our theorems, we require that the function h(s), in addition to

satisfying the requirements of §1, have the property that log«(i) is a convex
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function of s. This implies that (log h(s))/s -> m(s^ +00) for some m(0<mfk 00).

The interesting case, of course, is that when m = 00, since, if m<co, it follows from

the above remarks that/(z) has /¡-order p if and only if it has (ordinary) order mp.

With these definitions we now state

Theorem 2. Suppose that log h(s) is a convex function of s and that k(s) is a

convex function of s which is comparable with h(s). Let fi(z), given by (1.1), be an

entire function with h-order at most p<co and suppose that

(2.4) A*(A) < l/2,o.

Then the hypothesis thatf(z) hask-order a<p along a ray implies thatf(z) has k-order

a in the whole plane.

This implies that an entire function f(z) satisfying the conditions of Theorem 2

has the same A-order along every ray as it does in the whole plane. On taking h(s)

= k(s) = exp s, we obtain the following corollary (see Kövari [9, Theorem 1] for a

somewhat similar result).

Corollary 1. Let f(z) have order at most /><oo and suppose that

(2.5) Z)*P(A) < 1/2/,.

Then the hypothesis thatf(z) has order a<p along a ray implies thatf(z) has order a

in the whole plane.

The question arises as to whether or not Theorem 2 is "best possible". Since

k(s) is convex, we have that k(s)/s^y (s-+ +00) where OS y Soo. If y < 00, the

hypothesis that / has k-order a < 00 along a ray implies that / has polynomial

growth along the ray. This is a situation we have considered elsewhere [2]. In the

notation of this section we have

Theorem A. Letf(z) have h-order p<oo and suppose that

(2.6) Dh(A) < l/2,x

Then the hypothesis that fis majorised by some polynomial along a ray implies thatf

is itself a polynomial.

Conversely, if log h(s) is convex, then, given any set of positive integers A for

which Dh(K) ^ 1 \2p, there exists a transcendental entire function f(z) with a gap

power series expansion of the form (1.1) and of h-order at most p but such that

f(x)^0(x^+co).

Thus, Theorem 2 and Corollary 1 are best possible in the sense that the number

(2p)~x which appears in (2.4) and (2.5) cannot be replaced by any larger constant.

One simply applies Theorem A to a set A for which Dh(A) = D*(A). However, it

seems possible that Theorem 2 remains true if condition (2.4) is replaced by (2.6).

We have not been able to settle this question, even in the case when h(s) is the

exponential function.
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In addition to considering growth along a ray, one can also consider how the

growth in an angle of an entire function with a gap power series expansion affects

its growth in the whole plane. We discuss this question in §7.

3. Approximation results. We now turn to the Banach space SH, and the various

other concepts introduced in §1. We recall that H(s) is a positive increasing function

defined for 0^i<oo. In particular, H(0)>0. Also h(s) = log H(es) is a convex

function of s. For the given set A = {An} of positive integers we define

(3.1) X(r) = 2  2 Kl.
A„<r

As before, V denotes the set of all finite linear combinations of the monomials

Malliavin [11] proves the following theorem:

Theorem B. A necessary and sufficient condition that V be dense in SH is that, for

each real constant a,

(3.2) J + "A(A(r)-a)^=+c».

The dual space S'H of SH is the set of all measures p. on [0, oo) for which

y\\H = j" H(t)\dp.(t)\ < oo.

It is well known that a necessary and sufficient condition for V to be dense in SH

(i.e. that the sequence {**»} be closed in SH) is that the only measure p. e S'H which

satisfies

(3.3) Pi». <//*(/) = (>       (« = 1,2,...)
Jo

is p. = 0 (i.e. that the sequence {xA»} is complete in SH). To prove the necessity of

(3.2) in Theorem B, Malliavin therefore assumes that (3.2) does not hold and

constructs a measure p. e S'„ which satisfies (3.3) but does not vanish identically.

Malliavin's construction is very explicit. If (3.2) does not hold, the measure //.

is determined by

(3.4)     ^'S!^l^'^U^^^v'

where g(z) satisfies

(3.5) l0,||(l)|._^^jr!^_?(ft_te.

In this equation b is a constant and </>(t) is a certain even function of t which

satisfies j*+°° <f>(t) dtjt2 < oo.
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A sequence {xA*} is said to be free in SH if no xA* can be approximated in the

|| ■ \\H norm by linear combinations of the other elements of {xA*}. Let Ln be the

linear functional defined on V which maps each polynomial P(x) = ~2,akxK" onto

its nth coefficient. That is to say

(3.6) an = Ln(P).

It is easy to prove that {jca»} is free in SH if and only if each of the linear functionals

Ln («=1,2,...) is bounded. As a consequence we deduce that a necessary and

sufficient condition for the sequence {xA"} to be free in SH is the existence of measures

p.n e S'H (« = 1, 2,...) with the property that

I t**dp.n(t) = 1,       n = k,

= 0,       n t¿ k.

The sufficiency is immediate. For the necessity, we note that L„ may be extended to

the whole of SH by the Hahn-Banach theorem and therefore may be represented

in the appropriate form.

We now prove a lemma which implies that the sequence {xh»} is free in SH

whenever V is not dense in SH. The proof of the lemma requires some remarks

concerning the properties of convex functions.

Suppose that g(x) is a convex function of x with the property that

(3.7) g(x)/x-> +00       (x-^+co).

With such a function we may associate another function rg(y) defined by

(3.8) rg(y) = sup{xy-g(x)}.
X

The function rg(y) is itself convex and satisfies (3.7). Moreover (see [12, p. 7]), we

have that

(3.9) g(x) = sup{yx-rg(y)}.
y

Lemma 1. Suppose that V is not dense in SH. Then there exist measures /¿„ e S'H

(n= 1, 2, 3,.. .)for which

i
tK*dp.n(t) =1,       n = k,

= 0,       n ^ k,

and such that

Ui£ CA»expi-2An 2 K1},

where C is a constant depending only on the sequence A and the function H(x).
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Proof. We set H0(t) = H(t+l) (t^O) and define, for x^O,

M{x) = ̂  im)-

We now write Hx(t) = ?*//<,(/). Since Kis not dense in SH it follows from Theorem B

that V is not dense in SHl. Hence we may use Malliavin's construction to obtain a

nonzero measure p. e S'Hl with the property that

j*V^(0 = 0       (¿ = 1,2,...).
This measure p. is determined by (3.4). Since it e S'Hl, we have that, for x ^ 4,

< sup   „ , .
- tio\Hx(t)

ImIhx á KM(x-4),

where K is a constant which depends only on the function H(s) and on p. Since the

functiong(z) determined by (3.4) has no zeros, the function Gn(z) = (z—Xn—l)~1 G(z)

has no zero at z=An+1. On writing A = A„, we conclude that

G(z)
Gn(z) =

z-A-1

CO *z-\/•co       *z-l /•co^z-A-1

-JoFbrï*<o-jo hrr'***»

= [S Í -" H -f <-*-* {/> *<»>} *
We now seek to show that the integrated part of this expression vanishes,

provided that x = 0tz> 1. Firstly,

f*-A-i f M*¿M(M)   g r*-i i" 14^)1-^o       (r^0+).
Jo Jo

Also, since G(A+1)=0,

rt /•oo

uKdp,(u)= -      uAdp.(u);

and hence

;"A"1 j  uxdp,(u)   =   r0-A"1 ^ uÁ dp.(u)

^ max
u6t

t*

Hx(t)
ImIUx-^o     (r^+oo).

Thus, for ^z>l,

(3.10) Gn(z) = ^ t"1 dvn(t)
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where vn is defined by

We shall show that, for each integer n,

(3.11) kl« S 4

where A is a constant depending only on H and p. Assuming this fact for the

moment, we define /¿n by

d^t) = G^+T)dVn{t)'

We have from (3.9) that

f <'•*•<<> = TO = '•   »-*•
= 0,       n ^ A:.

Moreover, it is not difficult to deduce from (3.4) that

\Gn(Xn+l)\~i S BK exp |-2An J^A*-1}

where ß is a constant which depends only on the sequence A and on the function

H(s). The necessary estimation for the infinite product which appears in (3.4) is

given in Fuchs [5]. It follows immediately from this inequality and from (3.11) that

Imla é ABK exp |-2An j? A^j.

It remains to establish (3.11). Now, if x^X— 1,

fœ tx\dvn(t)\ S ÍV-»-1* f wA|4i(«)|
Jo Jo Jo

= J*" ii»|dM«)l J" ía:~a"1 * - ¿ Jo" "1^(")l

g #M(jc-4)       (x ^ 4).

Only the last inequality above requires x ^ 4, and so we conclude, in particular, that

r \dvn(t)\ é r wo!,
Jo Jo

for each integer n, the integrals existing since H(0) > 0.

Ifjc^A+1,
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f° tx\dvn(t)\ = n i*"*"1 dt I P uA dp.(u)
Jo Jo \Jt

í r tx-K~idt r ux\dp(u)\

= j" u*\dp.(u)\ ¡* t*-»-1 * = ¿j /„" uX\dKd)\

^ KM(x-A)       (x ^ 4).

When A-1 <x< X+1, we have that

r í-i^coi g r t*-2\dvn(t)\+r i*+w)i
Jo Jo Jo

S KM(x-6) + KM(x-2)       (x ^ 6)

è 2KM(x-2) (x è 6).

On combining these results, we obtain that, if x ^ 6,

(3.12) f" f*|<fr„(0| ̂ 2KM(x-2).

We now define constants >4P by

Ap= f" Vn(0l       (/> = 1,2,3,...).
Jp

From (3.12), we deduce that, for any given p (0<p<ao) and any x^6,

ApPx=px f"1 |*.(r)| Ú f tx\dvn(t)\ Ú 2KM(x-2).
Jp Jo

¿ M(x-2) = max
H0(t)

V
Hence,

APp

2K ¡"go

Therefore,

(3.13) log ^ =g max {¿x- (h0(s) + 2s)} = k(x),

say. But «0(i)+2s is a convex function of s, and thus, by (3.9),

h0(s) + 2s = max{sx—k(x)}.
s

We may write this in the form

log t2H0(t) = max {x log t—k(x)}.
X

Thus

(3.14) t2H0(t) Ú max {tx exp (-k(x))} ^ max {^ f-)*j,
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by (3.13) provided that the maximum value of x log t—k(x) is assumed for a value

of x^ 6. This will be the case as long as t is large enough—say t~^p0, wherep0 is a

constant which depends only on the function H(s).

We choose t=p^p0 in (3.14) and obtain that, for p^p0, p2H0(p)¿2K¡Ap.

Hence

ApHij> + \) g 2K/p2       ipïpo).

We therefore conclude that

hi« = [ ff(OWOI

èHipo) r \dvnit)\+ 2  ApHip + l)
Jo p=PO

ÛHipo) r Wit)\+2K   2 ^ = A,
Jo „=P0 P

where ^4 is a constant which depends only on the function His) and on p.. This

completes the proof of Lemma 1.

Suppose now that V is not dense in SH. Then it follows from Lemma 1 that the

sequence {xÁ«} is free in SH. Hence the linear functional Ln defined on V by (3.6)

is bounded. Its extension Ln as a bounded linear functional to Fis therefore unique.

Given any/e V, we may therefore define an=Lnif) and write

(3.15) /(x)~2«n*A».

This definition says nothing about the convergence of the series in (3.15). However,

if

PÁx) - 2 ******

is a polynomial with the property that \\Pn-f\\H->0 (n^co), then ank-+ak

in->oo) for each k=l,2,_

Lemma 2. Suppose that V is not dense in SH. Then, given any fie V for which

fix)~^anxx", we have that

K| ^C^exp{-2An2 A^Vll/ll«
I. k=X )

where C is a constant depending only on the set A and on His).

Proof. In view of the continuity of Ln (n = 1, 2,...), we need prove this only in

the case when/is a polynomial P e V. We have

an = J   Pit) dnn(t),

where the measure p.n is that of Lemma 1. Hence
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|P(0|aj S max
¡so //(O I

= ll-PlU-lklU

£° H(t)\dpjt)\

C^exp{-2An2iAfc-1}.|P||H

by Lemma 1, as required.

4. Problems of closure. Suppose now that V is not dense in SH. Then how big

is the closure V of V in S„ ? We have already considered the case when 2 K1 < °°

in the introduction. For this section we shall therefore make the assumption that

(4.1) 2A-1 = oo.

We recall the definitions of M(r) = M(r,f), m(s) and X(r) given in §§1 and 3, and

define

(4.2) </i(s) = max{«j—«A(«)}.
nao

We now state

Theorem 3. Suppose that (4.1) holds, and that V is not dense in SH. Then each

fe V is the restriction to the real axis of an entire function f(z) with a gap power

series expansion of the form

(4.3) f(z) = 2Anz"

Moreover, there is a constant a, which depends only on the set A and on H(s), such

that m(s,f)üi/í(s + a) for all sufficiently large values of s.

Proof. We write Cn = CA» exp {-2A„ 2£=i A*1}, and suppose that/(;v;)~ 2 ^„*A".

We then have from Lemma 2 that

(4.4) \An\ í Cl/Il«.

Since C„M» -> 0, we deduce that the series

g(z) = 2 AnzÄ«

converges for all values of z. The function g(z) is therefore entire. We prove that

f(x)=g(x)(0ïx<co).

Let

Pk(x) = 2 An*x*n
n = 0

be such that

IZ-^IIh-^o     (*-*oo).
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\An-Ank\ Ú C„||/-Pfc|U

by Lemma 2. Thus, for a given x(0^x<oo),

\Ax)-gix)\ Ú \fix)-Pkix)\ + \Pkix)-gix)\

è Hix)\\f-Pk\\H+   2 (Ank-An)x*n  +     2   A"xK
71 = 0 71 = fc + l

Ú H(x)\\f-Pk\\H + {j^ CnxK)\\f-Pk\\H+     J   Anx**
\.n = 0 J n = fc +1

-> 0      (k-> oo).

Hence f(x)=g(x) (0^x<oo). Moreover,

MiRJ) Ú 2 M»I*A» Í 11/11* 2 CV^-exp j-2An J^ A,"1},

by Lemma 2. Hence, for a suitable constant K,

MiRJ) Ú Kmax{(2CR)n exp (-nX(n))}-^2-k.
n

On taking logarithms, we obtain that, for all large s,

mis,f) S max {sn+an—nX(n)} = >/i(s+a),
n

where R = es and a > log 2C. This completes the proof of Theorem 3.

Theorem 4. Letfiiz) be an entire function satisfying (4.3) and for which

(4.5) m(s,f) i h(s-a)

for some a>0 and all large values of s. Then the partial sums of the power series

expansion of f(z) converge to f(z) in the \ ■ \\H norm and hence fe V.

Proof. Let f(z) = 2 anz" where an = 0 (n <£ A). It suffices to show that

2 anXn 0       (N->oo).
II n = N \H

We deduce this from the fact that

^ = nloKl^{Ä)}<00-

To obtain this last inequality, we begin with an estimate of the coefficients. From

Cauchy's coefficient inequality,

log |a„| S -sup{ns—m(s)} = — sup{nt-m(t+a)}-na.
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Writing ma(t)=m(t+a), we have that

|a»| =5 exp{-«a-rmo(«)}

where, for a convex function g, rg is defined by (3.8). Also,

sup {¿(7)1 - exP |SUP [sn-h(s)]\ = exp rh(n).

Hence

A Ú 2 exP{-"a-Tm» + ^(«)}-

A sufficient condition that A he finite is therefore that t„(«) <; rmo(«) for large

values of«. But this follows from (4.5) and so the proof of Theorem 4 is complete.

5. Density conditions. If the function ¡fi(s) is given by (4.2), we define the

function *F(r) by

(5.1) 0(j) = log ¥(«•).

For ß > 0 we define Fß to be the set of all entire functions with a gap power series

expansion of the form (4.3) for which

M(r,f) = 0(Y(ßr))       (r-*co).

Assembling the results of the previous section and recalling the definition of

Ea given in §1, we conclude that, if 2 A„~J = oo and V is not dense in SH, then

(5.2) E^V^F,

for each a< 1 and some ß> 1. This result is less satisfactory than (1.11) which was

obtained for the case 2 K1 < °°-

A more elegant conclusion than (5.2) is possible if one is willing to admit some

side conditions. For /»Owe let Gp denote the set of all entire functions with a gap

power series expansion of the form (4.3) and which have «-order at most equal to p.

With this definition we have

Theorem 5. Suppose that log h(s) is convex and that

(5.3) Dt(A) < Í.

Then, provided that 0 <a< \, Ga<= pc Gx.

We require two lemmas.

Lemma 3. Suppose that log h(s) is a convex function of s. Then V is dense in SH

if Bh(A) > | and V is not dense in SH if Dh(A) < %.

Proof. The proof simply uses the criteria of Theorem B. We suppose firstly that

Dh(A) > \ and that a is a given positive number.
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Then there exists a sequence of real numbers {sk} which is unbounded above

and has the property that

KsJ-a £ h-\s^      ik -1,2,...)

where X(s) is defined by (3.1). We may assume that sk>2sk-x and so

P h(X(s)-a) ^2 £Sk KK*)-«) y2 i= 2 \ = +œ-

It follows from Theorem B that V is dense in SH.

Now suppose that Dh < %. Then there exists a S < 1 such that, for large values of s,

X(s)^8h'1(s). Since log«(j) is convex, we have that

h(8s) = 0(h(s)Y      (j^+oo).

For an appropriate constant A,

r+m di     r+co di        r+m di
j      h(X(s))f2èj      h(8h-\s))^2 S A J      ß-a<n.

It follows from Theorem B that V is not dense in SH.

Lemma 4. Suppose that g(x) is a strictly increasing function of x which has a

positive second derivative at every point and which satisfies (3.7). Then, if log g(x)

is convex, there is a constant 8>0 such that

(5.4) xg-\x)-x Ú rg(x) S xg-\8x)

for all sufficiently large values of x.

Proof. The left-hand inequality is obtained by substituting x=g~\y) into (3.8).

To prove the other inequality, we let k(x)=g'(x). Then

(5.5) rg(x) = xk-1(x)-g(k~1(x)) S xk-\x).

Since log g(x) is convex, its derivative is increasing. It follows that there is a S > 0

such that

dxl°ëSW     g(x) = S

for all sufficiently large values of x. We let y=g(x) and conclude that

j/3 g fix) = kig~\y)).

Hence g~1i8y)'^k~1iy) and the result follows from (5.5).

Proof of Theorem 5. The conclusion that 6tcFfor each a (0<a<l) follows

immediately from the fact that Ea<^V for each a (0<a< 1). It remains to show

that V<=Gx. In view of (1.11) we may assume that 2 X~1=ao.

Let A satisfy 0< A< 1. By (5.3) we may embed A in a set of positive integers p.

for which Dh(jj.) exists and satisfies
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(5.6) ¿A < DhQi) < |.

We denote by W the set of all finite linear combinations of the monomials

{•x"»} and write

M*) = 2 2 Mn 1-
Hn<x

Evidently Kc W. It follows from (5.6) that Dh(p)<^ and therefore, by Lemma 3,

we may deduce that W is not dense in SH.

Now suppose that fe V. Then fe W and hence, by Theorem 4, / is an entire

function with a gap power series expansion of the form f(z) = 2n°= o anzn in which

an = 0 (n$ p.). Further, there exists a constant a such that, for large values of s,

m(s,f)^>/i(s+a) where

(5.7) </r(s) = max {«5—«/*(«)}.
näo

By (5.6) we have that p.(n)> A«-1(«)> for all sufficiently large values of«. But

log h(s) is convex and hence, by Lemma 4, there is a constant 8 such that

«_1(«)^(8/«)tä(«/S). Thus, for all sufficiently large values of«,

M«)>TTAy.

On substituting this inequality into (5.7) and writing n=m8, we obtain that, for all

large values of s,

i/j(s) ^ max {m8s—A8Th(m)}
mäo

=  A8^î{f-^)}-A8A(â

by (3.9). Thus given any A' satisfying 0 < A' < A we conclude that, for large values

of s, m(s,f)^h(s/A'). Hence

,. h-\m(s))   .  1
hm sup- < -;-;•

s-.» s        - A'

But A, and hence A' can be chosen as close to 1 as we like. It follows then that

f(z) has «-order at most 1 ; i.e. that V<= Gx, as required.

6. Growth on a ray.

Proof of Theorem 1. We may suppose that/(0)=0. It is then a simple conse-

quence of Theorem 1 of [1] that, for any fixed K>\, there is an A such that

\anrn\ Ú Kn max |/(x)|
OSxSr

for each «^ A and every r>0. (For the necessary estimation of the product II(«)

see, for example, [6].) Given a > 1, we suppose that o > K> 1. Then, for appropriate

constants B and C,
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M(r,f) Ú Br"+ J  \anrV\a-
n = N

= BrN+CH(ra)

from which the theorem follows by (1.4).

Proof of Theorem 2. We may assume in the first place that k(s)/s -> + oo

(s -> +oo) since Theorem A covers the case when this does not hold.

We may also assume that p < 1 and that D*(A) < \. (If necessary, we replace

h(s) by h(rs) where t is chosen so that t > p and t£>*( A) < ̂ .) Each of the functions

f(Rt), where P > 0, then has «-order p < 1 and so we deduce from Theorem 6 that

f(Rt)e FforeachP>0.

Since the functions h(s) and k(s) are comparable, the equation (2.3) holds for

some / (O^/^oo). Since a<p, we have that /<oo. We distinguish two cases: when

/=0 and when 0</<oo. In view of the remark following (2.3), no loss of generality

is involved in the second case if we take h(s)=k(s).

Now D*(A) < A. Hence, if 0 < A < 1, we may follow the argument of Theorem 6

and embed A in a set of positive integers p for which Dh(p) exists and such that

\A < Dh(p) < \. With the notation of Theorem 6 we have that W is not dense in

SH and f(Rt) eV^W for each P > 0.

Now suppose that/has the power series expansion (1.1). It follows from Lemma

2 that, for each P>0,

(6.1) \anR«\ ú C« exp{-np.(n)}- \\f(Rt)\\H

where p. is given by (5.5).

We now use the hypothesis that/has fc-order a on a ray. We can assume without

loss of generality that the ray is the positive real axis. If a< t< 1, we obtain that,

for large values of s, log |/(e*)| ^k(rs). Hence, writing R = er, we have that

log \\f(Rt)\\H i sup {k(rr+rs)-h(s)}.
s

Since k(s) is convex,

k(rr+rs) è cck(rrla)+ßk(Tslß),

provided that a and ß are positive and that a+ß= 1. Thus

(6.2) log |/(P?)IU g ak(rrla) + sup {ßk(rslß)-h(s)}.
s

Suppose in the first instance that /=0. Then for any j8>0,

(6.3) ßk(rs/ß) < h(s)

for large values of s. Hence, for a suitable constant a,

\og\\f(Rt)\\Hâak(Trla) + a.
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Since pin) -*■ oo (n -> oo), it follows from (6.1) that

\anRn\ ú 2-n-Bexp{a.kÍTr¡a)}

for a suitable constant B. Thus

MiR,f) g 2 \an\Rn = Bexpiakirr/a)).

Hence, if b > 0, the inequality

m(r,/) S aÂ^rr/oO+logA S kirr/a + b)

holds for all large values of r. But equation (6.3) holds for each ß > 0. Since a+ß = 1,

a may be chosen arbitrarily close to 1. As t is any number which satisfies o-< t< 1,

it follows that/has fc-order a in the whole plane. Thus the theorem is proved in the

case /=0.

Suppose now that 0</<oo. For this case we may assume that his) = kis). We

now take ß = t, in which case <x= 1 — t. From (6.2) it then follows that

(6.4) log \\f(Rt)\\H S ak(rr/a).

Since log h(s) is convex, we may estimate p,(s) as in Theorem 6. We obtain that

for large values of s,

sp(s) > Arh(s) = Ark(s).

On substituting this result and the inequality (6.4) into (6.1), we deduce that, for a

suitable constant y,

log \anRn\ ú yn-AT(n) + ak(Trja).

Thus,

log \an\ g yn — ATk(ri) —sup {nr — a.k(rrld)}
r

= yn — Ark(ri) — a sup {nsjr — k(s)}
s

= yn-At k(n)-aTk(n¡T)

S yn-(A + a¡T)rk(n)

since Tk is convex. It follows that

log\anRn\ S -n + sup{(r+y+l)n-(A + a/T)Tfc(n)}
n

= -n + (A + *lr)k(£r^.

Hence, proceeding as in the case /=0, we conclude that, for an appropriate

constant b, m(r,f)^k(8r+b), where 8 = (A + o£/t)_1, for all sufficiently large values

of r. In this inequality a = 1 — t and A may be chosen as close to 1 as we please.

It follows that

r-*co Y



1971] CLOSURE THEOREMS WITH APPLICATIONS 399

where 8 may be taken as close to r, and hence as close to a as we choose. Thus

f(z) has A>order at most a, and the proof of Theorem 2 is complete.

7. Growth in an angle. Edrei [4] and Malliavin [11, p. 233] have both inde-

pendently obtained the following result.

Theorem C. Let f(z) have order p<ao in some angle of opening greater than

2ttD*xp(A). Then f(z) has order p in the whole plane.

Malliavin deduces this from his Theorem 10.4 which is a consequence of his

approximation results. His method also yields the following theorem. In this

theorem the number P+(A) is defined by

(7.1) P+(A) = lim sup ¿(*>-L00
A/J/-. + 0Í logx-logp

Theorem 6. Let f(z) have h-order p<co in some angle of opening greater than

2ttD*(A). Then f(z) has h-order p in the whole plane.

Malliavin calls the number P+(A) the quasi-logarithmic density of A. As he

remarks

(7.2) Pexp(A) ̂  P*P(A) ^ P/(A),

and, therefore, Theorem 6 is weaker than Theorem C in the case when « is the

exponential function. It would be interesting to know whether Theorem 6 remains

true in general with Z)+(A) replaced by P*XP(A).

Theorem 6 is a consequence of Theorem D below. This is simply a version of

Malliavin's Theorem 10.4. Before quoting Theorem D, we require a few

definitions.

If k(r) is a real valued function on (0, oo), the function k0(r) is defined by

k0(r) = inf k(s).
ser

The function k(r) is said to be asymptotically increasing if the function k(r)—k0(r)

is bounded (0 < r < oo).

The quasi-logarithmic density P+(A), defined by (7.1) above, turns out to be

the greatest lower bound(2) of the set of all a for which a log x—L(x) is asymp-

totically increasing.

The function g(z) will be assumed to be analytic at the origin with a gap power

series expansion of the form

(7.3) g(z) = 2 '**"
n = 0

in which c„=0 (« £ A).

(2) Not the least upper bound as in [11, p. 218], which is, presumably, a misprint.
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Theorem D. Let if denote the closure of a sector of the unit disc which subtends

an angle y>2-nDeyip(A) at the origin. Suppose that g(z), which is given by (7.3) in the

neighborhood of the origin, is continuous on y and analytic on its interior. Then

\cn\ S exp {a+ßn + (k(n)-k0(n))n} max |g(z)|,

where a and ß are positive constants which depend only on the set A and the sector ¿f

and k(x) = (yjii) log x — X(x).

Theorem 6 is now readily proved. If y > 27rD+(A) then the function k(x) is asymp-

totically increasing—i.e. k(n)-k0(n) is bounded. In view of (7.2) we may apply

Theorem D to the function g(z) =fi(Rz) for an arbitrary value of R > 0. We obtain

that, for an appropriate constant a,

M(aR,f) á max \f(Rz)\       (R > 0).

The assumption that f(z) has «-order p in an angle of opening y then yields the

required result. Theorem C is proved similarly (see [11, p. 233]).
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