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Abstract. Factorizations of various functions are discussed. Complete factoriza-

tions of certain classes of functions are given. In particular it is shown that there

exist primes of arbitrary growth.

I. Introduction. A meromorphic function h(z)=f(g(z)) is said to have/(z) and

g(z) as left and right factors respectively, provided that/(z) is meromorphic and

g(z) is entire (g may be meromorphic when/(z) is rational). h(z) is said to be E-

prime (E-pseudo prime) if every factorization of the above form into entire factors

implies that one of the functions/(z) or g(z) is linear (a polynomial). A(z) is said to

be prime (pseudo prime) if every factorization of the above form, where the factors

may be meromorphic, implies that one of f(z) or g(z) is linear (a polynomial or

f(z) is rational).

[!]-[! 1], [14] and [17] have dealt with various factorization problems. In par-

ticular, the following result on primes was proved in [1].

Theorem 1. Let H(z) be a periodic entire function of finite lower order and let a

be a nonzero constant. Then H(z)+az is prime.

This result generalized an earlier assertion of Rosenbloom [17] proved in [7],

that ez + z is prime. The more difficult problem of whether exp (ez) + z is prime was

left open.

In this paper we shall weaken considerably the condition that H is of finite lower

order. In a sense we shall show that our growth condition on H is about the best

that can be assumed. However, we then proceed to show that when H is of the

form e", a entire, one can say much more about H(z) + az. In particular, it will

follow that exp (ez) + z is prime. The question, however, whether en(z) + z is prime

for n>2 remains open. Here en(z) denotes the nth iterate of the exponential

function. We next study the primes of the forms (1) Q(z)e"iz)+Siz) where Q(z)

(^constant) and S(z) are polynomials and H(z) is entire and periodic such that

H(z) + S(z) is not a constant. This problem is solved completely; in fact all possible

factorizations of the function of the form (1) are found. This class of primes gives

us primes of arbitrarily large growth. We shall in fact exhibit primes of arbitrary
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growth including primes of prescribed order and type. Among the primes of

arbitrarily large growth that are exhibited are a class of almost periodic entire

functions. These are of particular interest, since there are no known periodic

entire primes. Periodic P-primes, however, do exist [11].

We shall assume in the sequel that the reader is familiar with Nevanlinna theory

and the functions T(r,f), N(r,f), m(r,f), etc.

II. Primes of the form H(z) + az.   Let MF(r) denote the maximum modulus

function of P.

In this section we prove

Theorem 2. Let H(z) be periodic and entire and let a be any nonzero constant.

If for every positive e, there exist an infinite sequence of r approaching infinity such

that

(1) MH(r) < e2(er),

then F(z) = H(z) + az is prime.

We begin with some lemmas essential to the proof.

Lemma 1 (Polya [15]). Let fand g be entire. For any 8, 0 < 8 < 1, there exists an

appropriate positive constant c such that

MfUr) > Mf(cMg(hr))

for all sufficiently large r, where MF(r) denotes the maximum modulus function of F.

Lemma 2. Let dand r be two numbers such that dr/2-ni is an integer. Let T(z) (^0)

be a polynomial of degree t and let H(z) and 6(z) be periodic and entire with period r.

For any factorization of

(2) F(z) = H(z) + T(z)ee™+dz

into entire factors, the right factor g(z) must be of the form

(3) g(z) = Hi(z) + S(z) exp (H2(z) + cz)

where H¡(z) are periodic and entire with period t, c is a constant and S(z) is a poly-

nomial of degree s. Furthermore, s^tife"=l and s fit—I otherwise.

Proof. See proof of Theorem 1 in [1].

Lemma 3. IfT(z) is nonconstant and of first degree, then c in Lemma 2 satisfies

e"=\.

Proof. Assume e"^\. Then for some entire left factor/(vc), (2) yields for every

integer n

(4) f(Hi(z)+K exp (H2(z) + cz) ■ ecm) = H(z) + T(z+«r)e9(a),
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where AT is a constant. We may assume without any loss of generality that |ec'| á 1.

Thus, for a fixed z, the left side of (4) is bounded in n while the right side is not, a

contradiction. Hence, our assertion follows.

Lemma 4 [11]. Let F(z) be nonperiodic and entire. If F(z) is E-prime, then it is

prime.

Lemma 5. Ifh(z) is meromorphic (and ^0) and for all positive integers n, A(w) = 0,

then the lower order (denoted by X(h)) satisfies X(h) ̂  1. When X(h) = 1, the lower

type (defined as lim inf T(r, h)/r and denoted by t(A)) satisfies r(h) > 0.

Proof.

A(A) ̂ lim inflog T(r, A)/log r = lim inflog T(r, l/A:)/log r
r-* oo r-* oo

^ liminflogiV(r, l/A)/log r ^ l-e
r-*oo

for any given positive e and sufficiently large r. A similar argument proves the

assertion for t(A).

Lemma 6 [13]. Let f(z) (i=l, 2,...,n) be meromorphic functions which satisfy

for some constants C(

(5) 2 dft = o-
i = l

If in addition the functions fi satisfy the following conditions:

(a) The ratios /|/ (iVy) are nonrational.

(b) IfT*(r) is the minimum of T(r, fi/fi), i+fi andifN(r,fi) = elr)T*(r), N(r, Iff,)

= i)i(r)T*(r), then there is a set S of infinite measure on which maxli; {«¡(r), i?/r)} -> 0

as r -*■ oo.

Remark. The statement in [13] is somewhat weaker, but the proof there estab-

lishes the above assertion.

Proof of Theorem 2. We may assume without any loss of generality that a=\

and H has period 1. Suppose that

(6) F(z) = f(g(z)),

where/and g are entire. By Lemmas 2 and 3, for every integer n and some constant

k (A:/0 since Fis not periodic):

g(z+n)-g(z) = knexp(H2(z)+cz).

Fix z=z0 and put k exp (H2(z0) + cz0) = X, h(z)=g(z0+z) — Xz—g(z0). Then A(n)=0

for each n and Lemma 5 shows that either A=0 or A(A)èl or A(A) = 1, t(A)>0.

Hence either g is linear or A(g)ä 1 or A(g) = 1, r(g)>0.
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Furthermore, by Lemma 3 we have

f(Hi(z) + [k(z + n) + b] exp (H2(z) + cz)) = H(z) + z + n.

Again fixing z and applying Lemma 5, we conclude that X(f) ^ 1, and when X(f) = 1,

r(f) > 0. Applying Lemma 1 we arrive at the contradiction that for some e > 0

MF(r) > Mfg(r) > e2(er)

for sufficiently large r. The theorem follows immediately by Lemma 4.

The function

F(z) = exp (exp (z)+z) + exp z+z = G(G(z)),

where G(z) = exp (z)+z, illustrates that the growth condition in Theorem 2 is

fairly sharp. Nevertheless we have

Theorem 3. Let a be a nonzero constant and H(z) be periodic, entire and satisfy

for any given e > 0 and some real t,

MH(r) < e2((t + e)r)

for sufficiently large r. If F(z) = H(z) + az=f(g(z)), where f and g are entire and

nonlinear, then g(z) must be of the form

m

(7) g(z)=   J   ^exp(2njiz/r) + Bze"
i=-m

where 2-nm/\T\ ̂  t, c = 2ttNí/t for some integer N, \c\ut, r is a period of H, and X¡,

B are constants.

Proof. We may assume again that t = 1 and a = 1. Arguing as in the proof of the

previous theorem, one easily verifies that g(z) has the form

(8) g(z) = Hi(z) + z exp (H2(z) + cz),       (ec = 1)

and that/(z) is of lower order at least 1.

If H2(z) is nonconstant, then by Lemma 5, it is at least of lower order 1. It then

follows by Lemma 1 that for any e > 0

MF(r)>e3((\-e)r)

for sufficiently large r. This contradicts our hypotheses and it follows that H2(z)

must be a constant. Thus, we have

(9) g(z) = Hi(z) + Bze"

for some constant B. By Lemma 1, g and hence Hi are of exponential type and

when Hi is of order 1, it is of type at most t. It follows that g(z) must have the

form (7).

Using Theorem 3, we prove
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Theorem 4. Let H(z) be periodic of period r, entire and of exponential type and

let s be any integer; then for any constant a (/0) the function

F(z) = gtw + wisite + az

is prime.

Proof. We may assume that a=\ and t=1. Suppose that F(z)=f(g(z)), where

/and g are entire. From Theorem 3

t
(10) g(z)=   2  Xiexp(2trijz) + BzeC!l.

i=-t

Observe that in any strip S, — co<x<oo, a^yf¡b, F(z) = z+K(z), where K(z) is

bounded. In particular |P(x)| -*■ ooand hence \g(x)\ -^- ooasx-^- +ooorx-> — oo.

This shows that in (10) P#0, Re c = 0. If c^O then u = Bzecz maps Sonto a region

covering |m|>^4 for some A. Thus, in S, F=f(g) takes all large values, which

cannot be the case if F(z) — z is bounded in S. Thus, c = 0.

Since f(g(z)) has no fix-points (i.e. f(g(z)) = z has no solutions) neither does

g(f(z)). Indeed, if for some z0, g(f(z0)) = za, then fg(f(z0)) =f(z0). Thus it follows

from (10) that there exists an entire function a(z) such that

(11) 2 A, exp (2mjf) + Bf = e™+z.

Suppose g is not linear. Then let the order of the rational function P(x) = 2-t hx*

be k. Then

T{r, P(exp (2-nif))} ~ kT(r, exp (2nif)).

From (11) it follows that T(r, eaiz))~kT(r, exp 2-nif) as r -*■ co. Thus, the conditions

of Lemma 6 apply to the functions exp (2-rrijf), -t^j¿t,j^0, exp a(z), Bf—z+X0,

and we have a contradiction unless for every set S of infinite measure there is an

e > 0 such that for certain arbitrarily large r in S

(12) T(r,f) ~ T(r, Bf-z) > N(r, 1/(5/-z)) > ¿T*(0

where P* = T(r, exp (a — 2t7Í//) for some j.

The set in which (12) holds must therefore have finite measure and we must have

\j\=k.
Assume7 = A: (the case7= —A: is treated similarly). Then

(13) Xke2"ikf + Xk_ie2ni»-1)f+ ■■■+XQ + Bf-z = ea™.

Divide through by e2Mk! and we have

{Xk - exp (a - 2nikf)} + Xk _ i exp ( - 2-nif) + • • • + (A0+ßf- z) exp ( - Itrikf) - 0.

Application of Lemma 6, noting that the characteristic of the first bracket is

0(T(r,f)) on a set of infinite measure, gives a contradiction unless the coefficients

of the exponentials are zero, so that /is linear.
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Corollary. For any a^O, the function exp (ez) + az is prime.

III. Factorization of Q(z)eHiz)+Siz).   We now prove

Theorem 5. Let Q(z) (not identically constant) and S(z) be two polynomials.

IfH(z) is periodic and entire, then any factorization with entire factors of any function

of the form F(z)= Q(z)emz)+S(z) (H+S not identically constant) has one of the forms

(14) F(z) = F(p(z)),

where p(z) is a second degree polynomial, or

(15) F(z) = [g(z)]\

where t is a positive integer.

In addition to some of the lemmas in §11, we shall need the following results.

Definition. An entire function / is said to be periodic mod an entire function

g with period t if/(z+T)—f(z)=g(z).

Lemma 7 [1]. Iff is nonconstant and entire andp is a polynomial of degree greater

than 2, then f(p) cannot be periodic mod any polynomial.

Lemma 8. Let Q(z), S(z) and H(z) be as in Theorem 5 and let t be a period of H.

If a is any nonconstant entire function, then a(Q(z)eH(z)+S(z)) cannot be periodic mod

any polynomial with period t.

Proof. Suppose that for some polynomial T(z) we have

(16) a(Q(z+T)eH(z>+s(z+»)-a(Q(z)eH™+s™) = T(z).

Choose w0^0 and an infinite sequence z¡ (/= 1, 2,...) approaching infinity such

that g(zi)exp(77(zi) + S(z,)) = M'o. We may write Q(z+r)=Q(z)+Q0(z) and

S(z+t) = S(z) + S0(z), where degree Q0< degree Q and degree S0 < degree S and

ôo^O. Thus, (16) becomes

a([Q(z)+Qa(z)]exp(H(z) + S(z) + S0(z)))-a(Q(z)e^+s^) = T(z)

or

^[w0 + (Qo(zi)IQ(zi))w0]cxp(S0(zi)))-a(w0) = T(Zi).

If Re S0(Zi) S 0 (Re A denotes real part of A), then the arguments of a on the left side

of the above equation have a limit point and T and a must be constants, contrary

to our hypotheses. We may therefore assume that for an infinite subsequence

{z'i} of {zt} approaching infinity, ReS0(z{)>0, i'=l,2,— Furthermore,

Q(z+T)emz)+S(z+Z} = w0 has the zeros z[-t. Now (16) yields a(g(z+T>if(z)+S(z+,))

- «üß(z + r) - Q0(z)] exp (H(z) + S(z + r) - Soiz))) = T(z). At z = z\ - r we get

a(wo)-a(K-(öo(Zi'-r)/0(zi))w0]exp(-50(z;-T))) = T(z¡).
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Since Re50(z0>0, it is clear that Re ( - S0(z¡ - r)) < 0 for sufficiently large i.

Hence, it follows again from the above equation that a must be constant, contrary

to our hypotheses. This completes the proof of Lemma 8.

Lemma 9 [12]. If f(z) is a transcendental function and ax(z), a2(z) are distinct

metomorphic functions satisfying for v=l and 2

T(r, av(z)) = o(T(r,f))   asr-^co,

then

2

I
v = l

for all r outside a set of finite measure.

{l+o(l)}P(r,/) ï 2 W, l/(/-av(z)))

We now proceed with the proof of the theorem.

Proof of Theorem 5. We first consider the case when F=f(g), where / is entire

and g is a polynomial. Clearly/must have the form f(w) = T(w)eaiw\ where T(w)

is a polynomial (^0) and a(w) is entire. Thus,

f(g) = T(g)ea^ = ß(z)eH(z>+s<z>.

Consequently, a(g) must be periodic modulo a polynomial. Hence, by Lemma 7,

g must be of degree 2 at most and this factorization reduces to the form (14).

Now suppose that g is transcendental entire. Then f(w) must have the form

(17) f(w) = (w-a)ne«w\

where a is a constant, n a positive integer and a is an entire function. g(z) must be

of the form

(18) g(z) = Qi(z)e^ + a,

where Q± is a polynomial which satisfies Ql = KQ for some constant K and ß is

nonconstant entire. Writing a*(w)=a(w+a) we obtain

P= Qniexp(nß+**(Qie*)) = QeH+s.

Thus,

(19) nß + a*(QieB) = H+S.

From (19) we get

(20) a*(Qi(z + r)e^ + «) - a*(Qi(z)eB™) = S(z + t) - S(z) - nß(z + r) + nß(z).

Equation (20) implies that either

(i) ß(z) = Hi(z) + (l/n)S(z) and a*(Qi(z)eßU)) is periodic with period t, where

Hi(z) is entire and periodic with period t, or
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(ii) Q1(z + r)eB(z+,)- Q1(z)eß'-Z)=ß*(z)ey{z\ where jS* and y are entire and

(21 ) T(r, ß*) = o(T(r, eB{z + T) " i(3>))

unless ß(z+r)=ß(z).

Applying Lemma 8 to case (i) and the case when ß(z + r)=ß(z), we find that a*

and hence a must be constant so that the factorization reduces to the form (15).

Assume, therefore that (21) holds, (ii) may be rewritten in the form

(22) Qx(z + T)e»<2 + « - "<2> - ôi(z) = ß*(z)enz) " «z) = U(z),

say. It is clear from equation (22) that for some A >0 and sufficiently large r

(23) T(r, e*-*) > AT(r, e«**«-««>).

Also

tf(r, !/(£/+ ßx)) - o(r(r, Í/))   and   tf(r, 1/C/) = o(7(r, U)).

Thus, by Lemma 9

(24) {l+o(l)}r(r, U) Ú N(r, l/(U+ QJ) + N(r, 1/C/) = o(T(r, £/))

for all r outside a set of finite measure.

Equation (24) leads to a contradiction and our theorem follows.

Corollary 1. Let Q(z) be a polynomial of degree 1 or a prime polynomial of

degree greater than 2. If H(z) is a periodic function and S(z) is any polynomial such

that H and S are not both constant, then Q(z)eH(z) + S(z) is prime.

Corollary 2. For Q(z) as in Corollary 1 and any positive integer n, Qen(z) is

prime.

The primes we have exhibited are, to the author's knowledge, the first illustration

of primes of arbitrarily large growth. In the next section we give examples of

primes of arbitrarily large growth which are also almost periodic.

IV. Almost periodic primes.   We start with a simple lemma.

Lemma 10. Iff(z) is entire and maps the unit circle on the unit circle, then it must

be ofthe form f(z) = cz11 for some integer n and some constant c with |c| = l.

Proof. By the reflection principle a zero z0 of f(z) in |z| < 1, corresponds to a

pole l/(z0)=z1 of/(z) in |z| > 1. Since/is entire, we see that the only zeros of/(z)

in |z| < 1 lie at z=0 and if z = 0 is an «-fold zero, then f=czn, |c| = l.

The author is indebted to M. Newman for suggesting the proof of Lemma 10.

We now prove

Theorem 6. Let H¡ (^ constant) and G¡ be entire periodic functions with period

Tj and let a¡ be constants such that a^jß^i is not rational (y'= 1, 2) and assume further
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that Ti/r2 is irrational. Then the functions

(25) F¡(z) = H, + exp (atz+G¡(z))       (j = 1, 2)

when factored into entire factors have no common right factor.

Proof. Suppose that there are nonlinear entire functions/ and an entire function

g such that

(26) F,(z) = f(g(z))       (j=l,2).

Then (25) and (26) yield

(27) //g(z+T,))-//g(z)) = (exp (ajT,)- 1) exp (a^ + G^z))       (j = 1, 2).

We conclude by means of Lemma 2 as in our earlier arguments that

(28) g(z+rj) - g(z) = exp (up+Ij(z)),

where a,- is constant and /, is periodic with period rt (j=\, 2). From (27) and (28)

we obtain

g(z+Ti + T2)- g(z) = exp (a2Ti + I2(z+Ti) + <x2z)+exp (axz + h(z))

= exp(a1T2 + /1(z+T2) + a1z) + exp(a2z + /2(z)).

Applying Lemma 6, one concludes that I] has periods tx and t2 and therefore I'j

must be a constant (j= 1, 2). It follows that I¡ must be a constant c¡, say (j= 1, 2)

since it is periodic. Consequently, one obtains from (29)

(30) (exp (aj t2) -1 ) exp (axz + c±) = (exp (a2Ti) -1 ) exp (a2z+c2).

Assume first that «1^^. Then one gets from (30), aiT2 = 2nni, a2Ti = 2mmi,

where n and m are integers. Thus, from (28) we obtain as in earlier arguments that

we used, that

(31) g(z) = Ji(z) + Xi exp (2-nniz/T2) = J2(z) + X2 exp (2nmiz/Ti),

where J} is entire and periodic with period t; and Ay is a constant (j= 1, 2). From

(31) we see that

Ji(z) — A2 exp (2-nmiz/Ti) = J2(z) — Ax exp (277/hz/t2) = G(z),   say.

G(z) is thus doubly periodic and hence constant. We may therefore assume that

g(z) has the form

(32) g(z) = A2 exp (2Trmiz/Ti) + Aj exp (27twz/t2),

where Als A2^0 since Flt P2 are not periodic.

Hence, by (25) and (32) we have

(33) /X(A2 exp (2irmiz/Ti) + Xi exp (27t«/z/t2)) = H±(z)+exp (axz + Gi(z)),
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for any integer k, let z = krx. Then (33) becomes

(34) fi(X2 + Aj exp (27rm7cT1/r2)) = #,(0)+exp (kalTl + G^O)).

Since, tj/i-2 is irrational, it follows from (34) that as k runs through the positive

integers, exp (ka^^) has an infinity of limit points. The latter is only possible if

either a1r1 is an irrational multiple of ni or if |exp (a^^l < 1. A similar argument

with the negative integers k leads to the conclusion that either a^ is an irrational

multiple of ni or |exp ( — 0^)1 < 1. Hence, in any case we must have a1T1=stri,

where s is irrational. Thus, (34) implies that the entire function

exp (-G1(0))[f1(X2 + X^-HM]

maps a dense set on the unit circle on a dense set on the unit circle. Thus, it must

map the unit circle on the unit circle and, by Lemma 10, fi must be a polynomial

of the form

(35) f1(w) = A(w-B)N+C,

where A, B and C are constants and N is a positive integer. Using (35) and applying

Lemma 6 to (33) one easily arrives at a contradiction unless 7V= 1. Thus, we may

assume that a1 = a2 = a, say. From (30) we see that exp (arx) = 1 implies exp (<xt2) = 1,

which is excluded, since tJt2 is not rational. Then by (28)

g(z)=Ji(z) + Aieaz,

where A,^0 is constant, j = 1, 2, J¡ periodic with period t;. Hence,

(36) A(z) + Aieaz = J2(z) + A2eaz

or

Aea3(exp (<*">-!)-1) = J2(z+r1)-J2(z) + A2eaz(txp (ary)-1),

i.e., for a suitable constant k, J2(z + T1)—J2(z) = keaz. The left-hand side here is

entire and of period t2 and if ky=0 the right side is of period 2ni¡a so the ratio

T2a/2ni is rational. Similarly J1(z + T2)—J1(z) = leaz and, if /#0, r-^aß-ni is rational.

Thus, if kl^O, t1/t2 is rational. Hence, say k = 0, then J2 has period tx as well as t2

and so t1/t2 is rational again, so J2 is constant. It then follows that J1 is constant.

We may assume therefore, that the only common right factors are of the form

Aeaz, A a constant. Hence, we may assume that

(37) Hf(z) - /(e-) = Hj(z) + exp (a,z + Gs(z))       (y = 1, 2).

Let T3 = 2tri/a, so that the Hf each have period t3 (y'= 1, 2). From (37), we obtain

(38) Hf(z+r,)-Hf(z) = (exp (a,ry)-l) exp (^z + G/z)).

Consequently, exp (a¡z + Gf(z)) is periodic with period t3 (y'=l,2). Since Tj/t3

(j= 1, 2) cannot both be rational, it follows by applying Lemma 6 to

(39) exp (aj(z + t3) + Gi(z + r3)) = exp (üjz + G¿z))       (y = 1, 2),
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that either Gx or G2 must be doubly periodic and hence constant. Thus, (38)

implies that one of the a^f/lviis rational, contrary to our hypotheses. This com-

pletes the proof of Theorem 6.

Remark. Note that when it is assumed that Gj(z) are both nonconstant (j= 1, 2),

it then suffices to assume that exp (a^,) ^ 1 (j= 1, 2). This is clear from the proof.

As an immediate consequence of Theorem 6, we have

Corollary. Let Ii and I2 be complex numbers whose ratio IJI2 is irrational, then

the function

F(z) = exp((2TTi/Ii)z)+exp((2M/I2)z)

is prime.

For in Theorem 6, we can write

Hi = exp((2ni/Ii)z),       üiZ+Gi = (2ttí/I2)z + 0,

H2 = exp ((2ni/I2)z),      a2z + G2 = (2ttí/Ií)z+0,

i.e. tj =IU t2 = I2, ai = 2ni/I2, a2 = 2ni/Ii. Then F=Fi(z) = F2(z) and any nontrivial

right factor of P would be a nontrivial common right factor of Px and P2.

Thus, we have exhibited an almost periodic entire function which is prime.

We now prove a generalization of the above corollary.

Theorem 7. For any nonconstant entire periodic functions H(z) and G(z) of

period t and any constant X such that Xt/ttí is irrational, the function

F(z) = H(z) + e^ + G^

is prime.

Proof. We assume again that t= 1. Suppose that

(40) F(z) = f(g(z)),

where / and g are entire and nonlinear. We conclude in the same manner as in

the previous theorem that g(z) has the form

(41) g(z) = //1(z) + exp (H2(z) + cz),

where H¡ is periodic with period 1 (j= 1, 2).

(40) and (41) yield

(42) f(Hi(z) + ecn exp (H2(z) + cz)) = H(z) + eKz+G(s)eAn.

As in the previous theorem, we may assume that |ec| = 1. If c is a rational multiple

of w/', then for a fixed z the left side of (42) is one of finitely many values while the

right side runs through infinitely many values as n runs through the integers. Thus,

ecn for n = 1, 2,... is dense on the unit circle and we conclude as in the previous
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theorem that/(w) must have the form

(43) f(w) = A(w-B)k + C,

where A, B and C are constants and A; is a positive integer.

Letting Hi-B^H*, (41), (42) and (43) yield

(44) A(H? + ec exp (H2 + cz)f - A(H? + exp (H2 + cz))k = (eÁ- l)e*z + G{z\

Expanding (44) we get an equation of the form

(45) T0 + Txecz +■■■+ Tkeckz = eXz,

where Tx are periodic with period 1 and not identically zero.

From (45) we get

(46) (eK - 1 )eKz = [T^e0 -1 ) + T2(e2c - 1 )ecz +■■■+ Tk(ekc -1 )ék ~ 1)cz]ecz

which we can write in the form

(47) ea -c)z = Tí + T11ecz+---+ Tè. xé-k "1)cz,

where T} are periodic with period 1 and not identically zero. Continuing induc-

tively, we get

(48) e(A - <fc - do* = t£ -1 + xk - i-e™

and finally

„(À-kc)z ^  rrk

Clearly, e{A~kc)z has period 1. Dividing both sides of (48) by ecz yields

(49) eiX~kc)z = T^-^-^ + T^-1.

From (48) and (49) we conclude that ecz has period 1, a contradiction. This com-

pletes the proof of Theorem 7.

V. Primes of every order. As we have noted earlier, Theorems 5 and 7 give

examples of primes of arbitrarily large growth. It is also known (see [11, Theorem

5]) that any entire function of the form

(50) F(z) = H(z) + z2,

where H(z) is periodic and of finite lower order, has only quadratic right factors.

Thus, for any even periodic H(z) of order greater than or equal to 1, the function

F(\/z) is prime and of order ä \. In fact it follows that for any p and a with p ̂  \

and a^O (but /0 when p = i) there exists a prime function of order p and type

a. Of course we also have primes of order zero, namely prime polynomials.

We now consider a class of functions which include functions of arbitrarily small

growth. We prove
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Theorem 8. Let <p(z) be any entire function of lower order less than 1 or of lower

order equal to 1 and lower type equal toO.Letnk(k=l,2,...)be any infinite sequence

of positive integers such that at most finitely many of the nk are equal. Let ak be any

sequence of positive reals such that YJk = 1 (1 —z/ak)n" is of order less than 1. If<p(0)

^9>(1), then

JW      zVk
F(z) = e"z(z-\)Y\{\-±\

is prime. The assertion remains valid when <p is constant.

Before proceeding with the proof we shall need the following two results :

Lemma 11 [12]. Let b¡ (i=l, 2,..., n) be any n complex numbers. If g is entire

and if all but finitely many of the zeros of g — b¡ have multiplicity at least m¡

(i=l,2,...,n),thenZ?=10-\/mi)èl.

Lemma 12 [18]. Let f(z) be an entire function. Assume that there exists an

unbounded sequence {hv}^= j such that all the roots of the equations

f(z) = hv       (v= 1,2,3,...),

are real. Thenf(z) is a polynomial of degree not greater than two.

Proof of theorem. Suppose that P is not prime. By virtue of Lemma 4, we may

write F(z)=f(g(z)), where /and g are both nonlinear and entire. It follows from

Lemma 12 that either / has at most finitely many zeros or g(z) is a quadratic

polynomial. Since the a¡ are positive, the latter is impossible. Thus, we may assume

that/is of the form f(w) = Q(w)eaiw\ where Q is a polynomial and a is entire. If

Q(w) has two distinct zeros bx and b2, say, then all but finitely many of the zeros of

g — bt (i=l, 2) have multiplicity greater than 3. This is impossible by Lemma 11.

Since z = 0 is a simple zero of P, it follows that Q is linear. Hence, we may write

F(z)=g(z)eai9lz)), where a is entire. Clearly, g has the form

"*-"n('-rJ •
where ß is entire. Since

(51) a(g(z)) = 9(z)-ß(z) + T,

T a constant, and since <p is at most of lower order 1 and lower type 0, it follows

by Lemma 1, that either a or ß is a constant. When ß is a constant, we have from

(51) that cp(0) = a(0) + S=<p(l) for some constant S, contrary to our hypotheses.

Thus, a must be constant and our proof is complete.

Note that the proof for the case when <p is constant is included in the above. The

author would like to thank J. Miles for some constructive suggestions with regard

to the above proof.
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In a subsequent paper the author will discuss a number of extensions of this result.

As an immediate consequence of Theorem 8 and the remarks preceding it, we

have

Corollary. There exist primes having prescribed order and type.

VI. Some open questions. An argument similar to the one used in the proof of

Theorem 2 can be used to prove

Theorem 9. Let H(z) be an entire, periodic function with period t. If H(z) is of

finite lower order, then for any nonzero constant a, the function

F(z) = H(z) + aze<2"ilt)z

is prime.

More generally it is reasonable to conjecture

Conjecture 1. If az in Theorem 9 is replaced by an arbitrary nonconstant

polynomial which is not of the form Pn + C, where n is an integer >\,P is a polynomial

and C is Q constant, then the resulting function F(z) is still prime.

It is shown in [1, Theorem 4] that when His periodic of exponential type, then

any entire function of the form

(52) F(z) = H(z)+Q(z),

where Q(z) is a nonconstant polynomial, can only have factorizations of the form

(14). It follows, in particular, that when Q(z) in (52) is of odd degree, then F is

prime. This together with (50) suggests the following extension of Theorem 2.

Conjecture 2. For any periodic entire function H(z) of finite lower order and

any polynomial Q(z) which has no quadratic right factor, F in (52) is prime.

We conclude this study by suggesting a number of additional functions which

seem to be good candidates for being prime.

(1) Any function of the form Q(z)ea{z) + P(z), where Q(z) and P(z) (^constant)

are polynomials with no common right factor. When Q is constant we also assume

that a and P have no common right factor.

(2) All functions zk+m sin yjz (Jk= ± 1, ± 2,...).

(3) All functions z*cos \/z (i= ±1, ±2,...).

(2) and (3) suggest looking at the factorizations of functions of the form P(z)H(z),

where H(z) is periodic of exponential type and P(z) is a nonconstant polynomial.
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