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INSEPARABLE SPLITTING THEORY
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RICHARD RASALA

Abstract. If L is a purely inseparable field extension of K, we show that, for
large enough extensions E of K, the E algebra L ®g E splits to become a truncated
polynomial algebra. In fact, there is a unique smallest extension E of K which splits
L/K and we call this the splitting field S(L/K) of L/K. Now L<=S(L/K) and the
extension S(L/K) of K is also purely inseparable. This allows us to repeat the splitting
field construction and obtain inductively a tower of fields. We show that the tower
stabilizes in a finite number of steps and we study questions such as how soon must
the tower stabilize. We also characterize in many ways the case when L is its own
splitting field. Finally, we classify all K algebras 4 which split in a similar way to
purely inseparable field extensions.

Introduction. In Chapter 1, we introduce a splitting theory for purely inseparable
field extensions. The idea is that if L/K is purely inseparable then for suitable base
extensions E of K the algebra L ®x E over E has a very simple form, namely,
it is a special case of what we call a simply truncated polynomial algebra. This fits
into a pattern long familiar in the theory of separable extensions or the theory of
central simple algebras, namely, that after suitable base extensions the initial
object reduces to a standard form.

The splitting theory starts from the structure equations of a purely inseparable
extension first discovered by Pickert [3]. Let L/K be purely inseparable and let
Xi, ..., X, be what we call a normal generating sequence for L/K. Set

K, = K[x,,...,x] and ¢, = [K;:K;_,].
Then the structure theorem says that
xf e K[x%, ..., xfL,).
From this we obtain structure equations of the form
xf= D a;,x%°
aely
Here 1, is a suitable multi-index set and a; , € K. The splitting procedure now works
as follows. In some algebraic closure of K, let d; , be the g;th root of a, ,. Set
S(L/K) = K[d, 4], l1<israndee€el,.
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Now let E be a field containing S(L/K) and set F=L ® E. Define elements u; of
F by
U = X;— 2 d; ox".
el
Then F=E[u,,...,u,] and the structure equations for the u; are simply uf*=0.
This exhibits the standard form of L/K after base extension.

The field S(L/K) is the unique minimal field extension of K for which splitting
occurs so we call S(L/K) the splitting field of L/K. By construction, S(L/K) is
purely inseparable over K so we can construct its splitting field. Inductively, we
obtain a tower of fields

Sw(L/K) = S(Sn-1(L/K)/K).

The latter part of Chapter 1 is devoted to a study of this tower. One fact we obtain
is that the tower stabilizes after a finite number of steps. The field at which the
tower stabilizes is the unique minimal field extension of L which is elementary
over K. This proves in a simple way a result first shown by Sweedler [5].

In Chapter 2, we generalize the splitting theory to algebras. The basic result is
that if a K algebra A splits into a simply truncated polynomial algebra whose
exponents of truncation are p powers then 4 must have generators and structure
equations as in the case of inseparable field extensions. We also characterize
algebras which split into direct sums of truncated algebras. In particular, we are
able to make a unified splitting theory for fields.

In the latter part of Chapter 2, we make some remarks which relate the splitting
theory we have developed to other theories, notably, to group schemes.

This paper consists of a revised version of my Harvard Ph.D. thesis of June
1969 together with some additional results which I obtained in the past year. I
wish to heartily thank my advisor, Barry Mazur, for many helpful suggestions and
much encouragement. I wish to thank William Waterhouse for his interest in this
work and for his suggestion that I try to extend the splitting theory of fields to
algebras. I also wish to thank the referee for his careful reading of the paper and,
in particular, for his discovery of an error I had made in defining the splitting field
for an arbitrary splittable algebra. Finally, I wish to thank the NSF for support
during my graduate work.

CHAPTER 1. SPLITTING THEORY FOR FIELDS

1. Notations and basic facts. Throughout we assume all fields to be of charac-
teristic p > 0. In this section, we discuss simple aspects of such fields and algebras
over them.

We let K be a field and L be a finite purely inseparable extension of K.

1. Exponent. Let A be a K algebra. Set [4:K]=dimy 4. If [4:K]=p™ we call
m the exponent of 4 over K and write m=e[A4:K]. In particular if 4=K[x] we
also say that x has exponent m over K and write m=e[x:K]. Clearly,
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LEMMA 1. For x € L, e[x:K] is the least n such that x*" € K.

Let B be an A algebra and assume [4:K]=p™ and [B:K]=p". We then define
e[B: A]=n—m. In other words we require e[B:K]=e[B: A]+e[A:K]. This rule is
consistent if 4 is a field and e[B: A] is already defined as before.

We define the absolute exponent e of K to be e[K: K?].

LeEMMA 2. If E is a finite extension of K then ep=e.

Proof. We know that [E:K?]=[E:K] - [K:K?]=[E:E*]-[E?:K?] and, since the
map x > x? is an isomorphism of E/K to E?/K?, we also have [E:K]=[E?:K"].
Thus ez=[E: E?]=[K:K"]=e.

2. Chains of fields in L/K. We introduce notation for two familiar chains of
fields in L/K.

A. Upper chain. L=(L/K)°2(L/K)!2---2(L/K)=2---2K.

We define (L/K)*=L**-K and 8.(L/K)=e[(L/K)¢~! : (L/K)].

PROPOSITION 1. For all e 1, §,(L/K)Z= 8, ,,(L/K).
Proof.
[LP* ™' K:L*-K] = [L*-K?:LP***.K?] 2 [L**-K:L”**"-K].

B. Lower chain. K=(L/K)o<(L/K);,<---<(L/K).<---<L.

We define (L/K),={xeL:e[x:K]Se}={xeL:x*eK}, and «(L/K)
=[(L/K).:(L/K),-1].- We note that the «’s do not satisfy inequalities such as the
&’s do.

ExAMPLE 1. Let L=K[x] with h=e¢[x:K]. Let 0<e=<h and g=p*. Then

(L/IK) = K[x*] = (L/K)n-es  8e(L/K) = a(L/K) = 1.

EXAMPLE 2. Let P be a field and let a, b, ¢ be algebraically independent over P.

Let K=P(a, b, ¢) and L=K|z, w] where
2P =a, WP =b+cz”.

Then

(L/K)'=(L/K),=K[z"]=K[w"],

o (LIK)=1, ay(L{K)=2, «,(L/K)=0 for r>2,

8, (LIK)=2, 8,(L/K)=1, 8§,(L/K)=0 for r>2.
The assertion for (L/K)! is clear. Assume that (L/K), # K[z?]. Then there exists
y e Land y ¢ K[z?] such that y? € K. Call y?=d. Then, by Example 1, y ¢ K[z] since
yeK]z] and y* € K = y € K[z?]. Thus L=K][z, y]. Hence we can write w as

w=>r,z Py withr;, €K 0=ij,k<p.

Then

btczP = wP = D rp; 2Pt PyrR = S b al dezP
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By comparison we get b, c € K?[a, d] so that e[K”[a, b, c]: K?]<2. Then for any
field M such that K*< M we have e[M{a, b, c]: M]<2. Take M=P(a?, b®, c?).
Then M{a, b, c]=P(a, b, c)=K. But since a, b, ¢ are algebraically independent
over P,

e[M[a, b, c]: M] = e[P(a, b, c): P(a®, b®, c?)] = 3.

This is a contradiction which shows that (L/K); = K[z"]. The assertions about the
o’s and &8s follow from the computation of (L/K)* and (L/K);.

3. Height. The height A(L/K) of L over K is the integer defined by any one of
the three equivalent conditions below:

«. Maximum {e[x:K] : x € L}.

B. Minimum A such that (L/K)*=K.

y. Minimum # such that (L/K),=L.

REMARK 1. Other authors have used the word ‘“‘exponent’ for what we call
“height””. The disadvantage of the old terminology is that if [L:K]=p™ one
cannot call m the “exponent of L/K”* since the word ‘‘exponent’’ has been used in
another sense.

REMARK 2. If A=h(L/K) then, for all e, (L/K)*~¢<(L/K),. We conclude

PROPOSITION 2. Let 0<e<h=h(L/K). Then
2 a1 (L/K) = el(L/K)"~*:K] S e[(L/K)e: K] = 2 a(LIK).
i=1 p-
We will now seek another inequality similar to the one given in Proposition 2.

Let 0sesh=h(L/K) and let g=p°. We now examine the relationship of the five
fields: (L/K)¢, (L/K)., L%, L* N K, K First consider the diagrams:

L
L (L/K).
(L/KY:
2 o wl x
Ka/ \an K/
DiaGram 1 DIAGRAM 2

REMARK 3. From Diagrams 1 and 2,
[L:K] = [L:(L/K).])- [(L/K)e: K] = [L:(L/K)]-[(L/K)*: K]

REMARK 4. In Diagram 1 the map x+> x? induces isomorphisms L= LY
(L/IK).~xL*Nn K, K~ K".

REMARK 5. In Diagram 2, (L/K)*=L?-K so that [L%:L* N K]=[(L/K)*:K].
Equality holds if and only if L? and K are linearly disjoint over L? N K.
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PROPOSITION 3. Let 0<e<h=h(L/K) and let q=p°. Then

L 2f-1 e(L/K)=e[(L/K)e: K]S e[L:(L/K)*]=3¢-1 8(L/K).

2. We have equality at the middle of 1 if and only if L* and K are linearly disjoint
over L' N K.

Proof. The equalities in 1 are trivial. For the middle inequality we note

el(L/K).:K] = e[L:(L/K)) < [(L/K).: K] £ [L:(L/K)"]
< [L:(L/K)e] 2 [(L/K)*:K].

The last < comes from Remark 3. Moreover, from Remarks 4 and 5, we obtain
[L:(L/K),JZ[(L/K)*:K]. Thus we have 1.

To show 2 note that in the equivalences we can replace all inequalities by
equalities. We can then apply Remark 5.

REMARK 6. From Propositions 2 and 3 we obtain

3 0ns-iLIK) S 5 alLIK) S 5 B(LIK)

PROPOSITION 4. The following conditions are equivalent :

1. For all q=p°, L* and K are linearly disjoint over L* N K.
2. For all e, e[(LIK).:K]=e[L:(L/K)].

3. For all i, «(L/K)=8,(L/K).

2. Definitions. We continue to let K be a field and L be a finite purely insepa-
rable extension of K.

1. Normal sequences. If x € L we say that x is normal in L/K if e[x: K]=h(L/K)
or, equivalently, if e[x: K]=e[y:K] for all ye L.

A normal sequence Xy, . . ., X, in L/K is one such that if we let K;=K[x,, ..., x;]
then, for 1 <ir,

«. x;is normal in L/K; _,.

B xi¢K_;.
If a normal sequence x, . . ., x, is such that L=K[x,, ..., x,] we say that x,, .. ., x,
is a normal generating sequence or NGS of L/K.

Now let x3, . . ., x, be a normal sequence in L/K. For 1 <i<r, set e;=e[x;:K;_,]
and g, =p*. Also define J;,= Z" by

Ji={(eg, .. 0,0,...,0):0 £ o < qi}
Then the set {x*},,, is a K basis for K. Also
PROPOSITION 5. e;2e,2 - 2e,.
Proof. e,;=e[x;:K;_;]1Ze[x;,1:Ki_1]1Ze[x;,1: Ki]=¢€;11.

PROPOSITION 6. Let S be a generating set for L/K. Then there exists an NGS for
L/K with elements chosen from S.
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Proof. If we have a normal sequence xy, ..., x;, with x; € S for all i then either
K;=L (and we are done) or L # K;. If L# K, then we extend the normal sequence by
choosing x;,, so that

a Xg41 €S

B. X541 1is normal in L/K,.

This is done by

LeMMA 3. If S generates L|K and KS M S L then there exists x € S such that x
is normal in LIM.

Proof. If for e>0 and g=p° we have S?< M then L*< M since L=K[S]. Thus
Max {e[x: M]: xeL}=Max {e[x:M]: xe S}. Thus we can choose x € S such
that e[x: M]=h(L/M), that is, x normal in L/M.

2. Elementary extensions. We say that L is elementary over K if there exist
elements xj,..., x, € L—K such that Lx K[x,] ® - - - ®x K[x,]. By rearrange-
ment, we can always assume also that x,, ..., x, is an NGS for L/K.

Now let x;,...,x, be an NGS for an arbitrary extension L/K. We use the
notation from 1.

PROPOSITION 7. The following conditions are equivalent :
1. The canonical map K[x,] Qx - - - Qg K[x,] — L is an isomorphism.
2. For 1Zisr, e;=e[x;:K].

Proof. The proof is by induction based on the lemma below:

LEMMA 4. Given a field extension M [K and x algebraic over K then the following
conditions are equivalent:

1. The canonical map M ®y K[x] — M[x] is an isomorphism.

2. [M[x]:M]=[K[x]:K].

We now define the notions ‘“‘simply truncated polynomial algebra” and
““variation”” which we use to study field extensions.

3. Simply truncated polynomial algebras. Let R be a commutative ring and 4 be
an R algebra. We say that 4 is a simply truncated polynomial algebra over R if
there exist u; € A, 1 £i<r, such that

a. A=R[uy,...,u).

B. The relations among u,, ..., u, are generated by equations uf+=0 where
a;za,z---2a,>1.

For short we say that 4 is an STP algebra over R. We call the sequence
u,. .., U, a truncating sequence for 4. We call g; the order of u; and denote it by
o(u;). We say that 4 is of type a,,. . ., a, relative ta the truncating sequence uy, . . ., u,.

PROPOSITION 8. Let A be an STP algebra over R. Let uy, ..., u, and wy, ..., ws
be truncating sequences for A and let a;=o(u;) and b;=o(w;). Then r=s and, for all
i, ag = bg.
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Proof.

Case 1. When R is a field E. Then A is a local ring with maximal ideal
I=(uy, ..., u)=(Wy, ..., ws). Define f,=dimgI*—dimgI**!. We will show in
effect that the sequence f3, f, . . . determines the structure of A.

We can find an E basis of I* modulo I**! in two ways:

1. as {u$1-- - --uf} where > o;=k and 0= ;< a;,

2. as {whi.. - ..whs} where > B;=k and 0=8,<b,.

First apply this to k=1. Then uy, ..., u, and wy, ..., w, both form bases of /
modulo 72. Thus r=s.

Next suppose that, for some i, a;#b;. Choose ¢t such that a,#b, but, for i>1t,
a;=b;. We may assume a,>b,. Then take k=b,. We will obtain a contradiction.

We first claim that if, for all i, 0 <e; <k — I, then the conditions given below are
equivalent:

1*. > o;=k and, for all i, 0= ;< a;.

2%, > o;=k and, for all i, 0S ;< b;.

Indeed, for i<t, the inequality 0<«; <k —1 already implies the corresponding
inequality in 1* or 2*, while, for i>1t, we know a;=b;.

Next, if > o;=k but the condition 0=<e«; <k —1 does not hold for all i, then one
o;=k and all other «;=0. In this case, we get at least f such sequences which satisfy
1* since a; >k for i<t while we get at most #—1 such sequences which satisfy 2*
since b;<k for i>1.

These remarks yield two different values for f, which is of course absurd. Thus,
for all i, a;=b,.

Case 2. General case. We reduce to the case of a field by choosing a maximal
ideal M in R and considering the STP algebra A/MA over R/MR.

REMARK 1. The proposition shows that the number of generators and the type
of an STP algebra are independent of the choice of the truncating sequence.

REMARK 2. One can extract a method for computing the type sequence of an
STP algebra from the proof.

Indeed, suppose f1, f, . . . are known. Then f; =r. Next suppose that g; has been
found for i>t. For all k, define

N, =Number of sequences «y, ..., « such that

1. 3 oy=k.

2. Fori>t, 0= <a,.

3. Forigt, 05,5k —1.
Then the proof shows that, for k>a,,,, a,>k <> f,— N, = t. Thus one can obtain
a, as the least k > a,,, such that f,— N, <.

REMARK 3. We use the standard multi-index notation in working with STP
algebras. If a=(ey, ..., o) and B=(By, ..., B;), set

a < B<foralli, o < B,

o £ B<foralli, e £ B,
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Then, if A has type a=(a,, .. ., a,) and u=(u, . . ., 4,) is a truncating sequence for
A, the family of u*=uf1-- - -«ul for 0<a<a forms a basis of 4 over R.

4. Variations. We return to the finite purely inseparable extension L/K. Let E
be an extension of L and let A= E[u] be an STP algebra of type a over E. Then an
E-variation of L/K with values in A4 is a K algebra hom 6: L — 4. We will see in a
moment that a variation is a generalization of a derivation.

Write 6(z)=0 <o <o Doz)u*. We determine equations which the D, must satisfy.
Each D, is a K linear map of L into E and the K algebra hom conditions are the
following: For all « and all z, we L,

Dyzw) = > Dy(z)Dyw).
Btry=a
In particular, Dy(zw) = Dy(z) Do(w), so that D, is a K isomorphism of L into E and
so must be the inclusion map.

We say that z € L is invariant under 6 if equivalently

1. 6(z)=z,

2. for all «#0, D,(z)=0,

3. for all « and all w e L, D, (zw)=2zD,(w).

We let L? be the set of invariants of 6. L? is a subfield of L containing K. We let
Fixz (L/K) be the intersection of all L? as 6 ranges over all E-variations of L/K.

We now give some examples.

EXAMPLE 1. A4 has one generator u such that ¥u2=0. Then 8(z)=z+ D(z)u with
D, denoted by D. For z, we L, we have D(zw)= D(z)w+2zD(w). Thus D is a
derivation.

EXAMPLE 2. A has one generator u such that u®=0 and a>2. Then the family
{D;} for 1 Si<ais what is called a higher derivation. For z, w € L, we have D,(zw)
=2j+k=1 Di(z) Di(W).

ExAMPLE 3. Taylor variation. Let K M <L and L=M|[x]. Set e=e[x: M],
q=p° and A=L[u] with 4?=0. Define an L variation of L/K with values in 4 by
setting 6(z)=z for ze M and 0(x)=x+u. In general if a; € M for 0Si<gq then

q-1 A a-1 P q—l(q—l (k) k—j) ;
0(;0 a,x) ‘ZO a(x+u) jZO kzj a ;)5
Thus
oS ) = a1
i i - & i ] .

i=0

Thus 4 is just the Taylor expansion of P(x)=> a,x' in terms of x+u. Note that
L°=M.

ExampLE 4. Elementary extensions. Let L be elementary over Kand let x,, . . ., x,
be an NGS for L/K such that LxK[x;] Q- - -®x K[x,]. Let e;=e¢[x;:K] and
qi=p%. Let A=L[u,, ..., u,] with uli=0. Define 6: L —~ A4 by setting 8(z)=z for
z € K and 0(x;)=x;+u;.. We can view 8 as a sort of generalized Taylor variation.
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If we let 6, be the Taylor variation defined as in Example 3 by taking
M=KI[xy,...,Xi_1, Xi+1, . . -, X;]= M; and x=x;, then we have

L9= mLo‘= mMi=K
i=1 i=1

Also, if 0,: L ® L — A is defined by 0,(x ® y)=0(x)y, then 8, is an isomorphism
of L algebras.

3. Structure theorem. We continue to let K be a field and L be a finite purely
inseparable extension of K. We now give a theorem which leads to elegant structure
equations for L/K. A slightly different version of the theorem was discovered by
Pickert [3].

THEOREM 1. Let x4, . . ., x, be a normal sequence in L|K and let K,;=K{[x,, . . ., x;].
For 1 Sisr let e,=e[x;, K;_,] and q,=p*. Then, for 1 <i<r,
xfre K[x{, ..., x{t,].
Proof. We use induction on r.
Case r=1. Then i=1 and the assertion is x{: € K which is clear.
Induction step. Assume the assertion for all normal sequences of length less than

r. In particular, induction applied to the sequence x, ..., x,_, yields the assertion
for 1 Si<r. Thus we need only show

) x%e K[xf, ..., xt,].
Now x,, ..., X, is a normal sequence in L/K; so by induction we also know
(2) x‘,?r € Kllxg', ceey x?t. 1].

Since {xi} for 0Si<gq, is a basis of K; over K[x%] and since we know (2), we can
write

3) x4 = Axt, with 4;e K[x¥, ..., x%,].
0si<gqy

Thus we can show (1) if we can show 4;=0 for i>0. Set 1=¢,/q, and define sub-
fields KE M= N<K; by

M = K[x{2], N = KI[xi].

The set {x¥} for 0<i<g, is a basis of N over M. We now raise the terms in (3) to
the power ¢ to obtain

@ o= xi= 3 Al

0si<g,

Thus if we show that x{2 € M and that, for all i, A4{ € M, then by the uniqueness of
an expression in terms of a basis we get x%= A% and, for all i>0, 4,=0, which is
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what we want to show. Now set h=e,=h(L/K), g=e,=h(L/K,), f=e,. Then note
that p=gq,, p’ =4, and p°~'=q,/q,=t. We then assert

1. x% e (L/K).

2. Ate (LIK).

1 is trivial. For 2, note that 4; € (L/K) so A} e (L/K)' *9~7. Thus it remains only
to show that (L/K)’< M. Now

M = (Ki/KY = (Ky/K)n-g = Ky N (LIK)y .

But (L/K)*<(L/K),_,since h=h(L/K)and (L/K)°<=(L/K,)’ < K, since g=h(L/K,).
Thus (L/K)°< M and we are done.
Now let x4, ..., x, be an NGS for L/K. As in §2, part 1, we set

Ki = K[xy, ..., x], e = e[x;:Ki_4), q.=p%,
Ji ={(a1,...,ai,0,...,0)€Z’ : 0 § o <qk}'

Then the set {x},;, is a K basis for K;. In particular, let J=J,. Then the set {x*},¢,
is a K basis for L. Now let

I, ={«eZ:qael}.

In §4, we will see that {x%“},.,;, forms a K basis for K[x{s, ..., xf*;]. Using Theorem
1 we can write x{: uniquely in terms of this basis with coefficients a; , € K for e € I,
xf = Z a; o x4,

aely
We will refer to these equations as the structure equations. We remark that these
equations generate all the relations among the elements x,,..., x, since the

equations determine a K algebra of dimension g¢,----+q, which is exactly the
dimension of L/K.

4. Technical results. We will derive some corollaries of Theorem 1. We will use
the notation from the end of §3. Also let 0<e<h=h(L/K). Then set g=p° and
define

y. = Maximum i such that e; > e.
COROLLARY 1. (L/K)*=K][x4,..., x]=K[x}, ..., x%].

Proof. The first equality comes from the definition of (L/K)® and the fact that
X1, ..., X, generates L/K. Now let y, <i<r. Then e; < e so that ¢;|g. From Theorem 1
we have xfte K[x4,..., x{t,] so that xf € K[x¢, ..., x{_,] so that K[x{,..., x{]
=K|[x{, ..., x{_1]. Descending from i=r to i=vy,+ 1 proves the corollary.

COROLLARY 2. Let 1 £k <vy,. Then the elements xI with a, such that 0 £qo <q
form a basis of K[x%, ..., xt] over K[x{,..., x§_,])
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Proof. Set M=K|[x{,...,xl_,]and N=K|[x{, ..., x{]. Then
1. To show that the powers (x§)* with 0=, <q,/q span N over M we need
x3 € M. By Theorem 1, we know more:

xik e K[x3, ..., xge ]

Note, if k<v,, then e, > e, 50 q|g;.-
2. To show that {x§*} for 0<go,<gq, is independent over M we note that
{x8x} for 0< B, <gq, is independent over K;_, and M<K, _,.

COROLLARY 3. A K basis of K[x3, ..., x¥] is given by {x*} with « such that qo. € J.

Proof. If «=(ay, ..., «,) then g« € J amounts to

1. For 12k<y,, 0=5ga,<q,.

2. For y.<k=r, o,=0.

Thus Corollary 3 follows from Corollaries 1 and 2.

REMARK 1. We are now ready to prove the assertion from the end of §3. To do
this take e=e;. Then g=g¢; and vy, <i. Thus

K[x§,...,x3] = K[x{,..., x{-1] = K[x§, ..., x},].

The basis assertion from the end of §3 follows from Corollary 3.
REMARK 2. The next three corollaries show that the sequence of exponents
e, ..., e, depends only on L/K and not on the NGS chosen.

COROLLARY 4. The elements x3%1.- - -«x3%. with 0 < oy, <p form a basis of (L|K)*
over (L/K)e+1,

COROLLARY 5. §,.,(L/K)=y..
COROLLARY 6. ¢;>e <>y, =i <> 8,,,(L/K)2i.

We have seen in Corollaries 1 and 3 how to find (L/K)*=L?- K. One can also
find L? and (L/K), but the answer is less simple. If 8 €J we can use the structure
equations to write

X = (XY = S A g X

qael]

Then if z=3,.; c;x* we have

=Y cx?¥ = 3 (Z A,;,.,,,,cg)x«a.
BeJ

qael \Bel

We obtain immediately

COROLLARY 7. z € (L/K), <> z%€ K < for a#0 one has

Z Ap,a,acf = 0.
BeJ
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COROLLARY 8. Let w=24uc; d.x"* € (L/K)*. Then we L?<> for some family
{cs}ges with c; € K one has

da = z AB,q_acg.

BeJ

Note that the equations in Corollaries 7 and 8 are semilinear relative to the
isomorphism ¢(x)=x7

The main difficulty in using these corollaries lies in the fact that the coefficients
Ajg q.q are quite hard to write down in terms of the g; , from the structure equations.

REMARK 3. Let A4 be a K algebra. Let e=0 and set g=p®. One can then define
A% (A/K)°, (A/K).:

AT = {x7: x € A}, (A/K) = A% K, (A/K), ={xeA: x*€K}.

Then A%is a subring of 4 and (4/K)¢ and (4/K), are K algebras. Assume now that
A=K]x,, ..., x,] where the defining relations for x, ..., x, are of the form

xXf= D a;,x%,
aely

with
= e 21, q; = p*, a0 € K,
J=A(eg, -5 )

In this case we will say that A4 is a special K algebra. When 4 is a special K algebra
then the analogues of Corollaries 1 to 8 hold.

Sw <q), L={a:qael}

5. Splitting theorems. We now examine what happens to L/K under base
extension by a field E. We use the notation of §3 and in addition we set

F=L®KE, Zi=xi®l, E1=E[Zl,...,zi].

We view F as an E algebra via the map a+—> 1 ® a. Over E the z; satisfy the same
structure equations as the x; do over K, that is
=S a2
aely

Hence in the sense of Remark 3 of §4, Fis a special E algebra. Certain of our results
will depend only on the fact that Fis a special E algebra and we will make note of
this as we go along.

We begin with a simple result which tells when F is a field. We will give a better
result in Chapter 2, §8.

THEOREM 2. The following conditions are equivalent:
1. Fis a field.

2. For all i, E, is a field.

3. Foralli, z}+ ¢ E}_,.
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Proof. The proof will use only the fact that F is special over E with structure
equations as given above.

1 < 2. Trivial.

2 < 3. By induction on r one can assume the equivalence of the following:

Foralli < r, E;is a field < foralli < r, z1 ¢ EP_,.
Then, assuming these equivalent statements hold, we must show
E, is a field < z% ¢ EP_,.

Set a=z% € E,_,. Then E,=F,_,[z,] and z, has X% —a as its minimal polynomial
over E,_;. Thus

E, is a field <~ X% —aq is prime in E,_;[X] < a¢ E?_,.

We are done.
The main result, which we now state, asserts that for large enough fields E, F
becomes a simply truncated polynomial algebra over E.

THEOREM 3. The following conditions are equivalent:

1. Fis an STP algebra over E.

2. Fis a subalgebra of an STP algebra over E.

3. Foralliand all e € I,, a; , € E%.

4. For all g=p°, L*-(K N E% and K are linearly disjoint over K N E“.

Proof. Conditions 1, 2, and 3 do not mention the original extension L/K ex-
plicitly. These conditions are simply assertions about the algebra extension F/E or
about the structure constants g; , € E in the defining relations for the generators
zy,...,z, of F|E:

zh = Z a;,,z%°.
aely

In fact, the equivalence of conditions 1, 2, and 3 depends only on the fact that F
is a special E algebra with generators z,, . . ., z, and structure constants a; ,. We
will use only this much in the proof that 1, 2, and 3 are equivalent and then we will
return to the original situation and show that 1, 2, and 3 are equivalent to 4.

1 = 2. Trivial.

2 = 3. Let F£ A4 with 4 an STP algebra over E. Let A=E[u,, ..., u] with
u%=0. Define NS Z* by

N={(:Bla""188):0 é Bj < bl}

Then {u#}sey forms an E basis for E[u]. For a€J let 2=,y b, suf. Then for
e20 and g=p° we have

z%% = Z bg.guqﬁ = Z b?,,ﬂu“ﬁ.

BeN qBeN
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Note that if gB ¢ N then 4% =0 so that those terms drop from the equation. Now
let 1<i<rand let ¢, ; denote b, ,; for the multi-index o« such that z*=z,. Then

Z; = Z Ciptt’
BeN

We apply the above discussion to the structure equation for z;:

zZh = Z clputf = Zai_az"t“
qiBeN aely
= 3 (3 bt ure.
qBeN ‘ael;

Since the elements u%*® with ¢;8 € N are independent over E we can equate co-
efficients
iy = O a; b
aely
This is a system of linear equations with coefficients in E% which is satisfied by
(@i,0)aer,- Conversely if (d; ¢)aer, is any solution of the system then, by reversing the
calculation,
=D @,.z%
aely
But the elements z%* with « € I; are independent over E so that we must have
G o=a;, for all « € I,. Thus we see that (a; o).y, is the unique solution in E of a
system of linear equations with coefficients in £% and this shows that a; , € E% for
all c e I,.
3 = 1. For all i and all «, write a; ,=d¥, with d; , € E. Then let
U = z;— Z di,az"‘.
aely
Then F=E[zy,...,z]=FEuy,...,u). Moreover uft=0. There are no other
relations on the u; independent of the relations uft=0 since the relations ufi=0
define an E algebra of dimension ¢,-- - -+q,=dimg F.
We now turn to 3 <> 4 in the original situation.
3 < 4. First L(KN EY-K=L*"K=(L/K)".

(L/K)
LYK N E%) K

KN Es

Thus the linear disjointness condition becomes [(L/K)?: K]=[LY(K N E%) : KN E1].
Now the set {x?} for ga € J belongs to L? and forms a basis of (L/K)¢ over K. Since
this set lies in LYK N E9) condition 4 is equivalent to

4*, For all e, the set {x%},,c; forms a basis of LYK N E9 over K N E“.
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If 4* is true, then the expression for x{t in the structure equations must have
coefficients in K N E%, that is, for all «, a; , € E%. Conversely, assume, for all i and
o, a;,, € E% Then we have, for all i,

xtie (KN EW)[x3, ..., x,].

Thus, for e=e; and g=p°, x} € (K N EY[x, ..., x{_;]. Then by the technique of
Corollary 1 of §4 we obtain

LK N E?) = (KN EY[xS, ..., xI] = (KN EY[x, ..., x5].

We can then mimic Corollaries 2 and 3 of §4 to obtain 4*. Thus we have 3 < 4*,
This ends the proof of Theorem 3.
We say that E splits L/K if E satisfies the equivalent conditions of Theorem 3.
Thus E splits L/K <+ L @y E is an STP algebra over E.
We set

S(L/K) = K[v/a;,], 1<i<randacl,.

By condition 3 of Theorem 3, E splits L/K <> S(L/K)<E.

Thus S(L/K) is uniquely determined as the smallest field which splits L/K and
so we may call S(L/K) the splitting field of L/K. In particular, S(L/K) is indepen-
dent of the choice of NGS for L/K.

We remark that when E splits L/K the proof 3 = 1 gives an explicit truncating
sequence for the STP algebra L ® E over E.

ProposiTiON 9. L= S(L/K).

Proof. Let S=S(L/K). Then L ®, S is an STP algebra over S. Let m be the
maximal ideal of L ® S. Then L is mapped to S via

L—>L®xS—>(LQgS)m—>S.

This map is injective since L is a field. The map is unique since L/K is purely
inseparable. Thus L< S.

We now give another splitting theorem which studies the case when L=S(L/K).

THEOREM 4. The following are equivalent to L=S(L/K):

. L is elementary over K.

. K is a fixed field of all Taylor variations of L.

. K is the fixed field of all L-variations of L.

. For all q=p°®, L* and K are linearly disjoint over L* N K.
. For all e, e[ L:(L/K)?]=¢[(L/K).:K].

. For all i, §(L/K)=c;(L/K).

L ®g L is an STP algebra over L.

N AW~
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8. Given a normal sequence x, . .., x; in L|K such that if K;=K|[x, ..., x| then
L+#K,, then there exists x;,, € L— K, with
«. Xg.q hormal in L|K,.
ﬁ' e[xs+1:Ks]=e[xs+1:K]'

Proof. 1 = 2. By Example 4 of part 4 of §2.

2 = 3. Trivial.

3 = 4. Assume that 3 holds but 4 fails, say for g=p°. Choose a subset c,, ..., ¢,
of K with the smallest number of elements ¢ such that

«. Cq,..., ¢ Is independent over LY N K.

B. ¢i, ..., ¢ is dependent over L4
Then we can find z,, . . ., z, € L? with all z;#0 such that 0=>, z,c;. By dividing by
z, we may assume that z,=1. By condition «, for some i, z; ¢ K. We may assume
z ¢ K.

Consider any L variation 6: L — L[u]. Write 0(x)=2, D,(x)u®. Then

0= 0(2‘: Zici) = 2 0(z,)0(c;) = Z 0(z;)c;
= Z (2{: Da(z,)c,)u"‘.
Thus for all «
*) 0= Z D,(z))c;.

Now 6(LY)=(6L)*<(L[u])?<L[u] so that, for all i and «, D,(z;) € L% Thus the
equations (*) are linear equations for the c; with coefficients in L4

Now, since 3 holds and since z, ¢ K, we can choose 8 such that 6(z;)#z,. Then
for some B#0 we have Dy(z,)#0. Of course Dg(z;)= Dy(1)=0. Thus from (*)

t-1
0= tz D,g(z,)ci.
=1

Thus ¢y, ..., ¢;—, are dependent over L? contrary to the minimal choice of .

4 <> 7 < L=S(L/K). By Proposition 9 and the definition, L=S(L/K) <L
splits L/K. But L splits L/K if L satisfies the equivalent conditions in Theorem 3.
Condition 1 in that theorem is Condition 7 here and Condition 4 in that theorem is
Condition 4 here since LYK N LY)=L"

L=S(L/K) = 8. Extend x, ..., x;to any NGS x;, ..., X5, ¥1,..., 1. Let y=y,;
and set e=e[y:K;]=h(L/K;) and g=p°. We seek z € L with

=¢[z:K;] and e = e[z:K].

Let I denote the usual index set such that {x*} for « € I forms a basis of K; over K.
Then the structure equation for y? has the form

Y= z b.x®® with b, € K.

qael



1971] INSEPARABLE SPLITTING THEORY 427

Let ¢,=+b,. Then since the formation of S(L/K) does not depend on the NGS
chosen for L/K and since x,, ..., X, y1,..., y: is an NGS for L/K we have that
¢, € S(L/K)=L. Moreover, since ci=b, € K, we have that e[c,: K] <Ze.

We claim that, for some B, e=e[c;: K;]. Then z=c¢; will give the element we seek
because then e=e[cs:K;]Se[cs: K]<e, so that e=e[cs: K] and e=e[c;:K]. To
prove the claim note that

for all «, e[c,:K;] < e < for all «, b, € KP?

<y eKP =e[y:K] < e.

8 = 1. Using 8, we can find an NGS x,,..., x, for L/K such that, for all i,
e[x,, K;_,]=e[x;, K]. By Proposition 7, we get 1.

4 < 5 <> 6. Proposition 4.

This ends the proof of Theorem 4.

ReMARK 1. In [5], Sweedler shows the equivalence of the following parts of
Theorem 4: 1, 4, and the version of 3 below:

K is the fixed field of all higher derivations of L into L.

We have adapted his proof for 3 = 4.

REMARK 2. In view of conditions 2 and 3 in Theorem 4 one might hope that one
can add to the list of conditions in Theorem 3:

K is the fixed field of all E-variations of L/K.

Alas this condition is weaker than the ones in Theorem 3. For a counterexample
see Example 3 below.

We now give three examples of nonelementary extensions. In all examples P
denotes a field of characteristic p.

ExaMPLE 1. Let K and L be as in Example 2 of part 2 of §1, that is, K=P(a, b, ¢)
with a, b, ¢ algebraically independent over P and L=K][z, w] with z**=qa, wP=
b+ cz?. We have seen that

(LK) =2, o(L/K)=1,
So(LIK) =1,  ay(L/K) = 2.

By 6 of Theorem 4, L/K is not elementary. It is easy to find the splitting field in this
case:

S(L/K) = K[¥/a, ¥/'b, ¥/c] = K[z, ¥/b, ¥c).

ExaMPLE 2. We now construct L/K such that S(L/K) is also not elementary
over K. Let a, b, c, d be algebraically independent over P and set K=P(a, b, c, d),
L=Kl[u,v], with u**=d, v*’=a+(b?+cPa)u?’. Then S(L/K)=K][u,z, w] with
z7*=q, wP*=b? + c?a, that is w?=b+ cz”.

Set M=K|[z, w] and N=K[u, z, w]=S(L/K). Then M<SN, so by Proposition
10 below, we have S(M/K)<=S(N/K). But S(M/K)=K][z, /b, ¥/c]. Thus
S(M[K)E N so in particular N#S(N/K).
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ProrposiTION 10. If KSL< M then S(L/K)= S(M/K).

Proof. Let E=S(M/K). Then LRy EEM Q®x E and M ®4 E is an STP
algebra over E since E splits M /K. By Theorem 3, L ® E is also an STP algebra
over E so that F splits L/K and S(L/K)< E.

ExaMpPLE 3. We now construct K< L< E such that the following conditions hold:

1. F does not split L/K.

2. Kis the fixed field of all E-variations of L/K.

Define

K=P(a, b, c, d) with a, b, ¢, d algebraically independent over P and char P=3.

L=K]z, w] with z°=a, w¥=b+ cz3+dz".

E=L[x] with x®=c+2dz5.

Proof of 1. S(L/K)=KI[¥a, /b, ¥/c, ¥/d]so that e[S(L/K):L]=2. On the other
hand, e[E:L]=1. Thus S(L/K)% E so E does not split L/K.

Proof of 2. We will define a variation 0: L — F[u] where u®=0. On the generators
z and w of L we define 0 by 6z=z+u, fw=w+xu. To show that 8 defines a K
algebra hom we must show that (z+u)°=a, (w+xu)®=b+ c(z+u)®+d(z+u)5. The
first equation is clear and we compute to verify the second:

(w+xu)® = w3+ x3u® = b+cz®+dz8+(c+2dz3)u,
b+c(z+u)P+d(z+u)® = b+cz®+ cud +dz8+ 2dz%uP + du®
= b+ cz3+dz8 + (c+2dz%)ud.
We have used u®=0.

Next let M be the fixed field of §. We claim that M =K. If not then we assert that
K[z®]=(L/K),< M. For the equation, K[z%]=(L/K),, we note that K[z8]=(L/K),
and that (L/K), cannot have exponent 2 over K for this would imply

oy (L/K) = 2 = 8,(L/K),  oay(L/K) =1 = 8;(L/K),

a(L/K) = 0 = 8(L/K), k23,
which would imply that L/K is elementary by Theorem 4 which would contradict
the calculation of S(L/K) given above. We now obtain the inclusion (L/K),; =M
by observing that, since e[(L/K),:K]=1, (L/K), is the unique subfield of L of
height 1 over K and so must be a subfield of any M such that K& M < L. Finally,
however, the inclusion K[z%]< M is impossible since 6 does not fix z%:

0(z%) = (z+u)® = 28+ ud # 25
Hence the claim that M=K is true and this proves 2.

6. The ascending chain of splitting fields. We are led by Example 2 of §5 to
define an increasing chain of splitting fields S,(L/K). We do this by induction:

So(L/K) = L,
Si(LIK) = S(Sn-1(L/K)/K) forn z 1,
So(L/K) = nLZJO Su(L/K).
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We now study these fields in detail.
LemMMA 5. h(S(L/K)/K)=h(L/K).

Proof. Since KL< S(L/K), we have h(L/K)<h(S(L/K)/K). But S(L/K) is
built using g;th roots of elements of K where ¢;=p® and e;<h(L/K). Thus
h(S(L/K)/K)=h(L/K).

LEMMA 6. For 1 Sn< oo, h(Sa\(L/K))=h(L/K).

Proof. For n finite use induction on » and Lemma 5. For n=o00, use the finite
case and the fact that a union of fields of height /4 has height A.

PROPOSITION 11. Let K< L< E and let E be elementary over K. Then S ,(L/K)< E.

Proof. We know that L=S,(L/K)< E. Assume by induction that S,(L/K)<E.
Then S,(L/K)®x ESEQy E and E Qg E is an STP algebra over E since E is
elementary over K. By Theorem 3, E splits S,(L/K) so that

Sn+1(L/K) = S(S«(L/K)/K) < E.
Thus, for all n, S,(L/K)< E so that S,(L/K)<E.

PROPOSITION 12. There exists a finite extension E of K such that LS E and E is
elementary over K.

Proof. Choose a p-basis {z,},e, of K over K?. Note that the index set has
cardinality equal to the absolute exponent ex of K and so may be infinite. Let
h=h(L/K) and let g=p". Also let w,=+/z,. Then standard facts about p-bases
show

1. If N is a finite subset of M with n elements and if we set Ey=K[w,]forpe N
then

a. [Ey:K]=q".

B. Ey is elementary over K. In fact: EyxX),en K[w,].

2. If x is purely inseparable over K and e[x: K] < h, then there exists a finite subset
N of M such that x € Ey.

Thus, if L=K][x,,..., x,], choose NS M, N finite, such that x; € Ey for all i.
Then LS Ey and Ejy is the desired field.

THEOREM 5. 1. S, (L/K) is a finite extension of K.

2. For some n< o0, S,(L/K)=S,(L/K).

3. So(L/K) is elementary over K and thus is the unique minimal extension E of K
such that L E and E is elementary over K.

Proof. 1. Use Propositions 11 and 12.

2. Use 1.

3. If So(L/K)=S,(L/K) with n<oo then S(L/K)=3S, ,1(L/K) so that S(L/K)
is its own splitting field and so by Theorem 4 is elementary over K. The rest of 3
follows from Proposition 11.
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ReEMARK. In [5], Sweedler shows

There exists a unique minimal extension E of K

such that LS E and E is elementary over K.
However, lacking splitting fields, his proof is quite complicated.

7. Complexity. In Theorem 5 of §6, we have seen that the ascending chain
{Sn(L/K)} becomes stable after a finite number of steps. Thus we are led to define
the complexity ¢(L/K) of L/K by

¢(L/K) = least n such that S,(L/K) = S,(L/K).
We will show
THEOREM 6. c¢(L/K)+1=h(L/K).

We will need some preliminaries before we can show the theorem. We will call
a pair (M, N) of intermediate fields of L/K a normal pair if

1. L=M-N.

2. M is elementary over K.
The degree d(M, N) of the normal pair (M, N) is deﬁned as h(N/K).

ExaMPLE 1. The pair (K, L) is always a normal pair whose degree is the height
of L/K.

ExaMPLE 2. If L is elementary over K then the pair (L, K) is a normal pair of
degree 0.

LeMMA 7. Suppose there exists a normal pair for L/K of degree d>0. Then there

exists a normal pair (M, N) for L/K of degree d such that
1. The exponent sequence e, 2 - - - 2 e,, defined by any NGS for M |K is such that

eq=d.
2. Forall xe N, e[x: M]<d.

Proof. Let (P, Q) be a normal pair for L/K of degree d. Write P in the form
P = K[x;,] k" - Qk K[x,].

Let fi=e[x;:K]. We can assume that f;=--- = f,. Next let r be the maximum
integer k such that f;, >d. Then set

R=Klxy,....,x), N=0x1..., %]

Then Ris elementary over K, R-N=Q[x,, ..., x;]=P-Q=L, h(N/K)=h(Q/K)=d.
Thus (R, N) is also a normal pair of degree d. Next choose from N a maximal
sequence yy, ..., y; such that if R=R[y, ..., y;] then e[y;:R,_;]=d for 1=ist.
Set M=R,. By Proposition 7, M is elementary over K. Thus, (M, N) is also a
normal pair of degree d. The exponent sequence of M/K is fi,...,f,, d,...,d.
Hence 1 holds for (M, N). Finally, by the maximal choice of the sequence yy, . . .,
we have, for all x € N, e[x: M]<d. This is 2 and so we are done.
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LEMMA 8. Suppose there exists a normal pair for L|K of degree 1. Then L is
elementary over K.

Proof. Let (M, N) be chosen as in Lemma 7 with d=1. Then, for all xe N,
e[x:M]<1, so that x€e M. Thus, L=M-N= M, so L is elementary over K.

LEMMA 9. Suppose there exists a normal pair for L|K of degree d>0. Then there
exists a normal pair for S(L|K) over K of degree strictly less than d.

Proof. Let (M, N) be chosen as in Lemma 7. Choose x;, ..., x, € M so that
M = K[x,] Q¢ - Qx K[xn],  e[x1:K] 2---2 e[xn:K].

Next, using the fact that N generates L over M and Proposition 6, choose
Xm+1s - - -» Xn € N such that x, .1, ..., X, is an NGS for L/M. We first show that
X1, ..., Xp is an NGS for L/K. Let

Ki = K[x,, ..., x], e; = e[x;, Ki_1], q: = p*,
S{={x‘,...,xn}, J={(a1,...,an):0§ak<qk}.
We must show that e;=h(L/K;_;). For i>m, this follows from the fact that

Xm+1s - - -» Xn is an NGS for L/ M. Now let i < m. We observe that, since S; generates
L over K;_,,

h(L/K;-,) = I;":;x elx;: K 4]
In finding the maximum, there are two cases to consider:
Case 1. i<j<m. Then e[x;:K;_;]=e[x;: K]S e[x;:K]=¢e[x;:K;_,]=e,.

Case 2. j>m. Then, by 1 of Lemma 7, e;=2d. On the other hand, since N has
height d over K, we have e[x;:K;_,]<e[x;: K]<d=<e,. Thus

max e[x;:K;_,] = e;.
PEY
Thus, x,, ..., x, is an NGS for L/K.

We now examine the structure equations for x,,..., x,. For i<m we have
simply x{1=a; € K. For i>m we have the usual structure equations

xf = z ai,uxq'a-

qiael

Thus, S(L/K) is generated over K by
('/a, =x, fori=m,
(7 a . for i > m.

Now set P=K[{'/ai,¢] for i>m. Then S(L/K)=M-P so that (M, P) is a normal
pair for S(L/K) over K. Finally, h(P/K) < d since, by 2 of Lemma 7, for i>m,

e = e[x;:K,_1] S e[x;:M] < d.
Thus, (M, P) is a normal pair for S(L/K) over K of degree strictly less than d.
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We will obtain Theorem 6 as a consequence of Example 1 and the more general
result below:

THEOREM 7. Suppose there exists a normal pair for L|K of degree d>0. Then
c(LIK)+1=d.

Proof. Let c=d—1. By repeated use of Lemma 9, S,(L/K) has a normal pair of
degree at most 1. By Lemma 8, S,(L/K) is elementary over K. Thus, by Theorem 5,
So(L/K)=S,/(L/K) so that ¢(L/K)=c, as desired.

8. Examples. We now construct a field K and extensions L, of K such that one
has ¢(L,/K)=n, h(L,/K)=n+ 1. This will show that the inequality in Theorem 6
is the best of its kind. Let

P be a base field of characteristic p.

{»:.i}0<1si<» be independent transcendentals over P.

K=P(yi1)osis5<w-
We next define elements x;, , for 0=k <n<oo which will be used to construct the
fields L,. We use induction on n. To begin

0) X8,0 = Yo,o-
Assume that x, , is defined for m <n. Then set

1) XBln = Yo,n-

Also for 1=k =<n set

(2 X = Vet (OB =1,0-1) XEn-

We then define L,=K[xXq p, .. ., X,,]). To find the properties of the extensions L,
of K it will also be useful to define z , by

(3) 2B = Vin
From (2) one can show
“ Xin = Zgn+Xk-1,n-1Xon fOrl1 =k S n.
We also define
M, = K[Xo,n, Z1,ns - - -5 Zn,n)s Egpn=Lnp_ - Ly

Fact 1. h(L,/K)=n+1.

Proof. First note that e[x,,,: K]=n+1so h(L,/K)=n+1. To show equality we
must show that, for 1 Sk<n, x§"; ' € K. By induction on n, we can assume that
xP~1.n-1 € K. Then by (1) and (2),

n+1 n
x%.n = y%,n"'(xz—l,n—l)ﬂ'yo,n eK.

We are done.
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REMARK. Fact 1 shows that the coefficients (x§~; ,_;) in (2) are elements of K.

Fact 2. L,_,-L,=L, _1[X0.ns Z1,ns - s Zon)=Ln_1- My,

Proof. Use (4).

Fact 3. e[L,:K]=n*+n+1.

Proof. The inequality e[L,:K]<n?+n+1 comes from the fact that L, is con-
structed by adjoining one p™*!-root and n p"-roots. On the other hand

e[L,:K] 2z e[L,_y-L,:L,_,) = e[L,_,-M,:L,_;] = n®+n+1.

We are done.

Fact 4. The sequence Xg ,, . . ., Xn,, is an NGS for L,/K. Moreover, equations
(0), (1), and (2) give the structure equations for this normal generating sequence.

Proof. Fix n and set P,=K[xq,,..., X; o] for 0<i<n. Then, to show both
assertions, we must show

o. e[xy,:K]=n+1=h(L/K).

B. e[x; ,:P;_1]=n=h(L/P;_,) for 1ZiZn.

Assertion « comes from Fact 1. To show assertion B, we first note that for all j

xin € K[xg] = Py = Pi_;.
Thus
n 2 h(LIP;_,) 2 e[x;n:Pi_,] = e[P;:P;_,]).

But in view of Fact 3, we cannot have e[P;: P,_,] <n for any i so we obtain assertion
B and Fact 4 as well.

Fact 5. S(L,/K)=L,_,-M,.

Proof. Using the structure equations we find that

S(Ln/K) = K[xo,m Zims o3 Zayns Xo,n—15 - - > xn—l.n—l] = Ln—l'Mn-

Fact 6. Eyn=L,_;,- M, _j1°----M,.

Proof. By induction on k, using Fact 2.

Fact 7. S(Ey.,/K)=Ey11.n-

Proof. Set Fy, ,=M,_y 41+ - -*M,K. Then F, , is elementary over K and linearly
disjoint from L, _, over K. By Proposition 13 below as well as Facts 5 and 6 we
obtain

S(Ek,n/K) = S(Ln—k/K)’S(Fk,n/K) = Ln—k—l'Mn—k'Fk.n = Ek+1,n-

Fact 8. ¢(L,/K)=n.

Proof. The chain E; ,<E, ,< - S E, , is strictly increasing so that by Fact 7
¢(L,/K)Zn. But by Theorem 6 and Fact 1 we have ¢(L,/K)<h(L,/K)—1=n. We
are done.

It remains to state and prove Proposition 13.

PROPOSITION 13. Let P and Q be linearly disjoint extensions of K. Then S(P- Q/K)
=S(P/K)-S(Q/K).
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Proof. Set E=S(P/K)-S(Q/K). Then, by Proposition 10, ESS(P-Q/K). On
the other hand since P and Q are linearly disjoint over K, P- QX P ®¢ Q. Thus

P-ORKEX(PRx Q) Rk Ex (PQx E) ®: (0 ®k E).

The last algebra is the tensor product over E of STP algebras over E since E splits
Pand Q over K. Thus (P- Q) ®, Eis an STP algebra over E and E splits P- Q over
K, that is, S(P- Q/K)<E.

CHAPTER 2. SPLITTING THEORY FOR ALGEBRAS

1. Splitting questions. Let 4 be a K algebra where K is a field of characteristic
p. We recall that in Remark 3 of Chapter 1, §4 we said that A4 is a special K algebra

if A=K[x,,..., x,] where the defining relations for x, ..., x, are of the form
Xfo= D ;X%
aely
with
ep2e2---ze 21 g =p%  a,.€K,

J={(e,.., ) 0= o < gqi}, I; ={o:qael}

In this case, we will call x,, . . ., x, a normal generating sequence or NGS of type
q9=(q1,...,q,) for A over K. We also define

di,a = '{‘/ai,m S(4/K) = K[di,a]’ lsis<randeael.

Here we view the elements d, , as in some fixed algebraic closure C of K and we
call S(4/K) the splitting field of 4 over K.

REMARK. An example of a special K algebra is the case when A is defined by
setting a; , =0 for all i and «. In this case we call 4 a special STP algebra over K.
In general, if B=K[u,, ..., u,]is an STP algebra over K with truncating sequence
Uy, ..., U, type by, ..., b, and dimension b=b,-- - -+b,, then B is special over K
if and only if each b, is a power of p or, equivalently, b is a power of p.

Now let 4 be a special K algebra and let E be an extension of K such that
S(A/K)<E. In A ® E define

uy=x I—dex“® 1.
aely
Then 4 ®x E=E|u,, ..., u,) and the defining relations for u, ..., u, are simply
ufi=0. Thus, A ® E is a special STP algebra over E. More generally, we have

THEOREM 1. Let A be a special K algebra and E be an extension of K. Then the
following conditions are equivalent

1. A ®x E is a special STP algebra over E.

2. A Qg E is a subalgebra of a direct sum of STP algebras over E.

3. SA/K)<E.
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Proof. We have just seen that 3 = 1 and it is obvious that 1 = 2. Moreover,
the essential aspects of 2 = 3 have already been done in the proof of Theorem 3 of
Chapter 1, §5. An inspection of the proof given there shows that with some minor
changes of notation the argument works just as well when 4 ®y F is a subalgebra
of a direct sum of STP algebras as when 4 ®, E is a subalgebra of one STP
algebra.

Theorem 1 justifies calling S(4/K) the splitting field of 4 over K.

We now give a name to the kind of splitting properties that we have just been
studying. Let 4 be a K algebra. Then

1. We say that A is strongly splittable over K if A ® E is a special STP algebra
over E for some extension E of K.

2. We say that A is splittable over K if 4 @4 E is a direct sum of special STP
algebras over E for some extension E of K.

One of our main results will be

THEOREM 2. The following conditions are equivalent:
1. A is strongly splittable over K.
2. A is special over K.

We will prove Theorem 2 in §4. In §2 we study the structure of any finite-
dimensional K algebra. We examine what happens to such an algebra under base
change. We will then be able to state a theorem which characterizes splittable
algebras and to show that this theorem is a consequence of Theorem 2. In §3 we
develop the technical results needed to show Theorem 2.

2. The structure of a finite-dimensional K algebra. Let A be a finite-dimensional
commutative K algebra. We will need to examine the relation between 4 and a
certain subalgebra M of A defined by

M= () A"-K.
nz0

We begin by studying how 4 and M factor into direct sums of ideals.
Let « € 4. Recall that « is an idempotent if «#0 and «?=«. Set

I = {x€ A : «is an idempotent}.

Note that if « is an idempotent in 4 then o* =« for all k2 1 so that « € M. Thus [is
also the set of idempotents in M.

Let S be a subset of I. Then one can show that the following conditions are
equivalent:

1. A is a direct sum of the ideals A-« for « € S.

2. M is the direct sum of the ideals M-« for « € S.

3. One has 3 s a=1and «f=0 for «, B € S with «#p.

When these conditions hold we say that S factors A and M. Next it can be shown
that every factorization of 4 or M into a direct sum of ideals arises as above from
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a subset S of I which factors 4 and M. Thus, in particular, the factorizations of 4
and M into direct sums of ideals correspond.

We now explain how to get the best possible factorization of 4 and M. If « € 4
is an idempotent, we say that « is minimal if the five equivalent conditions given
below hold:

1. A-«is a local K algebra with unit «.

2. «is the unique idempotent in 4 -c.

3. M-«is alocal K algebra with unit «.

4. «is the unique idempotent in M- o.

5. It is impossible to write «=B+y with 8, y € I and By=0.

Set

J ={e€ A : «is a minimal idempotent}.

Then J factors 4 and M and the ideals 4-« and M-« for « € J cannot be factored
further as the direct sum of ideals. Moreover J is uniquely determined by these
properties and it is in this sense that J gives the best possible factorization of 4
and M.

The factorization of 4 and M via J allows one to reduce many questions to the
case when 4 and M are local rings. It should be noted that if « is an idempotent in
A then

Moo= (N A" Ka= ) (4-2)"-K.

nzo nz0
This shows that M-« is constructed from 4 -« just as M is from A4.
THEOREM 3. M is the unique maximal separable K algebra in A.

Proof. The family {4”"-K},s, forms a descending chain of subspaces of the
finite-dimensional K vector space 4. Hence this chain must stabilize, say at n=r.
Thus, for n2r, M=A""-K. We can now show that M= M?. K. Indeed

M?.K = (A" -K)*- K = A" K = M.
From M= M?-K, we see that if x;, . .., x; is a K basis of M then x%, ..., xP is also
a K basis of M. In particular, M cannot have nilpotent elements. Indeed, if M did
have nilpotent elements, we could find x € M such that x#0 and x?=0 and then
could choose a basis with x, =x to get a contradiction.

We now show that M is a separable K algebra. For this it is enough to consider
the case when 4 and M are local. Then, since M has no nilpotent elements and is
local, M is a field. Then, from M=MP?P-K, we see that M is a separable field
extension of K which shows that M is a separable K algebra.

Finally, if L is any separable K subalgebra of 4, we must show that L< M. Since
A is commutative, L is commutative and so L must be the direct sum of separable
field extensions of K. Thus L=L?".K for all n=0. In particular, for n=r,

L=LF.-K< A" - K = M.
We are done.
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We are now ready to study splitting questions. We begin with the case when A
is local. M is then a separable field extension of K. We will aim to show

THEOREM 4. Assume that A is a local K algebra. Then the following conditions are
equivalent:

1. A is splittable over the field K.

2. A is strongly splittable over the field M.

We will see that the issue in the theorem is to compare 4 @k E with A Qy E
for certain extensions E of M. We first show

LEMMA 1. For all extensions E of M, A @ E is a local E algebra and its residue
field is a purely inseparable extension of E.

Proof. Let C be an algebraic closure of E. We must show that there exists
exactly one E homomorphism ¢ of 4 ®, E into C. Now one such homomorphism
does exist since 4 ®,, E is finite dimensional and C is algebraically closed. Call
this homomorphism ¢. We must show ¢ is unique. Since A generates 4 ®,, F as an
E algebra it suffices to show that ¢(x) is uniquely determined for x € 4. Choose r
so that M=A4""-K. Then x” € M so that p(x)” =¢(x*)=x"". Thus ¢(x) is the
unique p'th root in C of x* so ¢(x) is uniquely determined.

We now choose N to be some least normal extension of K such that M < N and
we let X be the set of all K isomorphisms of M into N. If E is an extension of N
and o € X, we denote by E| the field E viewed as an extension of M via M 25 NS E.
We let : M — P,z E, be the map induced by the maps o: M — E, and we let
¥': M Qk E — Psex E, be the E algebra map induced by ¢. Note that ¢ is the map
which defines the M algebra structure on (P,cz E,. This implies that ¥ is also an M
algebra map.

LEMMA 2. Let E be an extension of N. Then

1. ¥ is an isomorphism.

2. A @k EX@sez A Qu E,. This is the unique expression of A Q E as a direct
sum of local rings.

Proof. 1. This fact is well known so we only sketch the proof. Since N is normal
over K, the number of elements in X is the degree [M:K]. Thus M Q4 E and
@sez E, have the same dimension over E. Moreover ¥ is surjective by the indepen-
dence of characters theorem. Hence ¥ is an isomorphism.

2. AQk E=AQu (M Qx E)YX A @y (Does E-)=Poex (A @u E;). The last
fact follows from Lemma 1 and the fact that an expression as a direct sum of local
rings is always unique.

To apply Lemma 2 to the proof of Theorem 4, we must be able to compare the
structure of 4 ®, E to that of 4 ®  E, for o € Z with o 1. We can do this when
E is an extension of N such that the condition (*) given below holds

(*) Every K automorphism 7 of N extends to an automorphism 6 of E.
Note that (x) holds if E is algebraically closed.



438 RICHARD RASALA [December

LeMMA 3. Let E be an extension of N satisfying (x). Then the following conditions
are equivalent :

1. A ® E is a direct sum of special STP algebras over E.

2. Forall o eZ, A ®y E, is a special STP algebra over E.

3. A Q®y E is a special STP algebra over E.

Proof. From Lemma 2 it is clear that 1 < 2 while 2 = 3 is trivial. Thus we must
show 3 = 2. Let o €Z. Then since N is normal over K we can extend ¢ to an
automorphism 7 of N. Using (), we can then extend = to an automorphism 6 of E.

E-Cs E

(.

N ——> N
k/:
M

Clearly we can view 0 as an M algebra isomorphism of E with E,. Thus 8 extends
to an isomorphism 1 ® 0: 4 @, E—> A Q@ E,. This is enough to show that if
A ®y E is a special STP algebra over E then so is 4 @y E,.

We are now ready for the

Proof of Theorem 4. If an algebra splits over some field F then it splits over all
extensions E of F. Thus, to test splitting properties, it is enough to use fields E
which contain N and which satisfy (). Then 1 < 3 of Lemma 3 implies the theorem.

Using Theorems 2 and 4, we can now characterize splittable algebras in general:

THEOREM 5. The following conditions are equivalent:
1. A is splittable over K.
2. For all minimal idempotents «, A -« is a special algebra over the field M - «.

Proof. Let J be the set of minimal idempotents. Then consider two additional
conditions:

3. For all a €J, A-« is strongly splittable over the field M.

4. For all € J, 4« is splittable over K.

Then

2 < 3 follows from Theorem 2.

3 <> 4 follows from Theorem 4.

4 < 1 follows from A=e; 4-0..

As a consequence of our theory, we also obtain

THEOREM 6. If A is q field extension of K, then A is splittable over K.

Proof. By Lemma 1, A is purely inseparable over M so, by the theory of Chapter
1, A is strongly splittable over M. Then, by Theorem 4, A4 is splittable over K.
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We conclude by defining the splitting field S(4/K) of 4 over K when 4 is split-
table. We first study the case when A is local. As in the discussion of Theorem 4,
we let

M =the maximal separable subfield of A.

C=any algebraically closed field which contains M.

N=the least normal extension of K in C which contains M.

Z =the set of all K isomorphisms of M into N.

By Lemma 2, we have a decomposition
0)) AQx Nz @ AQuN,.

)]
Weset A,=A4 ®, N, and we view 4, as an N algebra. Suppose E is an extension of
N. Then we have

AU®NE= (A®MN0')®NE= A®ME0-
Thus, if E is an extension of N, we have a decomposition

2 AQrE= (—DEA.,®~E.

This decomposition shows that we must study the N algebras A4, for ¢ € 2. First
note that since A is splittable over K we have from Theorems 4 and 2 that 4 is
special over M. Let x,,..., x, be an NGS for 4 over M and let a; , € M be the

structure constants in the defining relations for x,, . . ., x,. The structure equations
then have the usual form:
A3) Xpo= D ayx%,

aely

We set d; ,=+/a; , so that S(4/M)=M]Id,,], 1<i<r and a€I,. Since S(4/M)
is purely inseparable over M, each ¢ € Z has a unique extension from M to an
isomorphism of S(4/M) into C which we will also denote by o. In this way we
identify  with the set of all K isomorphisms of S(4/M) into C.

LEMMA 4. Let o € Z. Then
1. A, is a special N algebra.

2. Thesequencex; ® 1, ..., x, ® lin A, isan NGS of A, over N and the structure
equations for this NGS are
) (a® 1% = 2 o(a,0)-(x @ 1)%e.

aely
In particular, the structure constants relative to this NGS are just the elements
o(a,,)eNfor 1Sisrand ael,.
3. S(4,/N)=N-o(S(4/M)).
Proof. The equations (4) follow from the equations (3) and the fact that A4,
is defined as 4 ®, N,. From the equations (4), we obtain the rest of assertions 1
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and 2. To get assertion 3, first note that o(di,a)='<l/o(ai,a)- Thus
S(A4,/N) = Nlo(d,,.)] = N-o(S(4/M)).

We are done.
We now define the splitting field S(4/K) to be the composite of the fields
S(A,/N) for o e 2.

THEOREM 7. Let A be local and splittable over K and let E be an extension of K.
Then the following conditions are equivalent:

1. Esplits A over K, that is, A @y, E is a direct sum of special STP algebras over E.

2. A Qg E is a subalgebra of a direct sum of STP algebras over E.

3. S(4/K)<E.

Proof. We may assume by choosing C large enough that E< C. Then, if any of
the three conditions hold, M ® E is a direct sum of copies of E so that E splits
M and we have N E. Thus we have the decomposition (2). The equivalence
proof is now easy:

1 = 2. Trivial.

2 = 3. If 2 holds, then for all ¢ € £ we have that 4, ®y E is a subalgebra of a
direct sum of STP algebras over E. Thus, by Theorem 1, S(4,/N)c Eforalloc e,
that is, S(4/K)< E.

3 = 1. If 3 holds, then for all c € Z we have S(4,/N)<E so that A, ®y Eis a
special STP algebra over E. Thus we have 1.

We now give a new way to define S(4/K).

THEOREM 8. Let A be local and splittable over K. Then S(A/K) is the least normal
extension of K in C which contains S(A/M).

Proof. Let T denote the least normal extension of Kin C which contains S(4/M).
Since M= S(A/M) we see that N=T. Since X is the set of all K isomorphisms of
S(A/M) into C we also have

T = composite of the fields o(S(A4/M)) for o € X.
Thus
T = composite of the fields N-o(S(4/M)) for o € Z.
Hence by Lemma 4
T = composite of the fields S(4,/N) for s €=
= S(4/K).
We are done.

We now pass to the general situation when A is any splittable K algebra. We let
J be the set of minimal idempotents of A. Then we have as usual:

A =@A-a.

43
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Here, for all « € J, A-« is local. Thus we are led to define
S(A/K) = composite of the fields S(4-«/K) for « € J.

ReEMARK 1. Theorem 7 is true for any splittable K algebra. As a consequence
we have

COROLLARY 1. The following conditions are equivalent for any K algebra A:
1. A is splittable over K.
2. A ®g Cis a direct sum of special STP algebras over C.

Proof. 2 = 1 is clear and 1 = 2 follows from S(4/K)<C.
As a special case of Theorem 7 we have

COROLLARY 2. Let A be splittable over K and assume that A is a subalgebra of a
direct sum of STP algebras over K. Then A is a direct sum of special STP algebras
over K.

REMARK 2. Theorem 8 generalizes to

THEOREM 8%*. Let A be splittable over K, let M be the maximal separable K
subalgebra of A, and let J be the set of minimal idempotents in A. Then S(A/K) is the
least normal extension of K in C which contains all of the fields S(A-o/M <) for
a€el.

As a consequence we have
COROLLARY. If A is splittable over K, then S(A/K) is normal over K.

3. Special sequences. In this section, we study how generators can be chosen in
a special STP algebra.

Let E be a field of characteristic p and F=E[uy, . . ., u,] be a special STP algebra
over F of type g=(q,, . . ., g,) where

[\
v

ufr =0, q; = p4, ey =---2e 1.

Let M=(u,, ..., u,) be the maximal ideal of F. Then F=E@® M and we let
7: F— M be the projection map.

Let 1<s<r and Xx;,..., x,€ F. We say that x,,..., x; is a special sequence
relative to uy, ..., u, if for 1 <i<s
F=E[xb-",xhui+1"~-aur]-

We motivate this definition by the following example:

EXAMPLE. Let A be a special K algebra with x;, ..., x, an NGS for 4 over K
of type q. Let S(4/K)<E and set F=A4 Qg E. Define u,, ..., u, as in §1. Then
X1, ..., X, is a special sequence relative to uy, .. ., u, since in this case for | <i<r

Elxy, ..., x] = Efuy, ..., u).
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To study special sequences, we will need some notation. For 1 Si<r let
1. J; be the set of all a=(«y, ..., ) such that
for 12k=<i, 0= <qy,
fori<k=r, o =0.
2. J; be the set of all B=(B,, . .., B,) such that
for 12k=i, B=0,
fori<k=r, 028, <qs.
3. [={a:qaelt_4}

PROPOSITION 1. Let x,, . .., x; be a special sequence relative to u,, . . ., u, and let
E,=FE[xy,...,x;]. Then, for 1 £i<s,
1. xlie E4[x], ..., x{,].
. dimg E;=qy+ - -+¢;.
. The set {x*} for « € J; is a basis of E; over E.
. The set {u?} for B €J, is a basis of F over E,.
. The set {x“u?} for o € J; and B € J, is a basis of F over E.
. There exist unique constants a; , € E% for o € I, such that xji =73 ¢;, a; oX%°.

AN AW

Proof. From our assumption that x,, ..., x; is a special sequence relative to
Uy, ..., U, we obtain for 0<i<s

F = E,-[qu, ceey u,—].

Thus, Fis generated as a module over E; by {#} for B € J, and this set has g; , 1+ - -+,
elements. Since dimg F=gq,-- - - +q,, we have

A. dimg E;2q;-- - -+g;.

B. dimg E;=gq,:- - -+q; < {u} for B € J, is a basis of F over E,.

With this, we are ready to prove our assertions:

1. Let j=i—1. Then F=E,[u,, ..., u,] so that x,=> bsu® with b, € E, for Be J,.
On taking g;th powers we obtain

X = > byus® = b

Thus xf: € Efi=E%4[x{, . .., x{t,].

2. By 1, we have that, for 1=k=i, dimg E;Zq, -dimg E,_;. Thus we get
dimg E;<q,-- - -+q; so that, by A, we obtain 2.

3. The set {x°} for « € J; generates E, as a vector space over E, by 1, and this set
has g-- - -+q; elements. Then from 2 we get 3.

4. Use 2 and B.

5. Use 3 and 4.

6. Use 1 and 5.

PROPOSITION 2. If Xy,..., X, is a special sequence relative to u, ..., u, then
X1, . . ., Xy is @ normal generating sequence of F over E.

Proof. Use 6 of Proposition 1.
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PROPOSITION 3. Let x4, ..., x; € Fwith s<r. Let X generate F over E. Assume
F=FE[x),...,Xe Usy1y...5 Ul

Then for some x;,, € X
F=FE[Xy,...,Xe41, U055 U]

Proof. Set y,=7x,€ M and z;=x;—7x;€ E. Since x;=z;+y, and z, € E, our
assumption yields

F= E[yl,H Vs Ust1s - o ur]-

Now M /M? has dimension r over E S0 yy, ..., Ys, Us41, - - -, 4, Must be a basis of
M mod M2, Delete u,,, from this list and consider the set Y={rx : x € X}. Since
X generates F over E as an algebra, Y generates M mod M?2 as a vector space over
E. Thus we can find y,,, € Y such that y,, ..., Vs, ¥ss1, Us42, - - -, U, fOrms a basis
of M mod M2 over E. Then any x;,, € X such that rx,,,=y,,, will have the
required property.

PROPOSITION 4. Let X generate F over E. Then there exist x,€ X for 1Zi=<r
such that x4, . . ., x, is a special sequence relative to uy, . . ., u,.

Proof. Use Proposition 3.

4. Splitting revisited. Using Proposition 4 of §3, we will now show Theorem 2
of §1. Recall that we must show that for any K algebra A the following conditions
are equivalent:

1. A is strongly splittable over K.

2. A is special over K.

From §1, we know that 2 = 1. To show 1 = 2, we must show that if condition 1
holds then A4 has a normal generating sequence. We can show even more:

THEOREM 9. Let A be a strongly splittable K algebra and let X be a subset of A
which generates A over K. Then there exists an NGS x,, . . ., x, of A over K such that,
Sfor all i, x; € X.

Proof. We let E be an extension of K such that F=4 ® E is a special STP
algebra over E and we use the notation of §3. We view A4 as within F via the map
ar>a® 1. Then X generates F over E so, by Proposition 4, we can choose x;, € X
such that x,, . . ., x, is a special sequence relative to u, . . ., u,. Then, by Proposition
2, X1, ..., X, is an NGS of F over E. We claim that x,, . . ., x, is also an NGS of 4
over K. To prove the claim we need a simple lemma about tensor products which
we state without proof.

LEMMA S. Let A and E be K algebras and let F=A Qy E. View F as an algebra
over E. Let S be a subset of A. Let K[S] and E[S] be the rings generated by S over
K and E respectively. Then ifa€ A, a € K[S] < a€ E[S].
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From the fact that x,, ..., x, is an NGS for F over E we obtain two conditions

F = E[x,,...,X] xtie E[x4, ..., xi ], 1

IIA
IIA

isr
Using Lemma 5, we obtain

A4 =K[x1a~-~’xr], x?iEK[x‘{l,...,x‘,“_l], 1

IIA
IIA
~

These conditions imply that x,, ..., x, is an NGS for 4 over K.
As an illustration of how Theorem 9 can be used, we show

THEOREM 10. Let R and S be K algebras and let A=R ® S. Then the following
conditions are equivalent:

1. A is strongly splittable over K.

2. R and S are strongly splittable over K.

Proof. 2 = 1. This follows from A ®x E=(RQx E) ®z(S ®x E) and the
fact that the tensor product of two special STP algebras is a special STP algebra.

1 =2 Let X=RU S. Then X generates 4 over K and so, by Theorem 9, we
can choose an NGS x,, ..., x, of 4 over K with x; € X. Now let y,, ..., ys and
Zy, ..., z; be the subsequences of xy, . . ., x, which lie in R and S respectively. Then,
by an argument similar to that in Theorem 9, one checks that y,, ..., ysis an NGS
for Rover Kand z,, ..., z; is an NGS for S over K. Thus R and S are special over
K and hence strongly splittable over K.

In the same direction, we also have

THEOREM 11. Let R and S be K algebras and let A=R ® S. Then the following
conditions are equivalent:

1. A is splittable over K.

2. R and S are splittable over K.

Proof. By Corollary 1 of Theorem 7 (cf. Remark 1 of §2), we can reduce to the
case when K is algebraically closed. Then we can reduce to the case when R and S
are local. We then apply Theorem 10.

As a consequence of Theorems 10 and 11, we have

COROLLARY. Let R and S be K algebras and let A=R Qx S. Then the following
conditions are equivalent:

1. A is a (direct sum of ) special STP algebra(s) over K.

2. R and S are both (direct sums of) special STP algebras over K.

5. Remarks on elementary extensions. Let L be a finite field extension of K.
Then L is splittable over K by Theorem 6. Taking a hint from Theorem 4 of Chapter
1, we say that L is elementary over K if L= S(L/K). Let M be the maximal separable
extension of K in L. We now relate the conditions ““L is elementary over K’ and
L is elementary over M.
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THEOREM 12. The following conditions are equivalent:
1. L is elementary over K.
2. L is elementary over M and L is normal over K.

Proof. By Theorem 4 of Chapter 1, L is elementary over M if and only if
L=S(L/M). Also, by Theorem 8, the least normal extension of K which contains
S(L/M) is precisely S(L/K). Thus

L =S(L/K)<= L = S(L/M) and L is normal over K.
This equivalence is just what we wish to prove.

6. Remarks on group schemes. If X is an affine scheme over K, we let I'(X)
denote the ring of functions of X, that is, X=Spec (4) with 4=T(X). We will
interpret a well-known fact about group schemes in the language of our splitting
theory.

THEOREM 13. Let G be a finite commutative affine group scheme over K and let
A=T(G). Then A is splittable over K.

Proof. By Corollary 1 to Theorem 7, we can reduce to the case when K is
algebraically closed. Then, by [4, Exposé 11, 4.2], G=G, x G, where G, is the multi-
plicative part of G and G, the unipotent part of G. Now, if 4,=I(G,) and 4,
=I'(G,), then A=A, ®x A,. Thus, by Theorem 11, we need only consider two
cases:

Case 1. G=G,. Then A= A; is a separable algebra over K, hence, splittable.

Case 2. G=G,. Then A=A, is strongly splittable by [2, p. 152].

By Theorem 13 and the earlier results on splitting, we know the algebraic
structure of the ring of functions of any finite commutative affine group scheme.
Hopefully, this result will be useful in the study of the structure of group schemes
over base fields which are not perfect.

7. Remarks on automorphism schemes. If R is a ring of characteristic p and S
is a special STP algebra over R, then it is easy to describe the automorphisms of S
as an R algebra. This calculation can be used in the following situation:

A is strongly splittable over K,

S(A/K)<R,

S=4 Q¢ R.
One gets in this way a strong hold on the automorphism scheme of 4 over K. In a
recent paper [1], Mlle. Bégueri uses this idea to study the automorphism scheme of
a purely inseparable extension. We describe one of her results.

Let K€ L< M be a tower of purely inseparable extensions. We define the auto-
morphism scheme Gy, x by giving the points of G,y x with valuesin a K algebra R:

Guux(R) = automorphisms of M ®x R which fix L Qg R.
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If z € M, we say that z is invariant under G,y if for all K algebras R the element
z® 1l in M @k R is fixed by G,x(R). We set

Lk = {z€ M : z is invariant under Gk}
Then I,k is a field and L< Iy, S M. Proposition 14 of [1] then says

PROPOSITION. The following conditions are equivalent:
1. L=IMIL/K-
2. For all q=p¢, M*-K and L are linearly disjoint over M?-K N L.

REMARK 1. If K=L then condition 2 trivially holds.

REMARK 2. Let h=h(M/L). Then, for e>h, M?- K<L, so condition 2 holds.
Thus we may assume e < 4 in testing condition 2. Suppose for e </ it happens that
K< M4, Then condition 2 becomes

For all e < hand ¢ = p°, M and L are linearly disjoint over M? N L.

By Theorem 4 of Chapter 1, this condition amounts to saying that M is elementary
over L.

These remarks show how to find a tower KS LS M such that L# Iy, x. Indeed

1. Let L be a field of characteristic p which admits extensions M which are purely
inseparable and nonelementary and assume that the absolute exponent e, of L is
finite.

2. Take M to be any nonelementary purely inseparable extension of L.

3. Let h=h(M/L) and let K be any subfield of L n M"~* such that [L:K]< 0.
For example let K=L""*, Then KL< M is a tower such that L# Iy, x.

In particular, the hope that every intermediate field L of a purely inseparable
extension M /K could be gotten as the field of invariants of its automorphism
scheme is destroyed.

8. On special algebras which are not split. Let A4 be a special K algebra, let

X1, ..., X, be an NGS for A/K, let a; , € K be the structure constants for 4/K relative
to the NGS xi, ..., x,, and write the structure equations in the usual way:
xh = Z a; o x%%.

aely

Until now, our main concern has been to examine the splitting of 4. We will now
consider the question: When is 4 a field? We will be able to answer this question
using the mixed Jacobians of Zariski [6].

We begin by noting that 4 is an artin local ring and that if we let m denote its
maximal ideal and L=A/m then L is a purely inseparable extension of K. This
follows from Lemma 1 of §2 since in our case M =K and we can take E=K. Now,
we want to know when A4 is a field, that is, when m=0. By Nakayama’s Lemma

m = 0 < m/m? = 0 < dim; (m/m?) = 0.
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Our aim is therefore to test when dim, (m/m?)=0. Now, from the defining relations
for A, we can construct a matrix J called the mixed Jacobian such that J has co-
efficients in L and

rank (J)+dim, (m/m?) = r.
Thus we have

THEOREM 14. The following conditions are equivalent
1. Ais a field.
2. The mixed Jacobian J of A has rank r.

We now review how to construct J. First, if Pe K[X,,..., X;] and D: K— K
is a derivation, let DP denote the polynomial gotten from P by applying D to the
coefficients of P and leaving the X; fixed. Next define

P(Xy .., X)) = Xa= 3 a; X%
aely
Also, fix a set {D,},.» of derivaticns which generate the vector space of all deriva-
tions of K to K and let z; be the image of x; in L. Then one can take as the matrix J

Q)] J = IDuPi(Zl’ cee zi)!ueM,1§i§r-

We remark that in Zariski’s general situation one must also have in J expressions
involving derivations of the variables X;. This is unnecessary in our case since all
variables appear with powers of p in the polynomials P,, We now make some
further remarks:

REMARK 1. D,Pz;, ..., z))= —Dger, (D,a;,4)2%"

REMARK 2. To apply Theorem 14 to show that A is a field (2 = 1) it is enough to
find some set M of derivations of K to K such that the matrix J defined by (1) has
rank r.

APPLICATION. We can use Theorem 14 to simplify the discussion of the fields
L, in Chapter 1, §8. By induction on n, we define a special K algebra A,
=K[Xo,n .. .5 Xn,n] by using (0), (1), and (2) of Chapter 1, §8, as the defining rela-
tions. Of course, L, is residue field of 4, modulo the maximal ideal of A4,. The
issue in Facts 3 and 4 is essentially that 4,=L,, that is, that A4, is a field. We will
now show this using Theorem 14. By induction, we first show

Fact. For0<kZ=n,

n+1
XEn €P(Viposisisar

Next we write down the polynomials P, corresponding to x;. , for 0k <n:

Po(Xo) = X&"* ' = yon
Pk(XOa ceey Xk) = ka“——yk."—(xk_l,n_l)”"-Xé’” lfk 2. 1.
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Note that from the above fact, the coefficient (x;_;,,-,)" lies in the field P(y; ;)
for 0=i<j<n. Now define a derivation D, by

D(yp)=1 ifi=pandj=n,
= 0 otherwise,
D,=0 onP.

In particular

D, ((xk-1,n-1)"") = 0.

It follows that the polynomials D, P, are constant, namely
D,P, = -1 ifp=k,
=0 ifp#k

Hence the mixed Jacobian matrix formed from Py, . .., P,and D, ..., D, is simply
the negative of the identity matrix. Its rank is n+1=r so we conclude that 4, is a
field.
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