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INSEPARABLE SPLITTING THEORY

BY

RICHARD RÁSALA

Abstract. If £ is a purely inseparable field extension of K, we show that, for

large enough extensions E of K, the E algebra £ ®k E splits to become a truncated

polynomial algebra. In fact, there is a unique smallest extension E of K which splits

L\K and we call this the splitting field S(L\K) of L\K. Now £çS(£//Q and the
extension S{L¡K) of K is also purely inseparable. This allows us to repeat the splitting

field construction and obtain inductively a tower of fields. We show that the tower

stabilizes in a finite number of steps and we study questions such as how soon must

the tower stabilize. We also characterize in many ways the case when £ is its own

splitting field. Finally, we classify all K algebras A which split in a similar way to

purely inseparable field extensions.

Introduction. In Chapter 1, we introduce a splitting theory for purely inseparable

field extensions. The idea is that if L/K is purely inseparable then for suitable base

extensions F of K the algebra L ®K E over F has a very simple form, namely,

it is a special case of what we call a simply truncated polynomial algebra. This fits

into a pattern long familiar in the theory of separable extensions or the theory of

central simple algebras, namely, that after suitable base extensions the initial

object reduces to a standard form.

The splitting theory starts from the structure equations of a purely inseparable

extension first discovered by Pickert [3]. Let L/K be purely inseparable and let

xx,..., xT be what we call a normal generating sequence for L/K. Set

Kt = K[xx, ...,xt]   and   a, = [Kt'.K,.].].

Then the structure theorem says that

x?>eK[xV,...,x?Lx].

From this we obtain structure equations of the form

x?< - 2 a^x**«.

Here /¡ is a suitable multi-index set and ala e K. The splitting procedure now works

as follows. In some algebraic closure of Ä^, let dUa be the a¡th root of aUa. Set

S(L/K) = K[dUa],        1 á/Srandcte /¡.
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Now let E be a field containing SiL/K) and set F=L ®K E. Define elements w¡ of

F by

Then F=£[w1, . . ., wr] and the structure equations for the w¡ are simply m?'=0.

This exhibits the standard form of L/K after base extension.

The field SiL/K) is the unique minimal field extension of K for which splitting

occurs so we call SiL/K) the splitting field of L/K. By construction, SiL/K) is

purely inseparable over K so we can construct its splitting field. Inductively, we

obtain a tower of fields

SniL/K) = SiSn-xiL/K)/K).

The latter part of Chapter 1 is devoted to a study of this tower. One fact we obtain

is that the tower stabilizes after a finite number of steps. The field at which the

tower stabilizes is the unique minimal field extension of L which is elementary

over K. This proves in a simple way a result first shown by Sweedler [5].

In Chapter 2, we generalize the splitting theory to algebras. The basic result is

that if a A algebra A splits into a simply truncated polynomial algebra whose

exponents of truncation are p powers then A must have generators and structure

equations as in the case of inseparable field extensions. We also characterize

algebras which split into direct sums of truncated algebras. In particular, we are

able to make a unified splitting theory for fields.

In the latter part of Chapter 2, we make some remarks which relate the splitting

theory we have developed to other theories, notably, to group schemes.

This paper consists of a revised version of my Harvard Ph.D. thesis of June

1969 together with some additional results which I obtained in the past year. I

wish to heartily thank my advisor, Barry Mazur, for many helpful suggestions and

much encouragement. I wish to thank William Waterhouse for his interest in this

work and for his suggestion that I try to extend the splitting theory of fields to

algebras. I also wish to thank the referee for his careful reading of the paper and,

in particular, for his discovery of an error I had made in defining the splitting field

for an arbitrary splittable algebra. Finally, I wish to thank the NSF for support

during my graduate work.

Chapter 1. Splitting Theory for Fields

1. Notations and basic facts. Throughout we assume all fields to be of charac-

teristic p>0. In this section, we discuss simple aspects of such fields and algebras

over them.

We let A be a field and L be a finite purely inseparable extension of K.

1. Exponent. Let A be a K algebra. Set [A: A] = dimK A. If [A:K]=pm we call

m the exponent of A over K and write m = e[A:K]. In particular if A = K[x] we

also say that x has exponent m over A and write m = e[x:K]. Clearly,
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Lemma 1. For xeL, e[x:K] is the least n such that xv" e K.

Let B be an A algebra and assume [A:K]=pm and [B:K]=pn. We then define

e[B:A] = n — m. In other words we require e[B:K] = e[B:A] + e[A:K]. This rule is

consistent if A is a field and e[B:A] is already defined as before.

We define the absolute exponent eK of K to be e[K: Kp].

Lemma 2. If E is a finite extension of K then eE = eK.

Proof. We know that [E:KP] = [E:K][K:KP] = [E:EP][E":KP] and, since the

map xh^x" is an isomorphism of E/K to Ep/Kp, we also have [E:K] = [EP:KP].

Thus eE = [F: Ep] = [K: Kp] = eK.

2. Chains of fields in L/K. We introduce notation for two familiar chains of

fields in L/K.

A. Upper chain. L = (L/K)°=>(L/Ky=> ■ ■ ■ =>(L/K)e=> ■ • • =>K.

We define (L/K)e =LpeK and 8e(L/K) = e[(L/Ky~1 : (L/K)e].

Proposition 1. For all e ä 1, 8e(L/K) ^8e + X(L/K).

Proof.

[Lr~1-K:L"ß-K] = [LpeKp:Lpe+1Kp] ^ [Lpe-K:LP' + 1K].

B. Lower chain. K=(L/K)0^(L/K)X^ ■ ■  ç(L/K)eÇ • ■ • £F.

We define (L/K)e={xeL : e[x:K]^e} = {xeL : xp' eK}, and <xe(L/K)

= [(L/K)e:(L/K)e_x]. We note that the a's do not satisfy inequalities such as the

S's do.

Example 1. Let L=K[x] with h = e[x:K]. Let 0<e = /i and q=pe. Then

(L/Ky = K[xf] = (LfK)h-„       8e(L/K) = ae(L/K) = 1.

Example 2. Let F be a field and let a, b, c be algebraically independent over P.

Let K=P(a, b, c) and L=K[z, w] where

zp2 = a,       wp = b + czp.

Then

(L/K)1 = (L/K)x = K[zp] = K[wp],

ax(L/K)=\, a2(L/K) = 2, ar(L/K) = 0 for r>2,

8X(L/K) = 2, 82(L/K)=l, 8r(L/K) = 0 for r>2.

The assertion for (L/K)1 is clear. Assume that (L/K)x^K[zp]. Then there exists

y e Land y $ K[zp] such that y e K. Calico1. Then, by Example \,y$ K[z] since

y e K[z] and y" e K => y e K[z"]. Thus F = A^[z, y]. Hence we can write w as

w = 2 rui.kzi+viyk   with ru,k e^OS i,j, k < p.

Then

e + czp = wp = J^i.^^^y1 = Hrli,kai dkzpi.
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By comparison we get b, ceKp[a, d] so that e[Kp[a, b, c]:Kp]fí2. Then for any

field M such that KP^M we have e[M[a,b, c]:M)<¡2. Take M=Piap, bp, cp).

Then M[a, b, c]=Pia, b, c) = K. But since a, b, c are algebraically independent

over P,

e[M[a, b,c]:M] = e[Pia, b, c):Piap, bp, cp)] = 3.

This is a contradiction which shows that iL/K)x = K[zp]. The assertions about the

a's and S's follow from the computation of (L/A)1 and iL/K)x.

3. Height. The height hiL/K) of L over K is the integer defined by any one of

the three equivalent conditions below:

a. Maximum {e[,v:A] : xeL).

ß. Minimum h such that iL/K)h = K.

y. Minimum h such that (L/A)„ = L.

Remark 1. Other authors have used the word "exponent" for what we call

"height". The disadvantage of the old terminology is that if [L:K]=pm one

cannot call m the "exponent of L/K" since the word "exponent" has been used in

another sense.

Remark 2. If h = hiL/K) then, for all e, iL/K)h~eÇiL/K)e. We conclude

Proposition 2. Let0^e^h=hiL/K). Then

¿ oh + x-iiL/K) = e[iL/Kf-e:K] ú e[iL/K)e:K] = ¿ a^L/K).
i = i ¡ = i

We will now seek another inequality similar to the one given in Proposition 2.

Let 0^e^h = hiL/K) and let q=pe. We now examine the relationship of the five

fields: iL/K)e, iL/K)e, L", L" n K, K". First consider the diagrams:

K AWe
XL/Ky.

Lq"K K L" K

K" LqnK

Diagram 1 Diagram 2

Remark 3. From Diagrams 1 and 2,

[L:K] = [L:iL/K)e]-[iL/K)e:K] = [L:(L/A)^-[(L/A)-A].

Remark 4. In Diagram 1 the map x^r1 induces isomorphisms LxL",

iL/K)exL"nK,KxK9.

Remark 5. In Diagram 2, (L/A)e=L«A so that [L":LQ n A]^[(L/A)e:A].

Equality holds if and only if Lq and K are linearly disjoint over L" n K.
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Proposition 3. Let 0^e^h=hiL/K) and let q=pe. Then

1. ZUx<XiiL/K) = e[iL/K)e:K]íe[L:iL/Ky] = ZUx ML/K).
2. We have equality at the middle of 1 if and only if 13 and K are linearly disjoint

over L" n K.

Proof. The equalities in 1 are trivial. For the middle inequality we note

e[iL/K)e:K] ï e[L:iL/KY]o[iL/K)e:K] á [L:(L/A)e]

o [L:(L/K)t] ä [iL/KY-.K].

The last <=> comes from Remark 3. Moreover, from Remarks 4 and 5, we obtain

[L:iL/K)e]^[iL/K)e:K]. Thus we have 1.

To show 2 note that in the equivalences we can replace all inequalities by

equalities. We can then apply Remark 5.

Remark 6. From Propositions 2 and 3 we obtain

2 K+i-tWK) ï 2 "<(L/*) á 2 HL/K).
i=l (=1 i=l

Proposition 4. The following conditions are equivalent:

1. For all q=pe, L" and K are linearly disjoint over L" n K.

2. For alle, e[iL/K)e:K] = e[L:iL/K)e].

3. For all i, a,(L/A) = 8,(L/A).

2. Definitions. We continue to let A be a field and L be a finite purely insepa-

rable extension of K.

1. Normal sequences. If x e L we say that x is normal in L/K if e[x:K] =/i(L/A)

or, equivalently, if e[x:K]^e[y:K] for all y e L.

A normal sequence xit..., xr in L/K is one such that if we let Kt = K[xx,..., x¡]

then, for 1 ¿iSr,

a. xt is normal in L/A,.^

ß.  XiíK.x.

If a normal sequence xlf..., x, is such that L = K[xx,..., xr] we say that xit..., xr

is a normal generating sequence or NGS of L/K.

Now let Xx, ■ ■., xr be a normal sequence in L/K. For 1 ̂ iSr, set e,=e[jc,:A{_i]

and qt=pe>. Also define J,^Zr by

■A = {(«i, ...,«i,0,...,0):0S«t< çrj.

Then the set {x"}aEj¡ is a K basis for A4. Also

Proposition 5. ex ̂  e2 ̂  • • • ̂  er.

Proof. ei = e[xi:A'i_1]^e[xi + 1:Ai_1]âe[xi + i:Aj] = ei + 1.

Proposition 6. Let S be a generating set for L/K. Then there exists an NGS for

L/K with elements chosen from S.
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Proof. If we have a normal sequence xx,..., xs with x¡ e S for all i then either

A"s = F(and we are done) or L^KS. If L^KS then we extend the normal sequence by

choosing xs + x so that

a. xs + x e S.

ß. xs + x is normal in L/Ks.

This is done by

Lemma 3. If S generates L/K and K^ M^L then there exists xe S such that x

is normal in L/M.

Proof. If for e>0and q=pe we have Sq^M then L'çM since L = K[S]. Thus

Max {e[x:M] : x e L} = Ma\{e[x:M] : x e S}. Thus we can choose xeS such

that e[x: M] = h(L/M), that is, x normal in L/M.

2. Elementary extensions. We say that F is elementary over K if there exist

elements xx,..., xr eL — K such that LxK[xx] ®K ■ ■ ■ ®K K[xr]. By rearrange-

ment, we can always assume also that xx,..., xr is an NGS for L/K.

Now let xx,..., xr be an NGS for an arbitrary extension L/K. We use the

notation from 1.

Proposition 7. The following conditions are equivalent:

1. The canonical map K[xx] ®K ■ ■ ■ 0K K[xr] —> L is an isomorphism.

2. For lúiúr, e{=e[xt'.K].

Proof. The proof is by induction based on the lemma below:

Lemma 4. Given afield extension M/K and x algebraic over K then the following

conditions are equivalent:

1. The canonical map M <giK K[x] -» M[x] is an isomorphism.

2. [M[x]:M]=[K[x]:K].

We now define the notions "simply truncated polynomial algebra" and

"variation" which we use to study field extensions.

3. Simply truncated polynomial algebras. Let F be a commutative ring and A be

an R algebra. We say that A is a simply truncated polynomial algebra over R if

there exist w¡ e A, l^i^r, such that

a. A = R[ux,...,ur].

ß. The relations among ux,...,ur are generated by equations w¡a' = 0 where

ax = a2 = • • • ^ ar > 1.

For short we say that A is an STP algebra over R. We call the sequence

ux,.. .,u, a truncating sequence for A. We call at the order of wt and denote it by

o(«i). We say that A is of type ax, ■ ■ •, a, relative to the truncating sequence ux,..., ur.

Proposition 8. Let A be an STP algebra over R. Let ux,...,ur and wx,.. .,ws

be truncating sequences for A and let ai = o(u¡) and bt = o(Wi). Then r = s and, for all

i, a( = è(.
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Proof.

Case 1. When R is a field E. Then A is a local ring with maximal ¡deal

/=(«,,..., ur) = (wx,..., ws). Define fk = dimE /* —dimE Ik + 1. We will show in

effect that the sequence/,/,... determines the structure of A.

We can find an F basis of Ik modulo Ik + 1 in two ways:

1. as {uxi.Ur'} where 2 a¡ = ^ and 0 = a¡<tf¡>

2. as {wfi.>vfs} where Zßj = k and 0áft<¿>;,

First apply this to k=l. Then ux,..., ur and wx,.. .,ws both form bases of /

modulo I2. Thus r = s.

Next suppose that, for some i, a¡#¿>¡. Choose t such that a(#A, but, for />/,

a¡ = ¿>¡. We may assume at>bt. Then take rc = e¡. We will obtain a contradiction.

We first claim that if, for all /, 0 S <*¡ á k - 1, then the conditions given below are

equivalent:

1 *. 2 «i = k and, for all /', 0 = a¡ < a¡.

2*. 2 at= ^ an(l' f°r a" r> 0 ¿ a¡ < e¡.

Indeed, for í^í, the inequality O^c^rc-l already implies the corresponding

inequality in 1* or 2*, while, for i>t, we know a¡ = e¡.

Next, if 2 at = k but the condition Oáaj^rV- 1 does not hold for all i, then one

a¡ = k and all other ^ = 0. In this case, we get at least t such sequences which satisfy

1* since at>k for if^t while we get at most t— 1 such sequences which satisfy 2*

since bi^k for i^t.

These remarks yield two different values for/, which is of course absurd. Thus,

for all i, at = bx.

Case 2. General case. We reduce to the case of a field by choosing a maximal

ideal M in R and considering the STP algebra A/MA over R/MR.

Remark 1. The proposition shows that the number of generators and the type

of an STP algebra are independent of the choice of the truncating sequence.

Remark 2. One can extract a method for computing the type sequence of an

STP algebra from the proof.

Indeed, suppose/,/,... are known. Then/ = /-. Next suppose that a¡ has been

found for i>t. For all k, define

Nk = Number of sequences ax,..., ar such that

i. 2«<=*.
2. For i>t, 0áai<a¡.

3. For/^r, O^a^k-l.

Then the proof shows that, for k^at + 1, at>k ofk-Nk^t. Thus one can obtain

at as the least k = at + x such that fk — Nk < t.

Remark 3. We use the standard multi-index notation in working with STP

algebras. If a = (al5..., ar) and ß = (ßx,.. .,ßr), set

a < ß o for all i, a¡ < ßi,

a ^ ß o for all i, «j S ßt-
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Then, if A has type a=(fli,..., ar) and m = («i, .. -, ur) is a truncating sequence for

A, the family of ua = UxL.«?r for 0^a<a forms a basis of A over A*.

4. Variations. We return to the finite purely inseparable extension L/K. Let £

be an extension of L and let A = E[u] be an STP algebra of type a over A. Then an

A-variation of L/K with values in A is a A algebra horn 0: L -*■ ̂4. We will see in a

moment that a variation is a generalization of a derivation.

Write #(z) = 2osa<a Az(z)wa. We determine equations which the Da must satisfy.

Each Da is a A linear map of L into A and the A algebra horn conditions are the

following: For all a and all z, w eL,

Daizw)=    2    Ds^)Dy(w).

In particular, Z)0(zw) = Z)0(z)Z)0(r>), so that D0 is a A isomorphism of L into fand

so must be the inclusion map.

We say that z e Lis invariant under 0 if equivalently

1. 0iz) = z,

2. for all a =¿0, £>a(z)=0,

3. for all a and all w eL, Daizw) = zDaiw).

We let Le be the set of invariants of 0. Le is a subfield of L containing A. We let

Fix£ iL/K) be the intersection of all L" as 0 ranges over all A-variations of L/K.

We now give some examples.

Example 1. A has one generator u such that «2=0. Then 0(z) = z + D(z)m with

Z)j denoted by D. For z, weL, we have Dizw) = Diz)w+zDiw). Thus D is a

derivation.

Example 2. >4 has one generator u such that m° = 0 and a > 2. Then the family

{£>(} for l^ka is what is called a higher derivation. For z, weL, we have Z>¡(zw)

=2>+*-* Dlz)Dkiw).
Example 3. Taylor variation. Let AçAfçL and L = M[x]. Set e = e[x:M],

q=pe, and A=L[u] with «" = 0. Define an L variation of L/K with values in /I by

setting 0(z) = z for z e M and 0(x) = x + u. In general if a¡ £ M for 0 S i < q then

(0-1 \ 3-1 9-1/a-l        /¿,\ \2 «A = 2 ciiix+uy = 2 2 MÏKY-

Thus

"-GH - S>'(>'-'
Thus 0 is just the Taylor expansion of />(x) = 2 aixi in terms of x + m. Note that
Le = M.

Example 4. Elementary extensions. Let L be elementary over Aand let xl5..., xr

be an NGS for L/K such that LxK[xx] ®x- • -0k A[xr]. Let e¡ = e[Xi:A] and

qi=pe>. Let A=L[ux,..., ur] with w?' = 0. Define 0:L-^-A by setting 0(z) = z for

z £ A and 0(x¡)=xí + m¡. We can view 0 as a sort of generalized Taylor variation.
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If we  let   et  be  the  Taylor  variation  defined  as  in   Example  3   by  taking

M=K[xx,..., xf-x, xi+1, ■ ■ -, xT] = M{ and x = xh then we have

V = f] F9< = H M, = K.
( = i i = i

Also, if eL: L ®K L ->■ A is defined by eL(x ® y) = 6(x)y, then eL is an isomorphism

of F algebras.

3. Structure theorem. We continue to let F be a field and F be a finite purely

inseparable extension of K. We now give a theorem which leads to elegant structure

equations for L/K. A slightly different version of the theorem was discovered by

Pickert [3].

Theorem 1. Let xx,..., xr be a normal sequence in L/K and let Kt = K[xx,..., xt].

For 1 =/^r let et = e[xf, Kt-X] andq¡=pe¡. Then, for l^i^r,

xf>eK[xl>,...,x?Lx].

Proof. We use induction on r.

Case r=l. Then /'= 1 and the assertion is xp e K which is clear.

Induction step. Assume the assertion for all normal sequences of length less than

r. In particular, induction applied to the sequence xx,..., xr-x yields the assertion

for l^i<r. Thus we need only show

(1) x«reK[xî',...,xKx]-

Now xa,..., xr is a normal sequence in L/Kx so by induction we also know

(2) xfreJSiMr,...,*?-!].

Since {x[} for 0 = /<ar is a basis of Kx over K[xlr] and since we know (2), we can

write

(3) xqrr =    2    ¿**ii    with Ai e K\.xl'> ■ • •» •Kr'-i]-
0Si<9,

Thus we can show (1) if we can show ^¡ = 0 for />0. Set t=q2/qr and define sub-

fields K^M^N<=KX by

M = K[xp],       N = K[x{].

The set {x'l} for 0 = /<ar is a basis of A over M. We now raise the terms in (3) to

the power t to obtain

(4) xp = x«/ =    2    Aixt

Thus if we show that x** e M and that, for all i, A\ e M, then by the uniqueness of

an expression in terms of a basis we get xp = A\ and, for all ¡>0, A¡ = 0, which is
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what we want to show. Now set A = e1=/i(L/A), g = e2 = hiL/Kx),f=er. Then note

that p9=q2,p'=qr, and p9~f =q2/qr = t. We then assert

1. xpeiL/Ky.

2. A\eiL/K)g.

1 is trivial. For 2, note that A> e (A/A/ so A\ e (L/A)r+9_/. Thus it remains only

to show that (L/A)9sA/. Now

M = (AJA)' = iKx/K)h.g = Kx n (L/A)Ä_,.

But (L/A)9 S (L/A)„ _„ since h = h{L¡K) and (L/A)9 S (L/Ai)9 £ Aj since g = KL/Kx).

Thus iL/Ky^M and we are done.

Now let Xx,..., x, be an NGS for L/K. As in §2, part 1, we set

A¡ = K[xx, ■ -.,Xi],       et = e[x,:Ki-i],   q{ = pe¡,

A = {(«!, . . ., ah 0, . . ., 0) £ Zr : 0 Ú ak < qk}.

Then the set {xa}aBJi is a A basis for A¡. In particular, let J=Jr. Then the set {xa}ae}

is a A basis for L. Now let

¡i = {a £ Zr : fl¡a £ /}.

In §4, we will see that {xqi"}a£ll forms a A basis for A[x?¡,..., x?Lj]. Using Theorem

1 we can write xq> uniquely in terms of this basis with coefficients ai>a £ A for a £ /¡,

x?> = 2 fli,a**,a-

We will refer to these equations as the structure equations. We remark that these

equations generate all the relations among the elements Xx,..., xT since the

equations determine a A algebra of dimension qx.q, which is exactly the

dimension of L/K.

4. Technical results. We will derive some corollaries of Theorem 1, We will use

the notation from the end of §3. Also let 0^e<h = hiL/K). Then set q=pe and

define

ye = Maximum i   such that et > e.

Corollary 1. (L/A)e=A[x?,..., x"r] = K[xl,. ..,xqe].

Proof. The first equality comes from the definition of (L/A)e and the fact that

Xx,..., xr generates L/ A. Now let ye </:£/-. Then et ̂  eso that qx\q. From Theorem 1

we have xa< e K[x\,..., xQLx] so that xQ e A[xf,..., xf.J so that K[xl,..., x9]

= K[x\,..., x?_i]. Descending from i=r to i=ye+1 proves the corollary.

Corollary 2. Let l^k^ye. Then the elements xl"" with ak such that0^qak<qk

form a basis ofK[xl',..., x%] over K[x\,..., xg.j].
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Proof. Set M=K[x\, ...,xqk.x] and N=K[xf,..., jcj?]. Then

1. To show that the powers (xky* with 0^ak<qk/q span N over M we need

xk* e M. By Theorem 1, we know more:

xqk*eK[xqx*,...,xqk1x].

Note, if k-¿ye, then ek>e, so q\qk.

2. To show that {xff*} for Ofíqak<qk is independent over M we note that

{x&x} for 0^ßk<qk is independent over F^^ and M^Kk-x.

Corollary 3. A K basis of K[x\,..., xq] is given by {xqa} with a such that qa e J.

Proof. If a = (ax,..., aT) then qaej amounts to

1. For \Sk^ye, 0^qak<qk.

2. For ye < k _ r, ak = 0.

Thus Corollary 3 follows from Corollaries 1 and 2.

Remark 1. We are now ready to prove the assertion from the end of §3. To do

this take e = e¡. Then q=q¡ and ye<i. Thus

K[xqx, ...,xq] = K[xl, ...,x?-x] = K[xqx,. ..,*?.].

The basis assertion from the end of §3 follows from Corollary 3.

Remark 2. The next three corollaries show that the sequence of exponents

ex,..., er depends only on L/K and not on the NGS chosen.

Corollary 4. The elements xfi.x*."u with 0-¿ak<p form a basis of (L/K)e

over(L/K)e + 1.

Corollary 5. 8e + x(L/K)=ye.

Corollary 6. e¡ > e o ye ä / o 8e + X(L/K) £ i.

We have seen in Corollaries 1 and 3 how to find (L/K)e = LqK. One can also

find L" and (L/K)e but the answer is less simple. If ß ej we can use the structure

equations to write

qaeJ

Then if z = 2ie/ cßxß we have

z«=2cqßXq°=    2   (I¿6.:aCf\*"-
ßeJ qaeJ \ßeJ I

We obtain immediately

Corollary 7. z e (L/K)e o z" e K ofor a^O one has

2 AB.t,acl = 0.
ßeJ
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Corollary 8. Let w = ^qaEj daxqa e iL¡K)e. Then weL"ofor some family

{cß}ßej with cee K one has

Note that the equations in Corollaries 7 and 8 are semilinear relative to the

isomorphism yix) = x".

The main difficulty in using these corollaries lies in the fact that the coefficients

Ae%q%tt are quite hard to write down in terms of the ai-a from the structure equations.

Remark 3. Let A be a A algebra. Let e^O and set q=pe. One can then define

A", iA/KY, iA/K)e:

A" = {x" : xe A},       iA/K)e = A"K,       iA/K)e = {x e A : xq e K}.

Then A" is a subring of A and iA/K)e and L4/AL are A algebras. Assume now that

A = K[xx, ■ ■ ■, xr] where the defining relations for xlt...,xT are of the form

xq> = 2 ai.ax">a,
aelt

with

ex ^ é?2 è • • • â er £ 1,       <7¡ = /?e',       ai¡a e K,

J = {(«i».. .,ar) : 0 ^ ak < qk},       L = {a : qiueJ}.

In this case we will say that A is a special A algebra. When /Í is a special A algebra

then the analogues of Corollaries 1 to 8 hold.

5. Splitting theorems. We now examine what happens to L/K under base

extension by a field A. We use the notation of §3 and in addition we set

F = L®KE,       z, = x, <g> 1,       A( = E[zx,..., z,].

We view A as an £ algebra via the map a i-> 1 <g> a. Over E the zf satisfy the same

structure equations as the jc¡ do over A, that is

z?. = 2 fli.^i«.
aeí¡

Hence in the sense of Remark 3 of §4, Ais a special Aalgebra. Certain of our results

will depend only on the fact that Ais a special E algebra and we will make note of

this as we go along.

We begin with a simple result which tells when Fis a field. We will give a better

result in Chapter 2, §8.

Theorem 2. The following conditions are equivalent:

1. Aw afield.

2. For all i, £¡ is a field.

3. For alii, zï^Ef^x-
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Proof. The proof will use only the fact that F is special over E with structure

equations as given above.

1 o 2. Trivial.

2 o 3. By induction on r one can assume the equivalence of the following:

For all i < r, Et is a field o for all i < r, zqt $ £(p_i.

Then, assuming these equivalent statements hold, we must show

E, is a field o z'r $ Ep_y-

Set a = zqre Er-x- Then Ar = Ar_1[zr] and zr has Xq' — a as its minimal polynomial

over Er_x- Thus

Er is a field o A9' —a is prime in Ar_i[A] o a £ A,"_i.

We are done.

The main result, which we now state, asserts that for large enough fields E, F

becomes a simply truncated polynomial algebra over E.

Theorem 3. The following conditions are equivalent :

1. fis an STP algebra over E.

2. F is a subalgebra of an STP algebra over E.

3. For all i and all a e /, ai¡a e Eq'.

4. For all q =pe, Lq ■ (A n A") and K are linearly disjoint over A Pi E".

Proof. Conditions 1, 2, and 3 do not mention the original extension L/K ex-

plicitly. These conditions are simply assertions about the algebra extension F/E or

about the structure constants ai¡a e E in the defining relations for the generators

Zx, ■ ■ -,zr of F/E:

z?< = 2 aUazqia.
aeli

In fact, the equivalence of conditions 1, 2, and 3 depends only on the fact that F

is a special A algebra with generators z1;..., zr and structure constants ai¡a. We

will use only this much in the proof that 1, 2, and 3 are equivalent and then we will

return to the original situation and show that 1, 2, and 3 are equivalent to 4.

1 => 2. Trivial.

2 => 3. Let F^A with A an STP algebra over E. Let A = E[ux, ■.., us] with

ub¡i = 0. Define AS Zs by

N = {iß1,...,ßs):0Sßi<bj}.

Then {uß}eeN forms an E basis for E[u]. For aej let za = 2/?eW batßuß. Then for

e 3:0 and q =pe we have

^a - 2 bißu"ß = 2 bisu"e-
0eN qßeN
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Note that if qB $ N then uqB = 0 so that those terms drop from the equation. Now

let 1 =/ = r and let cuß denote ba_ß for the multi-index ce such that za = zi. Then

zi = 2 c'.y-
ßeN

We apply the above discussion to the structure equation for z¡:

z?> = 2 <%«''" = 2 au«zq>a
QißeN aelt

= 2 (2fliÄK"i,a"a,n\ <

Since the elements w"'" with qße N are independent over F we can equate co-

efficients

c?!ß = 2 ai.M\B-
ae/j

This is a system of linear equations with coefficients in E"' which is satisfied by

(ot,a)aeif Conversely if (ai¡a)ae¡í is any solution of the system then, by reversing the

calculation,

z?> = 2 a'.*2"'"-
aelt

But the elements z"*" with ae/j are independent over F so that we must have

di,a=Oi,a for all a e h- Thus we see that (ai¡a)ae¡¡ is the unique solution in F of a

system of linear equations with coefficients in Eq> and this shows that ai¡a e Eq> for

all a e /¡.

3 => 1. For all /' and all a, write ai¡a = dq/a with di¡a e F. Then let

u, = Zj- 2 dltttza.
aelt

Then F=E[zx,..., zr] = E[ux,..., uT]. Moreover uq> = 0. There are no other

relations on the w¡ independent of the relations uq* = 0 since the relations up = 0

define an F algebra of dimension qx.qr = dimB F.

We now turn to 3 o 4 in the original situation.

3 o 4. First Lq(Kn Eq)K=LqK=(L/K)e.

(L/KY

Lq(KnEq) K

\ /
KnE"

Thus the linear disjointness condition becomes [(L/K)e : K] = [Lq(K n E") : KnE"].

Now the set {x""} for qa e J belongs to Lq and forms a basis of (L/K)e over K. Since

this set lies in Lq(K n Eq) condition 4 is equivalent to

4*. For all e, the set {xqa}qaeJ forms a basis of Lq(K n E") over F n Eq.
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If 4* is true, then the expression for xa> in the structure equations must have

coefficients in A n A9', that is, for all a, ai¡(X e Eq>. Conversely, assume, for all / and

a, at¡a e Eq>. Then we have, for all /',

#e(A:n £«•)[*!•,..., xfLi].

Thus, for e ä e¡ and q =pe, x9 e (A n £")W,..., x?_ J. Then by the technique of

Corollary 1 of §4 we obtain

L\K n Eq) = (A n £«)[*?,..., x?] = (A n £9)[*i,..., xqe].

We can then mimic Corollaries 2 and 3 of §4 to obtain 4*. Thus we have 3 o 4*.

This ends the proof of Theorem 3.

We say that A splits L/K if E satisfies the equivalent conditions of Theorem 3.

Thus A splits L/K o L ®K E is an STP algebra over A.

We set

SiL/K) = K[^atJ,       1 g i g r and a e /¡.

By condition 3 of Theorem 3, A splits £/A o SiL/K) £ A.

Thus SiL/K) is uniquely determined as the smallest field which splits L/A and

so we may call SiL/K) the splitting field of L/K. In particular, SiL/K) is indepen-

dent of the choice of NGS for L/K.

We remark that when A splits L/K the proof 3 => 1 gives an explicit truncating

sequence for the STP algebra L®KE over E.

Proposition 9. Lç SiL/K).

Proof. Let S = SiL/K). Then L ®x 5" is an STP algebra over S. Let m be the

maximal ideal ofL®K S. Then L is mapped to 5 via

L —> L®KS —► (L ®K S)/m -5U- S.

This map is injective since L is a field. The map is unique since L/K is purely

inseparable. Thus L£ S.

We now give another splitting theorem which studies the case when L = SiL/K).

Theorem 4. The following are equivalent to L = SiL/K):

1. L is elementary over K.

2. A is a fixed field of all Taylor variations ofL.

3. K is the fixed field of all L-variations ofL.

4. For all q=pe, Lq and K are linearly disjoint over L" n A.

5. For all e, e[L : (L/K)e] = e[(L/K)e ■ A].

6. For all i, Sf(L/A) = «¡(L/A).

7. L <g>K L is an STP algebra over L.
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8. Given a normal sequence xx,..., xs in L/K such that if Ks = K[xx,..., xs] then

L^KS, then there exists xs + xeL — Ks with

a. xs + 1 normal in L/Ks.

ß. e[xs + x:Ks] = e[xs + x:K].

Proof. 1 => 2. By Example 4 of part 4 of §2.

2 => 3. Trivial.

3 => 4. Assume that 3 holds but 4 fails, say for q=pe. Choose a subset cx,..., ct

of K with the smallest number of elements t such that

a. cx,..., ct is independent over L" n K.

ß. cx,..., ct is dependent over Lq.

Then we can find zx,..., zteLq with all z^O such that 0 = 2i ztc¡. By dividing by

zt we may assume that zt = 1. By condition a, for some i, z¡ £ K. We may assume

Zx$K.

Consider any F variation 6: L->L[u]. Write 0(x) = 2a Da(x)utt. Then

0=ö(2ziCj) = 2ö(ziMci) = 2ö(zj)Cj

= 2 (2 dm)^.

Thus for all a

(*) 0 = 2 Da(Zl)Ci.
i

Now e(Lq) = (eL)q<^(L[u]y^Lq[u] so that, for all i and a, Dtt(zt)eLq. Thus the

equations (*) are linear equations for the c¡ with coefficients in L".

Now, since 3 holds and since zx £ F, we can choose 0 such that 0(z1)/z1. Then

for some /?/0 we have £>¿¡(zi)t¿0. Of course Dä(zj) = Dß(\) = 0. Thus from (*)

0 = T /)Ä(Zj)Cj.
i = i

Thus cx,..., ct-x are dependent over F" contrary to the minimal choice of t.

4ol oL = S(L/K). By Proposition 9 and the definition, L = S(L/K)oL

splits L/K. But F splits L/K if F satisfies the equivalent conditions in Theorem 3.

Condition 1 in that theorem is Condition 7 here and Condition 4 in that theorem is

Condition 4 here since L"(K n Lq)=Lq.

L = S(L/K) => 8. Extend xx,..., xs to any NGS xx,..., xs,yx,.. .,yt. Let>'=>'1

and set e = e[y:Ks] = h(L/Ks) and q=pe. We seek zeL with

e = e[z:Ks]   and   e = e[z:K],

Let / denote the usual index set such that {Xa} for a e I forms a basis of Ks over F.

Then the structure equation for yq has the form

yq = 2 *^"a   with ¿>a e F.
qael
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Let ca=*t¡/ba. Then since the formation of SiL/K) does not depend on the NGS

chosen for L/K and since xlt..., x„, yi,...,yt is an NGS for L/K we have that

ca e SiL/K) =L. Moreover, since cqa — ba e K, we have that e[ca:K]^e.

We claim that, for some ß, e = e[ce:K,]. Then z = cB will give the element we seek

because then e = e[cs:Ks]^e[ce:K]^e, so that e = e[cß:Ks] and e = e[ce:K]. To

prove the claim note that

for all a, e[ca :KS] < e o for all a, ba e A/

oyqeKpoe[y:Ks] < e.

8 =>■ 1. Using 8, we can find an NGS xlf...,xr for L/K such that, for all i,

e[xh A¡_i] = e[x¡, A]. By Proposition 7, we get 1.

4 o 5 o 6. Proposition 4.

This ends the proof of Theorem 4.

Remark 1. In [5], Sweedler shows the equivalence of the following parts of

Theorem 4: 1,4, and the version of 3 below:

A is the fixed field of all higher derivations of L into L.

We have adapted his proof for 3 => 4.

Remark 2. In view of conditions 2 and 3 in Theorem 4 one might hope that one

can add to the list of conditions in Theorem 3:

A is the fixed field of all A-variations of L/K.

Alas this condition is weaker than the ones in Theorem 3. For a counterexample

see Example 3 below.

We now give three examples of nonelementary extensions. In all examples P

denotes a field of characteristic p.

Example 1. Let Aand L he as in Example 2 of part 2 of §1, that is, A=A(a, b, c)

with a, b, c algebraically independent over P and L=A[z, w] with zp2 = a, w" =

b+cz". We have seen that

8xiL/K) = 2,       axiL/K) = 1,

S2(L/A) = 1,       <*2(L/A) = 2.

By 6 of Theorem 4, L/K is not elementary. It is easy to find the splitting field in this

case:

SiL/K) = K[fya, #b, #c] = K[z, #b, <tfc\.

Example 2. We now construct L/K such that SiL/K) is also not elementary

over A. Let a, b, c, d be algebraically independent over P and set A=A(a, b, c, d),

L = K[u,v], with up3 = d, vp2 = a + ibp + cpa)up\ Then SiL/K) = K[u,z,w] with

zp2 = a, wp2 = bp + cpa, that is wp = b + czp.

Set M=K[z,w] and N=K[u, z, w] = S(L/A). Then MçN, so by Proposition

10 below, we have 5(M/A) Ç 5(A/A). But SiM/K) = K[z,^b,^c\. Thus

SiM/K)£Nso in particular N^SiN/K).
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Proposition 10. If K^L^M then S(L/K)çS(M/K).

Proof. Let E=S(M/K). Then L®KE^M®KE and M®K E is an STP

algebra over F since F splits M/K. By Theorem 3, F %K E is also an STP algebra

over F so that F splits L/K and S(L/K)<=,E.

Example 3. We now construct Fs L^Esuch that the following conditions hold :

1. F does not split L/K.

2. K is the fixed field of all F-variations of L/K.

Define

K=P(a, b, c, d) with a, b, c, d algebraically independent over P and char F = 3.

L = K[z, w] with z9 = a, w3 = b + cz3 + dze.

E=L[x]mthx3 = c + 2dz3.

Proof of 1. S(L/K) = KWa, tyb, %c, tyd] so that e[S(L/K):L] = 2. On the other

hand, e[F:F] = 1. Thus S(L/K)£E so F does not split L/K.

Proof of 2. We will define a variation 9:L-> E[u] where «6 = 0. On the generators

z and w of F we define 6 by fe = z+w, 0w = m> + ;cm. To show that 0 defines a K

algebra horn we must show that (z + u)9=a, (w + xu)3 = b + c(z + u)3 + d(z + u)6. The

first equation is clear and we compute to verify the second:

(w + xuf = w3 + x3u3 = b + cz3 + dzB + (c + 2dz3)u3,

b + c(z + u)3 + d(z + u)6 = ¿> + cz3 + CH3 + dz6 + 2dz3H3 + dw6

= ¿> + cz3 + az6 + (c + 2dz3)w3.

We have used uB = 0.

Next let M be the fixed field of 0. We claim that M= K. If not then we assert that

K[z3] = (L/K)xcM. For the equation, K[z3] = (L/K)x, we note that K[z3]ç(L/K)x

and that (L/K)x cannot have exponent 2 over F for this would imply

ax(L/K) = 2 = 8X(L/K),       a2(L/K) = 1 = S2(F/F),

ak(L/K) = 0 = 8k(L/K),       k ä 3,

which would imply that L/K is elementary by Theorem 4 which would contradict

the calculation of S(L/K) given above. We now obtain the inclusion (L/K)X^M

by observing that, since e[(L/K)x:K]=l, (L/K)x is the unique subfield of F of

height 1 over F and so must be a subfield of any M such that F^ M^L. Finally,

however, the inclusion K[z3]qM is impossible since 0 does not fix z3:

0(z3) = (z + u)3 = z3 + u3 # z3.

Hence the claim that M=Fis true and this proves 2.

6. The ascending chain of splitting fields. We are led by Example 2 of §5 to

define an increasing chain of splitting fields Sn(L/K). We do this by induction :

50(F/F) = F,

Sn(L/K) = S(Sn„x(L/K)/K)    for« ^ 1,

SX(L/K) =  (J Sn(L/K).
ngo
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We now study these fields in detail.

Lemma 5. A(5(L/A)/A)=/i(L/A).

Proof. Since As Is SiL/K), we have A(L/A) ̂A(S(L/A)/A). But SiL/K) is

built using q¡th roots of elements of A where qi=pe' and e^ALL/A). Thus

hiS iL/K)/K) = hiL/K).

Lemma 6. For 1 ̂ n^oo, A(5n(L/A))=A(L/A).

Proof. For n finite use induction on n and Lemma 5. For n = oo, use the finite

case and the fact that a union of fields of height h has height h.

Proposition 11. Let As L £ A ana" fo A è<? elementary over K. Then S^L/K) S A.

Proof. We know that L=S0(L/A)s A. Assume by induction that £,,(£/A) S £.

Then SniL/K) ®K As E®KE and £ (g)^ A is an STP algebra over £ since £ is

elementary over A. By Theorem 3, £ splits S„(£/A) so that

Sn + 1iL/K) = S(S„(£/A)/A) S £.

Thus, for all w, ¿'„(A/A) s £ so that S^L/K^E.

Proposition 12. 77tere ex/s/s a finite extension E of K such that LçE and E is

elementary over A.

Proof. Choose a /7-basis {zu}ßeM of A over Ap. Note that the index set has

cardinality equal to the absolute exponent eK of A and so may be infinite. Let

h=hiL/K) and let q=ph. Also let wu = ^/zu. Then standard facts about />-bases

show

1. If A is a finite subset of M with n elements and if we set EN = K[wu] for p e N

then

a. [EN:K]=q\

ß. EN is elementary over A. In fact: EN~(><)ueN K[wu].

2. If x is purely inseparable over A and e[x: A] ^ h, then there exists a finite subset

A of M such that x e EN.

Thus, if L = K[xx,..., xr], choose As M, N finite, such that xf e EN for all i.

Then £s£w and EN is the desired field.

Theorem 5. 1. S„(L/A) is a finite extension of K.

2. For some n<œ, S^L/K) = SniL/K).

3. SniL/K) is elementary over K and thus is the unique minimal extension E of K

such that L^E and E is elementary over K.

Proof. 1. Use Propositions 11 and 12.

2. Use 1.

3. If SmiL/K) = SniL/K) with «<oo then 5'0O(L/A) = 5'n + 1(A/A) so that S„iL/K)

is its own splitting field and so by Theorem 4 is elementary over A. The rest of 3

follows from Proposition 11.
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Remark. In [5], Sweedler shows

There exists a unique minimal extension F of K

such that LsE and F is elementary over F.

However, lacking splitting fields, his proof is quite complicated.

7. Complexity. In Theorem 5 of §6, we have seen that the ascending chain

{Sn(L/K)} becomes stable after a finite number of steps. Thus we are led to define

the complexity c(L/K) of L/K by

c(L/K) = least n such that SX(L/K) = Sn(L/K).

We will show

Theorem 6. c(L/K) + l-¿h(L/K).

We will need some preliminaries before we can show the theorem. We will call

a pair (M, N) of intermediate fields of L/K a normal pair if

1. L = MN.

2. M is elementary over K.

The degree d(M, N) of the normal pair (M, N) is defined as h(N/K).

Example 1. The pair (K, L) is always a normal pair whose degree is the height

of L/K.

Example 2. If F is elementary over K then the pair (F, K) is a normal pair of

degree 0.

Lemma 7. Suppose there exists a normal pair for L/K of degree d>0. Then there

exists a normal pair (M, N) for L/K of degree d such that

1. The exponent sequence ex ̂  • • • ̂  em defined by any NGS for M/K is such that

e  >d

2. For all xeN, e[x: M] < d.

Proof. Let (P, Q) be a normal pair for L/K of degree d. Write P in the form

P = K[xx]®K---®KK[xs].

Let fi=e[x¡:K]. We can assume that /1= • • • ̂ /. Next let r be the maximum

integer k such that fk^d. Then set

R = K[xx,. ..,xT],       N = Q[xr+X,.. .,xs].

Then Fis elementary over K,RN= Q[xx,. ..,xs]=P- Q=L, h(N/K)=h(Q/K) = d.

Thus (R, N) is also a normal pair of degree d. Next choose from N a maximal

sequence yx,...,yt such that if Ri = R[yx,..., yt] then e[ji:Fj_1] = d for 1 íkiút.

Set M=Rt. By Proposition 7, M is elementary over K. Thus, (M, N) is also a

normal pair of degree d. The exponent sequence of M/K is fx,...,/, d,..., d.

Hence 1 holds for (M, N). Finally, by the maximal choice of the sequence yx,.. .,yt

we have, for all xe N, e[x:M]<d. This is 2 and so we are done.
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Lemma 8. Suppose there exists a normal pair for L/K of degree 1. Then L is

elementary over K.

Proof. Let (M, A) be chosen as in Lemma 7 with d=l. Then, for all xe N,

e[x:M]< 1, so that xe M. Thus, L = MN=M, so L is elementary over A.

Lemma 9. Suppose there exists a normal pair for L/K of degree d>0. Then there

exists a normal pair for SiL/K) over K of degree strictly less than d.

Proof. Let (M, A) be chosen as in Lemma 7. Choose Xx,.. -, xme M so that

M = K[xx] ®K- ■ -<g>x A[xm],       e[Xl:K] ^       ^ e[xm:K].

Next, using the fact that A generates L over M and Proposition 6, choose

xm + 1,..., xne N such that xm+1,..., xn is an NGS for L/M. We first show that

Xx,..., xn is an NGS for £/A. Let

A¡ = K[xx,.. .,*,],       e¡ = e[x¡, K¡_xl       q¡ = P°l,

Si = {Xi,..., xn}, J = {(«!,..., «„) : 0 ^ ak < qk}.

We must show that ei=A(A/Ai_1). For i>m, this follows from the fact that

xm +1,..., xn is an NGS for L/M. Now let z'^m. We observe that, since ^ generates

A over Aj_!,

hiL/Ki-x) = max etx^Ai.j].
/si

In finding the maximum, there are two cases to consider:

Case 1. ifüj^m. Then e[x¡ : A¡ _ j] = e[Xj>: A] ^ e[x{ : A] = e[x¡ : A¡ _ i]=et.

Case 2. j>m. Then, by 1 of Lemma 7, e^d. On the other hand, since A has

height i/over A, we have e[xJ:Ai_1];;e[jt3:A];£a'^ei. Thus

max e[Xj:Ki-x] = eK.

Thus, Xx, ■ ■ -, xn is an NGS for L/K.

We now examine the structure equations for xlf ...,xn. For i^m we have

simply x?' = fl¡ £ A. For i>m we have the usual structure equations

x?' = 2 ai.«x">a-
masJ

Thus, SiL/K) is generated over A by

V'ûj = x¡   for j ^ m,

\8 ai<a for i > m.

Now set A=A[v/aiitt] for i>m. Then SiL/K) = MP so that (M,P) is a normal

pair for SiL/K) over A. Finally, hiP/K)<d since, by 2 of Lemma 7, for ¿>m,

et = ^[x^Aj-!] ^ e[x(:M] < d.

Thus, (Af, A) is a normal pair for SiL/K) over A of degree strictly less than d.
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We will obtain Theorem 6 as a consequence of Example 1 and the more general

result below :

Theorem 7. Suppose there exists a normal pair for L/K of degree d>0. Then

c(L/K)+l^d.

Proof. Let c = d— 1. By repeated use of Lemma 9, SC(L/K) has a normal pair of

degree at most 1. By Lemma 8, SC(L/K) is elementary over F. Thus, by Theorem 5,

SX(L/K) = SC(L/K) so that c(L/K)^c, as desired.

8. Examples. We now construct a field K and extensions Fn of F such that one

has c(Ln/K) = n, h(Ln/K) = n+ 1. This will show that the inequality in Theorem 6

is the best of its kind. Let

F be a base field of characteristic p.

{.F¡,y}osisj<oo be independent transcendental over P.

K=P(yiyj)o¿í¿j< oo-

We next define elements xk¡n for 0 = A: = w<oo which will be used to construct the

fields Ln. We use induction on n. To begin

(0) <o = y0f0.

Assume that xk¡m is defined for m<n. Then set

(1) x0,n    ~ yo.n-

Also for 1 = k = n set

(2) Xk,n = .Vjc,n+ (*(£-l,n-l)'*0,n-

We then define Fn = F[x0>n,..., *„,„]. To find the properties of the extensions Fn

of F it will also be useful to define zk<n by

(3) zpk\ = yKn.

From (2) one can show

(4) xk¡n = zk¡n + xk-x¡n-x-xQ,n   for 1 á k ^ n.

We also define

Mn = F[x0>n, z1>n,..., zn_nJ,        Ffcn = Fn_fc.Fn.

Fact 1. h(LJK)=n+l.

Proof. First note that e[xQy.K] = n+ 1 so h(Ln/K)^n+l. To show equality we

must show that, for 1 ̂ ká«, xg"^'ei. By induction on «, we can assume that

xf.x,n.x e K. Then by (1) and (2),

xlT = K. + M-i,»-i)p7.,^.

We are done.
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Remark. Fact 1 shows that the coefficients ix^x.n-i) in (2) are elements of A.

Fact 2. £n_1-Ln=£n_1[x0>n, zln,..., znn]=Ln_1-Aîn.

Proof. Use (4).

Fact 3. e[Ln:K] = n2 + n+l.

Proof. The inequality e[Ln:K]^n2 + n+ 1 comes from the fact that L„ is con-

structed by adjoining one pn + 1-root and n ^"-roots. On the other hand

e[Ln:K] ä e\Ln.x A»:£»-i] = é-[A,-i-A/n:£„-i] = n2 + n+l.

We are done.

Fact 4. The sequence x0>n,..., xn>„ is an NGS for LJK. Moreover, equations

(0), (1), and (2) give the structure equations for this normal generating sequence.

Proof. Fix n and set P¡ = A[x0>n,..., xin] for O^z'^zz. Then, to show both

assertions, we must show

a. e[x0,n:K] = n+l=hiL/K).

ß. e[xi¡n:Pi_x] = n = hiL/Pi„x)íor l^iún.

Assertion a comes from Fact 1. To show assertion ß, we first note that for ally

^.'UAtxQs/'oS/V!.

Thus

n ^ hiL/Pi_x) ^ e[xl¡n:Pi_x] = épt:Pt-il

But in view of Fact 3, we cannot have e[/>¡:/>¡_1]<n for any z'so we obtain assertion

ß and Fact 4 as well.

Fact 5. SiLn/K)=Ln_x-Mn.

Proof. Using the structure equations we find that

"(Ai/A) = A[x0>n, zln,. .., znn, x0-n-i,..., xn_iiB_i] = L„-i- Mn.

Fact 6. Ek¡n = Ln.k-Mn.k + 1.Mn.

Proof. By induction on k, using Fact 2.

Fact 7. SiEkJK) = Ek + 1,n.

Proof. Set Fk-n = Mn_k + 1.Mn'K. Then Fk¡n is elementary over A and linearly

disjoint from L„_fc over A. By Proposition 13 below as well as Facts 5 and 6 we

obtain

5(£fc>n/A) = SiLn.k/K)-SiFkJK) = Ln.k.x-Mn.k-Fk,n = Ek + 1,n.

Fact 8. ciLn/K) = n.

Proof. The chain £0j„s£i>nS • • • S£„,„ is strictly increasing so that by Fact 7

ciLn/K)^n. But by Theorem 6 and Fact 1 we have c(L„/A) g /z(L„/A) - 1 =n. We

are done.

It remains to state and prove Proposition 13.

Proposition 13. Let P and Q be linearly disjoint extensions ofK. Then SiP■ Q/K)

= SiP/K)SiQ/K).
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Proof. Set E=S(P/K)-S(Q/K). Then, by Proposition 10, E^S(PQ/K). On

the other hand since F and Q are linearly disjoint over K, P- QxP ®K Q. Thus

(P- Q) ®K E « (P ®K Q)®KEx (P ®K E) ®s (Q ®x F).

The last algebra is the tensor product over F of STP algebras over F since F splits

P and g over K. Thus (P- g) ®K E is an STP algebra over F and F splits P- Q over

F, that is, S(PQ/K)sE.

Chapter 2. Splitting Theory for Algebras

1. Splitting questions. Let Abe a K algebra where F is a field of characteristic

p. We recall that in Remark 3 of Chapter 1, §4 we said that A is a special F algebra

if A — K[xx,..., xr] where the defining relations for xx,..., xr are of the form

*?' =  2 "i.**"'"
with

ex ^ e2 = • ■ • = er = 1 a¡ = />%       aUa e K,

J = {(«i,.. .,ar) : 0 ^ ak < qk},   /¡ = {a : aja e/}.

In this case, we will call xx,..., xr a normal generating sequence or NGS of type

q = (qx,..., qr) for A over F. We also define

di.a = v'aj,«,       S(A/K) = F[di>a],       1 g i á r and o e /j.

Here we view the elements d¡,a as in some fixed algebraic closure C of F and we

call S(A/K) the splitting field of A over F.

Remark. An example of a special F algebra is the case when A is defined by

setting aj-a = 0 for all /' and a. In this case we call A a special STP algebra over F.

In general, if B=K[ux,..., ur] is an STP algebra over F with truncating sequence

ux,..., ur, type bx,..., br, and dimension b=bx.br, then B is special over F

if and only if each b¡ is a power of p or, equivalently, b is a power of/>.

Now let A be a special F algebra and let F be an extension of F such that

S(A/K)^E. lnA®KEdefine

Hi = Xi ® 1 - 2 di^x" ® 1.
ae/¡

Then ^4 (gijf F=F[m!, ..., ur] and the defining relations for ux,..., ur are simply

uf> = 0. Thus, A ®K Eis a special STP algebra over F. More generally, we have

Theorem 1. Let A be a special K algebra and E be an extension of K. Then the

following conditions are equivalent:

1. A<g>K E is a special STP algebra over E.

2. A ®K E is a subalgebra of a direct sum of STP algebras over E.

3. S(A/K)^E.
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Proof. We have just seen that 3 => 1 and it is obvious that 1 => 2. Moreover,

the essential aspects of 2 => 3 have already been done in the proof of Theorem 3 of

Chapter 1, §5. An inspection of the proof given there shows that with some minor

changes of notation the argument works just as well when A ®K E is a subalgebra

of a direct sum of STP algebras as when A <S>K E is a subalgebra of one STP

algebra.

Theorem 1 justifies calling S(A/K) the splitting field of A over F.

We now give a name to the kind of splitting properties that we have just been

studying. Let Abe a K algebra. Then

1. We say that A is strongly splittable over F if A ®K E is a special STP algebra

over F for some extension F of K.

2. We say that A is splittable over K if A (g)K E is a direct sum of special STP

algebras over F for some extension F of F.

One of our main results will be

Theorem 2. The following conditions are equivalent:

1. A is strongly splittable over K.

2. A is special over K.

We will prove Theorem 2 in §4. In §2 we study the structure of any finite-

dimensional K algebra. We examine what happens to such an algebra under base

change. We will then be able to state a theorem which characterizes splittable

algebras and to show that this theorem is a consequence of Theorem 2. In §3 we

develop the technical results needed to show Theorem 2.

2. The structure of a finite-dimensional F algebra. Let A be a finite-dimensional

commutative F algebra. We will need to examine the relation between A and a

certain subalgebra M of A defined by

M =  H A**-K.
ngO

We begin by studying how A and M factor into direct sums of ideals.

Let ae A. Recall that a is an idempotent if a#0 and a2 = a. Set

/ = {a e A : a is an idempotent}.

Note that if a is an idempotent in A then ak = a for all k S: 1 so that ae M. Thus / is

also the set of idempotents in M.

Let S be a subset of /. Then one can show that the following conditions are

equivalent:

1. A is a direct sum of the ideals A ■ a for a e S.

2. M is the direct sum of the ideals M- a for a e S.

3. One has 2aes « = 1 and aß = 0 for a, ß e S with a^ß.

When these conditions hold we say that S factors A and M. Next it can be shown

that every factorization of A or M into a direct sum of ideals arises as above from
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a subset S of I which factors A and M. Thus, in particular, the factorizations of A

and M into direct sums of ideals correspond.

We now explain how to get the best possible factorization of A and M.lf ae A

is an idempotent, we say that a is minimal if the five equivalent conditions given

below hold:

1. A -a is a local A algebra with unit a.

2. a is the unique idempotent in A-a.

3. Ma is a local A algebra with unit a.

4. a is the unique idempotent in M-a.

5. It is impossible to write a=ß+y with ß,yeland ßy=0.

Set

/ = {a e A : a is a minimal idempotent}.

Then J factors A and M and the ideals A ■ a and M ■ a for a e J cannot be factored

further as the direct sum of ideals. Moreover J is uniquely determined by these

properties and it is in this sense that J gives the best possible factorization of A

and M.

The factorization of A and M via / allows one to reduce many questions to the

case when A and M are local rings. It should be noted that if a is an idempotent in

A then

M-a =   H  Ap"-K-a =   H iA-a)p"-K.
ngO ngO

This shows that M-a is constructed from A -a just as M is from A.

Theorem 3. M is the unique maximal separable A algebra in A.

Proof. The family {Apn-K}ni0 forms a descending chain of subspaces of the

finite-dimensional A vector space A. Hence this chain must stabilize, say at n = r.

Thus, for n^r, M=ApnK. We can now show that M=MPK. Indeed

M"K= L4P"-A)P-A = Apr+1-K = M.

From M=MP ■ K, we see that if xl5..., xt is a A basis of M then xp,..., xf is also

a A basis of M. In particular, M cannot have nilpotent elements. Indeed, if M did

have nilpotent elements, we could find xe M such that x#0 and xp = 0 and then

could choose a basis with Xx = x to get a contradiction.

We now show that M is a separable A algebra. For this it is enough to consider

the case when A and M are local. Then, since M has no nilpotent elements and is

local, M is a field. Then, from M=MPK, we see that M is a separable field

extension of K which shows that M is a separable A algebra.

Finally, if A is any separable A subalgebra of A, we must show that Ls M. Since

A is commutative, L is commutative and so L must be the direct sum of separable

field extensions of A. Thus £=Lp"-Afor all zz^O. In particular, for n = r,

L = LprAs ^prA= M.

We are done.
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We are now ready to study splitting questions. We begin with the case when A

is local. M is then a separable field extension of F. We will aim to show

Theorem 4. Assume that A is a local K algebra. Then the following conditions are

equivalent :

1. A is splittable over the field K.

2. A is strongly splittable over the field M.

We will see that the issue in the theorem is to compare A <g>K E with A ®M E

for certain extensions F of M. We first show

Lemma 1. For all extensions E of M, A ®M E is a local E algebra and its residue

field is a purely inseparable extension of E.

Proof. Let C be an algebraic closure of E. We must show that there exists

exactly one Fhomomorphism <p of A (g>M F into C. Now one such homomorphism

does exist since A <g)M F is finite dimensional and C is algebraically closed. Call

this homomorphism <p. We must show q> is unique. Since A generates A ®M Fas an

F algebra it suffices to show that <p(x) is uniquely determined for x e A. Choose r

so that M=AP'K. Then xpT e M so that <p(x)pr=<p(xp,) = x<". Thus <p(x) is the

unique prth root in C of xpT so <p(x) is uniquely determined.

We now choose N to be some least normal extension of F such that M^N and

we let E be the set of all K isomorphisms of M into N. If F is an extension of N

and a e E, we denote by Ea the field F viewed as an extension of M via M -2-^. As F.

We let <p: M-> ©ffö: Ea be the map induced by the maps a: M -> F«, and we let

T: M ®K E -*■ ©oe2 E„ be the F algebra map induced by <p. Note that <p is the map

which defines the M algebra structure on ©ff6S Ea. This implies that Y is also an M

algebra map.

Lemma 2. Let E be an extension of N. Then

1. Y is an isomorphism.

2. A ®¡r F~©ffeE A ®M Ea. This is the unique expression of A ®K E as a direct

sum of local rings.

Proof. 1. This fact is well known so we only sketch the proof. Since N is normal

over F, the number of elements in E is the degree [M:K]. Thus M ®K E and

0„e2 Ea have the same dimension over F. Moreover Y is surjective by the indepen-

dence of characters theorem. Hence Y is an isomorphism.

2. A®KE=A ®M (M ®K E)xA ®M (©ff6£ Ea) = ©0¿¡. (A <g)M E„). The last

fact follows from Lemma 1 and the fact that an expression as a direct sum of local

rings is always unique.

To apply Lemma 2 to the proof of Theorem 4, we must be able to compare the

structure of A ®M E to that of A ®M Ea for a e E with a^l. We can do this when

F is an extension of N such that the condition (*) given below holds

(*)       Every F automorphism r of N extends to an automorphism 0 of F.

Note that (*) holds if F is algebraically closed.
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Lemma 3. Let E be an extension of N satisfying (*). Then the following conditions

are equivalent:

1. A®K E is a direct sum of special STP algebras over E.

2. For all o el,, A ®M E„ is a special STP algebra over E.

3. A ®M £ is a special STP algebra over E.

Proof. From Lemma 2 it is clear that 1 o 2 while 2 => 3 is trivial. Thus we must

show 3 => 2. Let a e S. Then since A is normal over A we can extend o to an

automorphism t of A. Using (*), we can then extend t to an automorphism 0 of £.

£ —^-> £

î       Î
N —T-+ N

ix A
M

Clearly we can view 0 as an M algebra isomorphism of £ with Ea. Thus 0 extends

to an isomorphism 1 (gi 0: A (g)M £-> A <g)M £<,. This is enough to show that if

A (g>M £ is a special STP algebra over £ then so is A <®M Ea.

We are now ready for the

Proof of Theorem 4. If an algebra splits over some field £ then it splits over all

extensions £ of A. Thus, to test splitting properties, it is enough to use fields £

which contain A and which satisfy (*). Then 1 o 3 of Lemma 3 implies the theorem.

Using Theorems 2 and 4, we can now characterize splittable algebras in general:

Theorem 5. The following conditions are equivalent:

1. A is splittable over A.

2. For all minimal idempotents a, A-a is a special algebra over the field M- a.

Proof. Let J be the set of minimal idempotents. Then consider two additional

conditions:

3. For all a e J, A-a is strongly splittable over the field M-a.

4. For all a e J, A ■ a is splittable over A.

Then

2 o 3 follows from Theorem 2.

3 o 4 follows from Theorem 4.

4 o 1 follows from A = @aeJ A ■ a.

As a consequence of our theory, we also obtain

Theorem 6. If A is afield extension of K, then A is splittable over K.

Proof. By Lemma 1, A is purely inseparable over M so, by the theory of Chapter

I, A is strongly splittable over M. Then, by Theorem 4, A is splittable over A.



1971] INSEPARABLE SPLITTING THEORY 439

We conclude by defining the splitting field S(A/K) of A over K when A is split-

table. We first study the case when A is local. As in the discussion of Theorem 4,

we let

M=the maximal separable subfield of A.

C=any algebraically closed field which contains M.

A=the least normal extension of Fin C which contains M.

E = the set of all K isomorphisms of M into N.

By Lemma 2, we have a decomposition

(1) A®KNx ®A®M N0.

We set A„ = A ®M Na and we view A„ as an N algebra. Suppose F is an extension of

N. Then we have

A„®NE = (A ®M N„) ®NE = A®M Ea.

Thus, if F is an extension of N, we have a decomposition

(2) A®KEx © A„ ®N E.
aeS

This decomposition shows that we must study the N algebras A„ for a e E. First

note that since A is splittable over F we have from Theorems 4 and 2 that A is

special over M. Let xx,..., xr be an NGS for A over M and let ai¡a e M be the

structure constants in the defining relations for xx,..., xr. The structure equations

then have the usual form :

(3) 4' = 2 au^a-
aeli

We set di>a=tyai¡a so that S(A/M) = M[d,,a], l£i£r and a e It. Since S(A/M)

is purely inseparable over M, each a e E has a unique extension from M to an

isomorphism of S(A/M) into C which we will also denote by a. In this way we

identify E with the set of all F isomorphisms of S(A/M) into C.

Lemma 4. Let a e E. Then

1. Aa is a special N algebra.

2. The sequence xx® 1,..., xr ® 1 in Aa is an NGS of A„ over N and the structure

equations for this NGS are

(4) (xt®\y = 2<K«¡x*®i)?,ar-

In particular, the structure constants relative to this NGS are just the elements

a(a¡,J e N for 1 ̂  i = r and a e It.

3. S(Aa/N) = N-o(S(A/M)).

Proof. The equations (4) follow from the equations (3) and the fact that Aa

is defined as A ®M N„. From the equations (4), we obtain the rest of assertions 1
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and 2. To get assertion 3, first note that aidiia)=\^aiaiia). Thus

SiAJN) = JVKÍ,,,)] = N-oiSiA/M)).

We are done.

We now define the splitting field SiA/K) to be the composite of the fields

SiAJN) for a e E.

Theorem 7. Le? A be local and splittable over K and let E be an extension of K.

Then the following conditions are equivalent:

1. £ splits A over K, that is, A®K Eisa direct sum of special STP algebras over E.

2. A®K E is a suba Ige bra of a direct sum of STP algebras over E.

3. S(A/K)çE.

Proof. We may assume by choosing C large enough that £sC. Then, if any of

the three conditions hold, M ®K £ is a direct sum of copies of £ so that £ splits

M and we have As A Thus we have the decomposition (2). The equivalence

proof is now easy:

1 => 2. Trivial.

2 => 3. If 2 holds, then for all o e S we have that Aa ®N £ is a subalgebra of a

direct sum of STP algebras over £. Thus, by Theorem 1, SiAa/N) S £ for all o e S,

that is, SiA/K)QE.

3 => 1. If 3 holds, then for all o e S we have SiAa/N) s £ so that Aa ®N E is a

special STP algebra over £. Thus we have 1.

We now give a new way to define SiA/K).

Theorem 8. Let A be local and splittable over K. Then SiA/K) is the least normal

extension of K in C which contains SiA/M).

Proof. Let Tdenote the least normal extension of Ain C which contains SiA/M).

Since M^SiA/M) we see that As A Since S is the set of all A isomorphisms of

SiA/M) into C we also have

T = composite of the fields oiSiA/M)) for o e£.

Thus

T = composite of the fields N-oiSiA/M)) for <teE.

Hence by Lemma 4

T = composite of the fields SiAa/N) for o el,

= SiA/K).

We are done.

We now pass to the general situation when A is any splittable A algebra. We let

J be the set of minimal idempotents of A. Then we have as usual :

A = © Aa.
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Here, for all a e J, A ■ a is local. Thus we are led to define

SiA/K) = composite of the fields SiA-a/K) for a ej.

Remark 1. Theorem 7 is true for any splittable A algebra. As a consequence

we have

Corollary 1. The following conditions are equivalent for any A algebra A:

1. A is splittable over A.

2. A tg)K C is a direct sum of special STP algebras over C.

Proof. 2 => 1 is clear and 1 => 2 follows from SiA/K) S C.

As a special case of Theorem 7 we have

Corollary 2. Let A be splittable over K and assume that A is a subalgebra of a

direct sum of STP algebras over K. Then A is a direct sum of special STP algebras

over A.

Remark 2. Theorem 8 generalizes to

Theorem 8*. Let A be splittable over K, let M be the maximal separable A

subalgebra of A, and let J be the set of minimal idempotents in A. Then SiA/K) is the

least normal extension of K in C which contains all of the fields SiA-a/M-a) for

aej.

As a consequence we have

Corollary. If A is splittable over K, then SiA/K) is normal over K.

3. Special sequences. In this section, we study how generators can be chosen in

a special STP algebra.

Let Abe a field of characteristic p and £=£[z/1;..., ur] be a special STP algebra

over £ of type q = iqx, ■ ■ -,qr) where

ufi = 0,       q, =p\       ex *•••■£ er ^ 1.

Let M={ux,..., ur) be the maximal ideal of F. Then F=E@M and we let

t: A—> M be the projection map.

Let 1 ̂ sf¿r and xx, ■.., xs £ F. We say that xx, ■ ■ -, xs is a special sequence

relative to «j,..., ur if for l^i^s

£= £[xl5.. .,x„ z/i + 1, ...,zzr].

We motivate this definition by the following example :

Example. Let A he a special A algebra with Xj,..., xr an NGS for A over A

of type q. Let S(^/A)s£ and set F=A ®K E. Define Ux,...,ur as in §1. Then

Xx, ■ ■ -, xT is a special sequence relative to ult..., ur, since in this case for 1 ̂ i^r

E[xx,...,Xi] = E[ux,...,Ui\.
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To study special sequences, we will need some notation. For 1 = /' = /■ let

1. F be the set of all a=(ax,..., ar) such that

for 1 ̂  k ^ i, 0 = ak < qk,

for i<k^r, ak = 0.

2. J¡ be the set of all ß=(ßx, ...,ßr) such that

for l^k^i,ßk = 0,

for i<k^r, 0^ßk<qk.

3. /j={<x : ajae/j.j}.

Proposition 1. Let xx,..., xs be a special sequence relative to ux,..., ur and let

Fj = F[;c1,..., x¡]. Then, for 1 =/^j,

1. xqieEqt[xqxi,...,xV-x].

2. dim£ F¡=a,.a¡.

3. The set {xa} for a e Ji is a basis of F¡ over E.

4. The set {«"} for ß e J¡ is a basis of F over F¡.

5. The set {xauß} for aeJ¡ and ß e J¡ is a basis of F over E.

6. There exist unique constants ai>a e Eqi for a e /¡ such that x?' = 2ae/j ai,a*5'a-

Proof. From our assumption that xx,..., xs is a special sequence relative to

Ux,..., Ur, we obtain for 0 5 i = s

F= Ei[ui + X,...,ur].

Thus, Fis generated as a module over F¡ by {uß}forß e Ji and this set has qi + x.qr

elements. Since dim£ F—qx.qr, we have

A. dimBFj^ai.a¡.

B. dimB Et=qx.a¡ o {ue} for ß e Jt is a basis of F over F¡.

With this, we are ready to prove our assertions :

1. Let j=i— 1. Then F=Ej[ui,..., ur] so that x¡ = 2 bßuB with bß e E¡ for ß eT,.

On taking a¡th powers we obtain

*?' = 2 è?'MM = o°'-

Thus x?' e F/i = F9«[xiS ..., xfi.xL

2. By  1, we have that, for  1=A:^/, dimE Fjjáa^dimB Ffc_x. Thus we get

dimB EiSqx.fl¡ so that, by A, we obtain 2.

3. The set {xa} for a e /¡ generates F¡ as a vector space over E, by 1, and this set

has ai.a¡ elements. Then from 2 we get 3.

4. Use 2 and B.

5. Use 3 and 4.

6. Use 1 and 5.

Proposition 2. If xx,..., xr is a special sequence relative to ux,..., ur then

Xx,...,xr is a normal generating sequence of F over E.

Proof. Use 6 of Proposition 1.
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Proposition 3. Let x1,...,x,eF with s<r. Let X generate F over E. Assume

F = E[xx, ■ ■., xs, us + 1, ■ ■., ur].

Then for some xs + 1 e X

F = £[xl5..., xs + 1, tzs + 2,..., ur\.

Proof. Set yt = rxteM and zt=xi—rxteE. Since xi=zi+_vi and zteE, our

assumption yields

£= E[yi.y,,u,+i,...,«,].

Now M/M2 has dimension r over Eso ylt...,y„ u,+1,..., ur must be a basis of

M mod M2. Delete us + 1 from this list and consider the set T={tx : x e X}. Since

A generates A over £as an algebra, Y generates M mod M2 as a vector space over

£ Thus we can find ys+1 £ Tsuch that ylt.. .,yny$+u M«+2.Mr forms a basis

of M mod M2 over £. Then any xs+1 e X such that TX,+1=y,+1 will have the

required property.

Proposition 4. Let X generate F over E. Then there exist xte X for 1 §z'^r

such that Xx, ■ ■ -, xr is a special sequence relative to ul7 ■ ■., ur.

Proof. Use Proposition 3.

4. Splitting revisited. Using Proposition 4 of §3, we will now show Theorem 2

of §1. Recall that we must show that for any A algebra A the following conditions

are equivalent:

1. A is strongly splittable over A.

2. A is special over A.

From §1, we know that 2 => 1. To show 1 => 2, we must show that if condition 1

holds then A has a normal generating sequence. We can show even more:

Theorem 9. Let A be a strongly splittable A algebra and let X be a subset of A

which generates A over K. Then there exists an NGS x1;..., xr of A over Ksuch that,

for all i, X( £ X.

Proof. We let £ be an extension of A such that F=A <g>K £ is a special STP

algebra over £ and we use the notation of §3. We view A as within A via the map

a h-> a <g) 1. Then X generates A over £ so, by Proposition 4, we can choose x, e X

such that Xx,..., xr is a special sequence relative to t$it..., ur. Then, by Proposition

2, Xx,..., xr is an NGS of A over £. We claim that Xi,..., xr is also an NGS of A

over A. To prove the claim we need a simple lemma about tensor products which

we state without proof.

Lemma 5. Let A and E be K algebras and let F=A ®K E. View F as an algebra

over E. Let S be a subset of A. Let K[S] and E[S] be the rings generated by S over

A and E respectively. Then if a e A, a e K[S] o a e E[S].
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From the fact that xx,..., xr is an NGS for F over F we obtain two conditions

F=E[Xx,...,xr],       xfie£[xfi,...,4L1l,        l ú i Ú r.

Using Lemma 5, we obtain

A = K[xx,..., xr],       xfi e K\xV,..., xfLj,       1 ú i ú r.

These conditions imply that xl5..., xr is an NGS for A over K.

As an illustration of how Theorem 9 can be used, we show

Theorem 10. Let R and S be K algebras and let A = R ®K S. Then the following

conditions are equivalent :

1. A is strongly splittable over K.

2. R and S are strongly splittable over K.

Proof. 2 => 1. This follows from A ®K E=(R ®K E) ®E(S ®K E) and the

fact that the tensor product of two special STP algebras is a special STP algebra.

1 => 2. Let X= Ru S. Then X generates A over F and so, by Theorem 9, we

can choose an NGS xx,..., xr of A over F with x¡ e X. Now let yx, ■ ■., ys and

zx,..., zt be the subsequences of x,,..., xr which lie in R and S respectively. Then,

by an argument similar to that in Theorem 9, one checks that yx,.. -, ys is an NGS

for F over F and zx,..., zt is an NGS for S over F. Thus R and S are special over

F and hence strongly splittable over K.

In the same direction, we also have

Theorem 11. Let R and S be K algebras and let A = R®KS. Then the following

conditions are equivalent :

1. A is splittable over K.

2. R and S are splittable over K.

Proof. By Corollary 1 of Theorem 7 (cf. Remark 1 of §2), we can reduce to the

case when Fis algebraically closed. Then we can reduce to the case when F and S

are local. We then apply Theorem 10.

As a consequence of Theorems 10 and 11, we have

Corollary. Let R and S be K algebras and let A = R ®K S. Then the following

conditions are equivalent:

1. A is a (direct sum of) special STP algebra(s) over K.

2. R and S are both (direct sums of) special STP algebras over K.

5. Remarks on elementary extensions. Let F be a finite field extension of K.

Then F is splittable over F by Theorem 6. Taking a hint from Theorem 4 of Chapter

1, we say thatF is elementary over F if F = S(L/K). Let M be the maximal separable

extension of F in F. We now relate the conditions "F is elementary over F" and

"F is elementary over M".
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Theorem 12. The following conditions are equivalent:

1. L is elementary over K.

2. L is elementary over M and L is normal over K.

Proof. By Theorem 4 of Chapter 1, F is elementary over M if and only if

L = S(L/M). Also, by Theorem 8, the least normal extension of F which contains

S(L/M) is precisely S (L/K). Thus

F = S(L/K) oL = S (L/M) and F is normal over F.

This equivalence is just what we wish to prove.

6. Remarks on group schemes. If X is an affine scheme over F, we let T(X)

denote the ring of functions of X, that is, X= Spec (A) with A = T(X). We will

interpret a well-known fact about group schemes in the language of our splitting

theory.

Theorem 13. Let G be a finite commutative affine group scheme over K and let

A = T(G). Then A is splittable over K.

Proof. By Corollary 1 to Theorem 7, we can reduce to the case when F is

algebraically closed. Then, by [4, Exposé 11, 4.2], G = GsxGu where Gs is the multi-

plicative part of G and Gu the unipotent part of G. Now, if AS = F(GS) and Au

= F(GU), then A — As ®K Au. Thus, by Theorem 11, we need only consider two

cases :

Case 1. G = GS. Then A = As is a separable algebra over F, hence, splittable.

Case 2. G = GU. Then A = AU is strongly splittable by [2, p. 152].

By Theorem 13 and the earlier results on splitting, we know the algebraic

structure of the ring of functions of any finite commutative affine group scheme.

Hopefully, this result will be useful in the study of the structure of group schemes

over base fields which are not perfect.

7. Remarks on automorphism schemes. If F is a ring of characteristic p and S

is a special STP algebra over F, then it is easy to describe the automorphisms of S

as an F algebra. This calculation can be used in the following situation:

A is strongly splittable over F,

S(A/K)sR,
S=A®KR.

One gets in this way a strong hold on the automorphism scheme of A over F. In a

recent paper [1], Mlle. Bégueri uses this idea to study the automorphism scheme of

a purely inseparable extension. We describe one of her results.

Let K^LqM be a tower of purely inseparable extensions. We define the auto-

morphism scheme GMIUK by giving the points of GMILIK with values in a F algebra R :

Gmilik(R) = automorphisms of M ®K R which fix F ®K R.
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If z £ M, we say that z is invariant under GMIUK if for all A algebras R the element

z <g> 1 in M (£>K R is fixed by GMIUKiR). We set

Imilik = {ze M : z is invariant under GMILIK).

Then Imilik is a field and Ls/M/l/kSA/. Proposition 14 of [1] then says

Proposition. The following conditions are equivalent:

!• L = IMtLiK.

2. For all q =pe, MqK and L are linearly disjoint over Mq K n L.

Remark 1. If A=L then condition 2 trivially holds.

Remark 2. Let h = hiM/L). Then, for e^h, MqK^L, so condition 2 holds.

Thus we may assume e<h in testing condition 2. Suppose for e</z it happens that

ASM". Then condition 2 becomes

For all e < h and q = pe, Mq and A are linearly disjoint over Mq n A.

By Theorem 4 of Chapter 1, this condition amounts to saying that M is elementary

over L.

These remarks show how to find a tower AsLS M such that L^IMIUK. Indeed

1. Let L be a field of characteristic p which admits extensions M which are purely

inseparable and nonelementary and assume that the absolute exponent eL of L is

finite.

2. Take M to be any nonelementary purely inseparable extension of A.

3. Let h = hiM/L) and let Abe any subfield ofL n Mh~1 such that [L:A]<oo.

For example let K=Lh~1. Then AsLsM is a tower such that L + Imilik-

In particular, the hope that every intermediate field L of a purely inseparable

extension A//A could be gotten as the field of invariants of its automorphism

scheme is destroyed.

8. On special algebras which are not split. Let A be a special A algebra, let

Xx, ■ ■ -, xr he an NGS for A/K, let ai¡a £ Abe the structure constants for A/K relative

to the NGS Xx,..., xr, and write the structure equations in the usual way:

xv = 2 flf.«*,,B-
ae/t

Until now, our main concern has been to examine the splitting of A. We will now

consider the question: When is A a field? We will be able to answer this question

using the mixed Jacobians of Zariski [6].

We begin by noting that A is an artin local ring and that if we let m denote its

maximal ideal and L = A/m then L is a purely inseparable extension of A. This

follows from Lemma 1 of §2 since in our case M=Aand we can take £=A. Now,

we want to know when A is a field, that is, when m = 0. By Nakayama's Lemma

m = 0 o m/m2 = 0 o dimL im/m2) = 0.
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Our aim is therefore to test when dim¿ (m/m2) = 0. Now, from the defining relations

for A, we can construct a matrix J called the mixed Jacobian such that J has co-

efficients in F and

rank (J) + dimL (m/m2) = r.

Thus we have

Theorem 14. The following conditions are equivalent:

1. A is afield.

2. The mixed Jacobian J of A has rank r.

We now review how to construct /. First, if P e K[XX,..., Xr] and D: F->- F

is a derivation, let DP denote the polynomial gotten from P by applying D to the

coefficients of F and leaving the X¡ fixed. Next define

Pi(Xx,...,Xi) = Xfi- 2 «,.«**<*•
ae/j

Also, fix a set {£\}„eM of derivations which generate the vector space of all deriva-

tions of Fto Fand let z¡ be the image of x¡ in L. Then one can take as the matrix J

(1) J = | DuPi(zx, . . ., z¡)\tleM¡x ¿igr.

We remark that in Zariski's general situation one must also have in J expressions

involving derivations of the variables Xt. This is unnecessary in our case since all

variables appear with powers of p in the polynomials P¡. We now make some

further remarks:

Remark 1. D.P^z,,..., zt)= -laeIi(Duaiia)zqia.

Remark 2. To apply Theorem 14 to show that A isa field (2 => 1) it is enough to

find some set M of derivations of Fto F such that the matrix y defined by (1) has

rank r.

Application. We can use Theorem 14 to simplify the discussion of the fields

Fn in Chapter 1, §8. By induction on n, we define a special F algebra An

= F[x0,n, • • -, xn-n] by using (0), (1), and (2) of Chapter 1, §8, as the defining rela-

tions. Of course, Ln is residue field of An modulo the maximal ideal of An. The

issue in Facts 3 and 4 is essentially that An = Ln, that is, that An is a field. We will

now show this using Theorem 14. By induction, we first show

Fact. For 0 = k = n,

*k,n     e P(yi.Ùoiiiién-

Next we write down the polynomials Pk corresponding to xfc>n for O^k^n:

Frj(Ao) =  ^0        — Jo,n>

Pk(X0, . .., Xk) =  Xr-yk,n-(Xk-X.n-iy-X0p"     if k £  1.
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Note that from the above fact, the coefficient ixk-x,n-i)p" lies in the field Piyt,,)

for 0 S z'i£_/'<«. Now define a derivation D„ by

D„iyu) =1    ifi = p. and j = n,

= 0   otherwise,

Du = 0   on P.

In particular

i)»(fc-i,-iD = o.

It follows that the polynomials D¡lPk are constant, namely

D„Pk = - 1    if n = fc,

= 0       if p ¥= k.

Hence the mixed Jacobian matrix formed from P0,..., Pn and D0,..., Dnis simply

the negative of the identity matrix. Its rank is zz +1 = r so we conclude that An is a

field.

Bibliography

1. L. Bégueri, Schéma d'automorphismes. Application a l'étude d'extensions finies radicielles,

Bull. Sei. Math. (2) 93 (1965), 89-111.

2. M. Demazure and A. Grothendieck, Schémas en groupes, fase. 2b, Séminaire Géométrie

Algébrique, Inst. Hautes Études Sei., Paris, 1965. MR 34 #7519.

3. G. Pickert, Eine Normalform für endliche rein-inseparable Körpererweiterungen, Math. Z

53 (1950), 133-135. MR 12, 316.

4. Séminaire Heidelberg-Strasbourg, Groupes Algébriques, 1965/66.

5. M. E. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410;

corrigendum, ibid. (2) 89 (1969), 206-207. MR 36 #6391; MR 38 #4451.

6. O. Zariski, The concept of a simple point of an abstract algebraic variety, Trans. Amer.

Math. Soc. 62 (1947), 1-52. MR 9, 99. See also: Séminaire H. Carian et C. Chevalley 1955/56,

Géométrie Algébrique, Secrétariat mathématique, Paris, 1956. MR 20 #3871.

Northeastern University, Boston, Massachusetts 02115


