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ON CARTAN SUBALGEBRAS OF ALTERNATIVE

ALGEBRASC)

BY
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Abstract. In 1966, Jacobson introduced the notion of a Cartan subalgebra for

finite-dimensional Jordan algebras with unity over fields of characteristic not 2. Since

finite-dimensional Jordan, alternative, and Lie algebras are known to be related

through their structure theories, it would seem logical that such an analogue would

also exist for finite-dimensional alternative algebras. In this paper, we show that this

is the case. Moreover, the linear transformation we define that plays the role in

alternative algebras that "ad ( )" plays in Lie algebras is identical with that used in

the Jordan theory, and can be used in the Lie case as well. Hence we define Cartan

subalgebras relative to this linear transformation for finite-dimensional alternative,

Jordan, and Lie algebras, and observe that in the Lie case, they coincide with the

classical definition of a Cartan subalgebra.

1. Introduction. In 1966, Jacobson [4] developed an analogue of Cartan sub-

algebras for finite-dimensional Jordan algebras with unity over fields of charac-

teristic not 2. Since finite-dimensional Jordan, alternative, and Lie algebras are

known to be related through their structure theories, it would seem logical that

such an analogue would also exist for finite-dimensional alternative algebras

independent of the fact that the symmetric algebra of an alternative algebra is a

Jordan algebra.

In this paper, we show that this is indeed the case. Moreover, the linear trans-

formation we define that plays the role in alternative algebras that "ad ( )" plays

in the Lie case is identical with that used in the Jordan theory, and can be used for

Lie algebras as well. Hence we define Cartan subalgebras relative to this linear

transformation for finite-dimensional alternative, Jordan, and Lie algebras, and

observe that in the Lie case they coincide with the classical definition of a Cartan

subalgebra. However, in the Lie case as in the Jordan case, we are restricted to
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ground fields of characteristic not 2. Finally, following Barnes [1], we will see that

we can characterize our Cartan subalgebras as "minimal Engel subalgebras".

Most of the notation in this paper is standard. If t/ is an algebra and /is an ideal

of U, we write I<\ U. If u e U, by Ru and Lu we mean the linear transformations of

U where x e U, xRu=xu and xLu — ux. We recall that if U is a Lie algebra, then

Ru = ad(u). If Mj, u2, u3 e U, we write (uuu2,u3) = u1u2-u3 — u1-u2u3 for the

associator of uu u2, and w3, and [uu u2] = u1u2 — u2u1 for the commutator of ux and

u2.

2. Preliminaries. An algebra A over a field F is alternative if (a, a, b) = (b, a, a)

= 0 for all elements a, be A. From this definition, it is clear that a homomorphic

image of an alternative algebra and a direct sum of alternative algebras are alterna-

tive. Since the associator is multilinear, we have that AK is alternative for all

extensions K of F, where AK = A ®F K is the scalar extension of A to an algebra

over K.

We will now give those properties of alternative algebras that we will require in

our construction of Cartan subalgebras, and refer the reader to Schäfer [8] for

proofs.

Linearizing the identities that define A, we obtain

(a, b,c) = - (a, c, b) = (c, a, b),
(2.1) for all a, b, c e A.

(a, b, a) = 0

In terms of Ra and La, ae A, these become

RaRb~Rab = Lab—LbLa =  [Lb, Ra]

(2.2) = LaLb-Lba = Rba-RbRa = [Rb, La],   for all a, be A.

[K,La] = 0

Since the subalgebra of A generated by any two elements of A is associative, we

have

Ra*  = (Ra)',
(2.3) for all a e A and positive integers i.

La' = (Lay

Now suppose e is an idempotent of A. Then A can be written as a direct sum

A = Aoo@A10®A01®A11,

An - {xu e A | x„e = jxtf, exu = ixi}},       i,j = 0, 1.

If {eu ..., et} is a set of pairwise orthogonal idempotents of A (ef = eu eie] = ejei = 0

for ij^j), we get a refined decomposition of A as

(2.5) A=   1    ®AUí.í=i
where if 8iy is the Kronecker delta,

A%] = fan e A | ekxtj = okiXij, Xijek = oíkx¡j, k — 1,..., /}.
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This decomposition is called the Pierce decomposition of A relative to the set

{e1;..., et}. We have the following multiplicative relationships between the sub-

spaces AiS:

AijAjk £ Aik,       i,j, k = 1,..., /,

(2.6) Ai,Ait Ç A„,       i,j = 1,..., t,

AiSAvq = 0, j / p,   (/,;') ^ (p, q),   i,j,p,q= \,...,t.

If A is finite dimensional, then the following are equivalent:

(i) A is nilpotent,

(ii) A is solvable,

(iii) A is nil.

In this case, A has a unique maximal solvable ideal S'(A) and S'(A/S'(A)) = 0.

S'(A) is called the radical of A If S'(A) = 0, A is semisimple.

Finally, an idempotent e of ,4 is primitive if e cannot be written as a sum of non-

zero pairwise orthogonal idempotents.

3. The universal enveloping algebra of an alternative algebra. Suppose A is an

alternative algebra over a field F. We will denote its anti-isomorphic image by A',

and set B=A ® A'. If a e A, we will write a' for the anti-isomorphic image of a.

(3.1) Suppose p is a linear map from B into an associative algebra V such that

[a'ip,a2p\ = (aia2)p-(a1p)(a2p)

(i)
= (a2ai)V-(aip)(a2p) = WiP, a'2p],

(ii) (ûio^p-^iP)^^) = (a^yp-fápXa^p) = 0

for all alt a2 e ^4. Then p is called a representation of A. We note that if the charac-

teristic of F is different from 2, then the conditions given in (ii) are a consequence

of those given in (i).

Every alternative algebra A has a representation. Indeed, the linear map pR

where, if a e A, apR = Ra and a'pR=La is a representation of A, and is called the

regular representation of A. Here Kis the ring of endomorphisms of A.

(3.2) Suppose U is an associative algebra for which there is a linear map

i: B-^- U such that for each representation p of A into an associative algebra V,

there is a unique homomorphism p* :[/->- V such that bp = (bi)p* for all Z> e 5.

Then the pair ({/, i) is called a universal enveloping algebra for ^4.

To see that such an algebra exists, let T(B) be the tensor algebra based on the

vector space B, i.e. T(B) = B1 © B2 © ■ ■ ■ where B1 = B and inductively for n> 1,

Bn = Bn_1® B^ The vector space operations in ^(5) are the usual ones, and T{B)

has an associative product ® consistent with this notation. Now any representation
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p of A into an associative algebra Kcan be uniquely extended to a homomorphism

p' of T(B) into V. From (3.1), the kernel of p contains all elements of the form

(i) a\ ® a2-a2® a\-axa2 + ax ® a2,

(ii) a^a-ö! <g> a2-(a2ßi)' + a[ ® 4,

(3.3)       (iii) (a2öi)'-ai ® a2-ßi ® «2+^2 ® ßi,

(iv) a1a1-a1 ® al5

(v) (ajöO'-ai (g) ai   where als a2 s ^4.

Suppose A is the ideal of T{B) generated by elements of this form. Then p will

induce a unique homomorphism p*: T(B)/K^- V. Hence if i is the restriction to B

of the natural homomorphism from T{B) onto T(B)/K, we have bp = (bi)p* for all

be B, and it follows that (T(B)/K, i) is a universal enveloping algebra of A. We

will write U(A) = T(B)/K, and for each a e A, ai=ä and a'i=ä'.

(3.4) We have the following properties for the universal enveloping algebra

[5, Chapter 5]:

(i) universal enveloping algebras are determined within isomorphism by A,

consequently we take (U(A), i) for the universal enveloping algebra of A,

(ii) U(A) is generated by ä and ä', ae A,

(iii) if K<\A and D is the ideal of U(A) generated by (K© K')i, then there exists

an isomorphism of U(A/K) onto U(A)/D such that

a + (K@K')i^ä+D

and

a' + (K@K')i-+ä' + D.

We now wish to prove that if A is finite dimensional and / is a nil ideal of A,

then (/© /')i generates a nilpotent ideal in U(A). We begin by proving

Lemma 3.5. Suppose I<] A and I* is the subalgebra of U(A) generated by (I ® I')i.

Then D = I*+I*® U(A) is a two-sided ideal of U(A).

Proof. It is clear that D is a right ideal of U(A). To see that it is a left ideal, we

observe from (3.3)(i)-(iii) that we have the following identities in U(A):

(3.6)

(i) a® b' = 5'® ä — ba + b® ä,

(ii) ä'® b' = (ba)' + ba-b® ä,

(iii) ¿2® b = ab + ba — b® ä,

(iv) a"® b = 5® ä'+b® ä-bä.

Since ä and a', ae A, generate U(A), and b and b', bel, generate /*, it follows

from these identities that D is a two-sided ideal of U(A).
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Corollary 3.7. In the setting of the previous lemma, if I* is nilpotent, then D is

nilpotent.

Proof. Since U{A)® I^D, an easy induction argument shows that for all n,

Z>n£(/*)n + (/*)n<g> U(A), and the result follows.

Lemma 3.8. If A is nil and the dimension of A is one, then (U(A))3 = 0.

Proof. Since the dimension of A is one, A = Fe where e2 = 0. By (3.3)(iv) and (v)

we haveë® ë=ë' ® ë' = 0. Hence by (3.6)(i), ê®ë' = ë'(&ë. Since U(A) is generated

by {ë, ë'}, it follows easily that (U(A)f=0.

Lemma 3.9. Suppose A is finite dimensional. If A is nil, then U{A) is nilpotent.

Proof. The proof is by induction on the dimension of A. By Lemma 3.8, we

may assume dim A = n>\. Since A is solvable, there is an n— 1 dimensional sub-

space /such that A2^I^A, whence I<\A. Consequently, as dim (A/I) = l, U(A/I)

is nilpotent. Now let Ix be the ideal of U(A) and /* the subalgebra of U(A)

generated by (/© I')i. Then I1=I*+I*<S> U(A). By the induction hypothesis, U(I)

is nilpotent, hence /*, being a homomorphic image of U{I), is nilpotent. By

Corollary 3.7, Ix is nilpotent. But by (3.4)(iii), U(A/I) is isomorphic to UiA)/^,

whence U{A)II1 is nilpotent. Therefore U(A) is nilpotent, as required.

Theorem 3.10. Suppose A is finite dimensional, ( U(A), i) is the universal enveloping

algebra of A, and I is a nil ideal of A. Then (I® /')/' generates a nilpotent ideal in

U(A).

Proof. Suppose /* is the subalgebra of U(A) generated by (I© /')/. By Lemma

3.9, U(I) is nilpotent, thus /* is nilpotent, and the result follows from Corollary

3.7.

Remark. Schäfer has obtained what is essentially this result for finite-dimen-

sional alternative algebras over fields of characteristic zero [7].

As a corollary to Theorem 3.10, we prove the following result which we will

require later in the paper.

Corollary 3.11. Suppose A is finite dimensional, Ax is a subalgebra of A, and I

is a nil ideal of Ax. IfCis the subalgebra of WomF (A, A) generated by Ra,La, a e Au

then Rb, Lb, bel, generate a nilpotent ideal in C.

Proof. Let p be a linear map from Ax © A'x into C where, if a e Au ap = Ra and

a'p=La. Then p is a representation of Au hence there is a homomorphism from

UiAj) into C. Since C is generated by Ra and La, a e Au it follows that this homo-

morphism is onto C and maps the ideal of U{Ax) generated by (/© V)i onto the

ideal of C generated by Rb, Lb, bel. Since (/© /')/ generates a nilpotent ideal in

t/L^i), Rb and Lb, bel, generate a nilpotent ideal in C, as desired.
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4. The theory of a-nilpotence.

(4.1) Suppose A is an alternative algebra over a field F, and bu b2, b3 e A. We

set

a(bx, b2, b3) = b3 ■ b1b2 + b2bx ■ b3 - b2b3 ■b1-b1- b3b2.

Since A is alternative, we can also write

a(blt b2, b3) = [b2, [blt é3]]-4(¿»i, b2, b3).

We define a1(b1, b2, b3)=a(b1, b2, b3) and  inductively for k>\  and elements

»i,..., o2fc + i e A

ak(bu . ..,b2k + 1) = aia*-1^,..., b^^^), b2k, b2k + 1).

When no ambiguity arises, we will write the left-hand side of this expression ak( ).

We say that A is a-nilpotent if there is a k>0 such that ak( )=0 for all choices

b¡ e A. Clearly any subalgebra and any homomorphic image of an a-nilpotent

alternative algebra is a-nilpotent. Furthermore, since ak{ ) is multilinear for all k,

A is a-nilpotent if and only if AK is a-nilpotent for all extensions K of F. If A con-

tains a unity and G is a subfield of the centre of A containing the unity of A, then

A can be regarded as an algebra over G. In this case, we have that A is a-nilpotent

if and only if A/G is a-nilpotent.

(4.2) Suppose b, c e A. We define a linear transformation on A as follows: for

all x e A, xS{b, c) = a{x, b, c). Note that S(b, c) is linear in each of its arguments.

If b e A and for some positive integer n = n(b), S(b, b)n = 0, then b is called a-

nilpotent. If every element of A is a-nilpotent, A is called a-nil. We note that if A

is a-nil and dim A = m <oo, then S(b, b)m=0 for all be A.

Throughout the rest of this section and §5, we will assume that A is an m<co

dimensional alternative algebra with unity 1 over a field F.

Our determination of the structure of a-nilpotent alternative algebras is parallel

to the determination of the structure of associator nilpotent Jordan algebras [6].

Hence where proofs are not provided, the corresponding results in the Jordan case

will be cited, the proofs in the alternative case being the same (mutatis mutandis).

(4.3) Suppose A contains a nil ideal A^ such that A/N is an associative, purely

inseparable algebraic field over F. Then A is called purely inseparable. If F is

perfect, this condition becomes A/N=F, or A = F-1 +N.

Lemma 4.4. If A is purely inseparable and K is the algebraic closure of F, then

AK = K-\+N where N is a nil ideal of AK.

Proof [6, Lemma 1, p. 344].

(4.5) If b e A, then b is separable if the subalgebra F[b] of A generated by b and

1 is separable, i.e. for all extensions P of F, F[b]P is a direct sum of simple ideals.

If eis an idempotent of A, then eis separable. If b is separable and Ais the algebraic

closure of F, then F[b]K = Ke1+ ■ ■ ■ +K-et where {eu ..., et} is a set of pairwise

orthogonal idempotents whose sum is 1.
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Lemma 4.6. Suppose A is a-nilpotent. Then every separable element of A is

contained in the centre of A.

Proof [6, Lemma 2, p. 345].

Theorem 4.7. The algebra A is a-nilpotent if and only if A=At@- ■ •© As where

the At are ideals of A, and each At contains a separable subfieldG¡ of its centre contain-

ing the identity of A¡ such that A¡/Gi is purely inseparable.

Proof [6, Theorem 18, p. 345].

Corollary 4.8. Suppose F is algebraically closed. Then A is a-nilpotent if and

only if A is expressible as a direct sum of ideals Af where Ai = F-li + Nt, 1¡ is the

identity ofA¡ and N¡ is a nil ideal ofA¡.

Proof [6, Corollary 2, p. 346].

To prove the analogue of Engel's theorem, we will require

Lemma 4.9. For any be A and nonnegative integers i,j, k,

Si», Vf = S{b,bfcpk{Rb,Lb)

where cpk(i, j) is a polynomial in i and j over the integers. Consequently, if b is a-

nilpotent, then S(b', V) is a nilpotent linear transformation of A for all i,j^0.

Proof. Since the subalgebra of A generated by any two elements from A is

associative, it is clear that

(a) Sib1, b') = Sib1, b')   for all i,j ^ 0.

We recall that in an associative algebra

(b) [xy,z] = x[y, z] + [x,z]y.

Applying this to (4.1), and since the subalgebra of A generated by {x, b) is associative

for x e A, we find xS(b\ b') = [b'~xb, [x, b']], whence

(c) Sib1, b>) = Sib, V)Lbi -1 + Sib' -\V)Rb,       i% 2.

From (a) and (c) an easy induction gives us

(d) Sib\ V) - Sib, b)9iiRb, Lb),       i, yàl,

where 91(1,7) is a polynomial in i and j over the integers. Next, using (b), we obtain

(e) RbSib', V) = Sib', V)Rb,       i,j ^ 0,

and similarly

(f) LbSib\ V) = Sib\ b')Lb,       i,j ^ 0.

Now (e) and (f) together with (2.3) imply that for all / and /, Sib1, b1) commutes

with any polynomial in 7^, and Lb. Thus from (d), we have

(g) SibWf = Sib,by9kiRb,Lb)
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where i,j, k>0 and <pk = <pk(i,j) is a polynomial over the integers. The case when

one or both of i and j is zero is trivial. The final assertion now follows from (g).

We now give

Theorem 4.10 [Engel]. The algebra A is a-nil if and only if it is a-nilpotent.

Proof [6, Theorem 19, p. 347].

5. Cartan subalgebras of alternative algebras. Suppose L is a nilpotent Lie

algebra of linear transformations of an «<oo dimensional vector space W where

the ground field of both L and Wis F. Then we can write W= W0 © Wx where WQ

and Wx are respectively the Fitting null and one component of W relative to L.

We have W0={w eW\whn = 0 for all heL], and W1=C\ W(L*)< where L* is the

subalgebra of the enveloping associative algebra C(L) of L generated by L [5, p. 39].

Furthermore, Jacobson [4, p. 599] has shown that Wx can be characterized as any

complementary subspace of W0 that is invariant under L.

Now suppose P is an arbitrary extension of F. Then LP is a nilpotent Lie algebra

of linear transformations of WP. Since every element of (LP)* is a P-linear com-

bination of elements ofL*, and since W0(L*)n = 0, we have ( WP)0 = ( W0)P. Similarly,

we have (W1)P = (WP)1.

(5.1) Suppose be A. We set B„ = {x e A \ xS(b, ¿>)m = 0}. Note that both b and 1

are contained in Bb. Bb is called minimal Engel in A if for c e A and Bc^Bb, Bb = Bc.

(5.2) Suppose R is a subalgebra of A. By LA(R) we mean the Lie algebra of

linear transformations of A generated by the set {S(b, c) \ b, c e R}.

We have

Theorem 5.3. Suppose R is an a-nilpotent subalgebra of A and 1 e R. Then LA(R)

is nilpotent, and if A=A0© Ax is the Fitting decomposition of A relative to LA(R),

then

(i) A0 is a subalgebra of A containing R,

(ii) AqA^Ax and AxAq^Ax.

Moreover, if Fis algebraically closed and {e1;..., et} is a set ofpairwise orthogonal

primitive idempotents of R whose sum is 1, then A0 = f} {Bb \ b e R} = (~)ti=1 Be¡.

Proof. By the remarks preceding (5.1), we see that we may assume Fis algebraic-

ally closed. By virtue of Corollary 3.11 and Corollary 4.8, the proof that LA(R) is

nilpotent is the same as Jacobson's proof of the analogous result in the Jordan case

(mutatis mutandis) [4, p. 600].

We will now prove the rest of the theorem. Since F is algebraically closed, we

may write R = J,¡=1 (F-ei + N¡) where {e1;..., et} is a set of pairwise orthogonal

primitive idempotents whose sum is 1 and the Nt are nil ideals of R. Suppose

2í,í AXj is the Pierce decomposition of A relative to the set {eu ..., et}. Then for all

integers i,p,q>0, AiiS(elp,eq) = 0. It follows easily that if a¡¡ e Au and b, c e R,

then auS(b, c) = aii<S'(ni, nj) where «¡, n\ are the components of b and c respectively
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in JV,. Thus auSib, c) e Au, and hence auS(b, c)m = ailSini, «J)m = 0 by Corollary 3.11.

Thus each element of LAiR) acts nilpotently on AH, and we have ÄsJ-^u—-Go-

lfee R, Sib, b)eLAiR), hence A0^C\{Bb \ b e /?}çp|. = i Ber Now let x e f] Be¡.

By (2.5), we write x=2i*«+2i.'/*i/- We compute xSiek, ek) = 2i=k*,-.i*j=k Xu-

But xeB6k means that x5(efc, ek)m = 'Zi = k¥:j;i¿j = kxij = 0, and as (2.5) is a direct

sum, xik = xki = 0 for i=£k. Since x e Be¡c for & = 1,..., t, it follows that x = 2 x¡¡,

i.e. fl Bet<=J,AH. Consequently, Ac¿0 = 2 ¿« = f| {*» I ¿ e *} = H *.,• As 2t#^«

is invariant under LAiR), we have A1 = ^t¥,j Au.

That y40 is a subalgebra of A, and A0A^AX and A1A0<^A1 follow from (2.6),

and the proof is complete.

Corollary 5.4. For any b e A, Bb is a subalgebra of A.

Proof. We define B%={x e A \ xS{b\ b¡)m = 0, i,j=0, 1,...}. From Lemma 4.9,

we have immediately that Bb = B*. We recall that F[b] is the subalgebra of A

generated by b and 1. Clearly F[b] is a-nilpotent. Thus LAiF[b]) is nilpotent, and

the Fitting null component A0 of A relative to LAiF[b]) is a subalgebra of A con-

taining F[b]. But elements of LAiF[b]) are sums of products of Sib1, b'), i,j=0,1,...,

and it follows that Bb = A0, as required.

(5.5) A subalgebra H of A is a Cartan subalgebra if

(i) H is a-nilpotent,

(ii) H coincides with the Fitting null component of A relative to LAiH).

We know that Cartan subalgebras exist in some alternative algebras. Indeed, if

Fis algebraically closed, by Theorem 5.3 we have that H is a Cartan subalgebra of

A if and only if//contains a set {e1;..., et} or pairwise orthogonal primitive idem-

potents whose sum is 1, and //=2 Au where 2 A¡ is the Pierce decomposition of

A relative to the e¡. However, to construct Cartan subalgebras in a more general

situation, we will follow the work of Barnes in the Lie case [1].

Thus let {«i,..., um} be a basis for A over F, and P=F{ÇU..., |m} be the field of

rational expressions where the |¡ are independent transcendentals over F. Then

x = 2r=i îi^eAp is a generic element of A, and the characteristic polynomial

(pit, x) of Six, x) in AP can be written

(5.6) <pit, x) = tm+ß1ix)tm-1+ ■ ■ ■ +ßsix)tm~s

where /8i(x) = /3i(f1,..., fm) is a homogeneous polynomial of total degree 2i or the

zero polynomial, and ßsix) is the last coefficient which is not the zero polynomial.

Since x is an eigenvector of Six, x), we have that s<m. If a=2í"=i <*í"í 6 A, then

the specialization £¡ = a¡ in (5.6) gives

(5.7) cpit, a) = tm+ß1ia)tm~1+ ■ ■ ■ +ßsia)tm-°.

We note that <p(i, a) is unaffected by an extension of the ground field. The element

a e A is called a-regular if and only if j8s(a) ± 0. Clearly if a is an a-regular element

of A, then Ba is minimal Engel in A, but not necessarily vice versa. Also the property
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of being a-regular is preserved under field extensions. Moreover, if F is infinite,

the set of a-regular elements of A forms a dense Zariski open subset of A.

The proofs of the following two lemmas are virtually identical with the proofs

given by Barnes in the Lie case [1, p. 351].

Lemma 5.8. If F has at least 2{m — 1) elements, then A contains a-regular elements.

Lemma 5.9. Suppose F has at least 2m elements. If R is a subalgebra of A, Bb is

minimal with respect to dimension in {Bc | ceR}, and R^Bb, then Bb^Bc for all

ceR.

To prove the existence theorem, we will require the following lemma. First, we

recall that if K is an extension of F and {w1;..., um} is a basis for A over F, then

{1 ® uu ..., 1 ® um} is a basis for AK over K. If b e AK, we will write b = 2f« x a¡H¡,

«¡eA.

Lemma 5.10. Suppose F has at least 2m elements, R is a subalgebra of A, and for

all b e R, S(b, b) is nilpotent of A. Then for any extension K ofF, S(b', b') is nilpotent

on AKfor all b' e AK.

Proof. Suppose {bu..., bm] is a basis for R over F, be R, and è = 2r=i ßfii

where ßx e F. Since S is linear in each of its arguments, we have

0 = S(b, b)m

(m' \ m

h.ta-i I

Let 7V, equal the sum of the terms of T where ft appears to the h power, and set

fii-OWtfh-  Then  r-ZfLoOytf*.  However,  r2m = S(ft, ftr = 0 and  T0 =
S(ß2b2+ ■ ■ ■ +ßm.bm., ß2b2+ ■ ■ ■ +ßm-bmT = 0. Therefore,

2m-l

T=   2   (ß^Th.

Choosing 2m — 1 different nonzero values for ft, we obtain a system of 2m— 1

homogeneous equations in Th, i1 = \,...,2m — \, whose matrix of coefficients has

a nonzero determinant. Thus we conclude that Th=0 for ii=0,..., 2m.

Now let T{1¡Í2 be the sum of the terms of Th where ß2 appears to the i2 power,

and set Tlui2 = {ß2)^TilA2. Repeating the above process, we conclude riljJ2=0.

Continuing in this fashion, we find that 2ria....,im-=0 for all m'-tuples (iu ..., im.)

such that 2?=i ij = 2m.

Finally, if V e RK, we write V = 2T-1 «A where a( e K. Then

s(b',b'r=        2        <%••'&?*.v = 0'
¡1.im';il+--+ím' = 2m

as required.
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We have

Theorem 5.11. Suppose F has at least 2m elements. Then H is a Cartan subalgebra

of A if and only if H is minimal Engel in A.

Proof. Suppose H=Bb is minimal Engel in A. Then Bb is minimal with respect

to dimension in {Bc | c e //}, consequently, by Lemma 5.9, Bb^Bc for all c e H.

Thus Sic, c) is nilpotent on //for all ce H, and by Theorem 4.10, //is a-nilpotent.

Since LAiH) is nilpotent, H^A0 where A0 is the Fitting null component of A

relative to LAiH). However, A0^Bb = H, and H=A0 as desired.

To prove the converse, we first make the following observations :

(a) if R is a subalgebra of A and R^BC for some ce A, then RK^iBc)K for all

extensions K of F,

(b) if R is a Cartan subalgebra of A, then RK is a Cartan subalgebra of AK for

all extensions K of /"(see remarks preceding (5.1)).

Now suppose H is a Cartan subalgebra of A and Bb is minimal with respect to

dimension in {Bh | h e //}. We claim H=Bb. Since H is a-nilpotent, H^Bb, and

consequently by Lemma 5.9, Bb^Bh for all he H. If K is the algebraic closure of F

then HK = 0 {Bh. \ h' e HK). But Bb^ Bh for all he H means S(/i, A) acts nilpotently

on Bb for all he H.By Lemma 5.10, S(/z', /¡') is nilpotent on iBb)K for all h' e HK.

Therefore iBb)K^HK, and by (a) it follows that iBb)K = HK. Hence the dimension

of iBb)K and HK over K are equal, which implies the dimension of H and Bb over

Fare equal. Since H^Bb, H=Bb. That Bb is minimal Engel in A follows easily, as

required.

Corollary 5.12. If a is an a-regular element of A, then Ba is a Cartan subalgebra

of A.

Corollary 5.13. Suppose F has at least 2(w — 1) elements. Then A contains Cartan

subalgebras.

We conclude this section with some remarks on the conjugacy of Cartan sub-

algebras. Our discussion parallels the Jordan case, and requires many results that

can be found in Chevalley [2]. We will make the assumption that the characteristic

of F is zero.

In this situation, £>(6, c)=[Lb,Lc] + [Lb, Rc] + [Rb, Rc] is a derivation of A for

all b,ce A. The set {Dib, c) \ b, c e A) of these derivations generates an ideal D\A)

in the derivation algebra DiA) of A. Such derivations are called inner. Now let

©={G|G is an algebraic group of linear transformations whose Lie algebra GL

contains D\A)}, and set I=(~]{G \ G e @}. Since the group of automorphisms of

A is an algebraic group whose Lie algebra is DiA), elements in /are automorphisms

of A. We call /the inner automorphism group of A. We have

Theorem 5.14. Suppose F is algebraically closed and of characteristic zero. If

H1 and H2 are two Cartan subalgebras of A, then there is ana e I such that Hl = H2a.
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Proof. The proof is patterned after Chevalley's proof in the Lie case [2, III,

pp. 215-219] and follows the proof in the Jordan case [4, p. 603]. We sketch it

here for the reader's convenience.

We begin by showing that Hx and H2 each contain relatively open subsets (in

the Zariski topology) Ox and 02 such that 7T(Qi:a) = /i for all a e G\ where ü¡ is

the orbit of //¡ under 1(A) and 7\0.;:a) is the tangent space to 0¡ at a, i=i, 2. By

the remark made after (5.5), there is a set {eu ...,et} of pairwise orthogonal

primitive idempotents whose sum is 1 and Hl = ^Aii where 2 Atj is the Pierce

decomposition relative to this set, and each Aii = F-ei + Ni where N¡ is a nil ideal

of Hi. Let 01 = {ae Hx \ a = 2 («¡<?i + z(), ai e F, z, e Nu and FT» ¿} (a,—a¡) + 0}. Then

(?! is an open subset oí Hx. \ibkp e Akv, kj^p, and a = 2 (<*í£í + z¡) e Ol5 we compute

aD(ek,bkp) = (ak-aP)bkp + zkbkp-bkpzp.

Since Z)i>k, bkv) e D\A), aD(ek, bkp) e T^-.a) [2, III, pp. 192-193]. Define Skp =

(ak — ap)M+L;,k — RZp where M is the identity transformation on A. Hence

bkpSkp e Ti^-.a). Now Skp maps Akp onto itself by (2.6). Also, by Corollary 3.11,

LZk — RZv is nilpotent, and as ak — a„#0, Skp is invertible. Therefore, A^^Tiß^.a)

for all jfc^p, and it follows that T(Q.1:a) = A. Similarly T(Q2:b) = A for all b e 02,

where 02 is defined in a manner analogous to Ox. Hence i^ and 02 contain

nonempty open subsets of A [2, III, Proposition 13, p. 180 and the corollary on

p. 192]. By (5.7), Q1 n Q2 contains an a-regular element b. Hence there are elements

axel with beHfli, í=l,2. Then H¡(it^Bb, and since Bb and Hiai are Cartan

subalgebras of A, B„ = H1a1 = H2a2. Thus Hx = H2<j where o-=a2CT1""1 e /, as desired.

6. Conclusion. Let 21 be a class of finite-dimensional alternative, Jordan, and

Lie algebras over a field F where

(i) if A e 91 and 0 e Horn A, then ^0 e %

(ii) if A e 91 and / is a subalgebra of A, then le 91,

(iii) if A e 91, then the ground field of A is either F or an extension of F; if the

ground field of A is K, then /1P e 9Í for all extensions P of K,

(iv) if ,4 e 91 and A is either alternative or Jordan, then A contains a unity

element,

(v) if A e 91 and A is either Jordan or Lie, then the characteristic of Fis different

from 2.

We remark that (i)-(iii) means that 9Í is a universal class of algebras.

(6.1) Suppose AeSH and bx,b2,b3e A. We set a(bub2, b3) = b3-b1b2 + b2b1-b3

-¿>a¿3A-*r*3*2 and S(b2,b3) = RHLb3+Lb2Rb3-Lb^-Rb3br Let S(A) =

{S(bu b2) | bx, b2 e A}. Ii b e A and the dimension of A is m, then

Bb = {x e A | jcS(ô, ¿O"1 = 0}

is minimal Engel in A with respect to S(A) if Bc^Bb for c e A implies Bb = Bc.

(i) If A e 91 and .4 is alternative, then a(bu b2, b3) gives the "a-theory" developed

in §4.
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(ii) If A e 9Í and A is Jordan, then a(¿»i, b2, b3) = 2ib1, b2, b3), and it follows that

a(¿>!, b2, b3) gives the "associator theory" as developed by Jacobson in [4].

(iii) If A e 31 and A is a Lie algebra, then a(61; b2, b3) = —2bib3-b2 and S(bu b2)

= — 2ad(¿>2) ad (Z^). Thus it is clear that A is "a-nilpotent" if and only if A is

nilpotent, and A is "a-nil" if and only if A is nil. By virtue of Engel's theorem,

these four concepts coincide on A.

(6.2) Suppose A e % and R is an a-nilpotent subalgebra of A. Then LSiA)iA(R),

the Lie algebra of linear transformations on A generated by SiA), is nilpotent. The

subalgebra H of A is a Cartan subalgebra relative to SiA) if

(i) H is a-nilpotent,

(ii) H coincides with the Fitting null component of A relative to LSiA)¡AiH).

In view of Theorem 5.11, and the results of Barnes [1] and the author [3], we

have

Theorem 6.3. Suppose A e 9t and the dimension of A is m. If F has at least 2m

elements, then H is a Cartan subalgebra relative to SiA) of A if and only if H is

minimal Engel with respect to SiA) in A.

Proof. If A is either alternative or Jordan, the proof is clear from Theorem 5.11

or [3]. If A is a Lie algebra, the proof follows since H is a Cartan subalgebra

relative to SiA) of A if and only if H is a Cartan subalgebra in the classical sense.

(6.4) Suppose A e 91. If A is alternative, then the definition of an a-regular

element is given in §5, whereas if A is Jordan, it is given in [3]. It is clear that if A

is Lie, we may define a-regular elements. If A is Lie and x is a generic element of

A, then xSix, x) = 0, and we see that the analogue of Lemma 5.8 is valid for the

Lie algebras in 91. Thus we have

Corollary 6.5. If Ae% and a is an a-regular element of A, then Ba is a Cartan

subalgebra of A.

Corollary 6.6. Suppose A e 91, dim A = m, and F has at least 2(w — 1) elements.

Then A contains Cartan subalgebras relative to SiA).

(6.7) Notes, il) It should be noted that if A is an alternative algebra, then we

can make A into a Jordan algebra A + by defining a new product a ° b of A by the

equation a ° b = ^iab + ba), a,be A. We call A+ the symmetric algebra of A.

Using the associator in A+ we would expect to develop a Cartan theory for A.

However, if bub2,b3 e A, 2ib1 o b2) ° b3-2b1 ° ib2 ° b3)=4aib1,b2,b3)-4ib1,b2,b3).

Therefore, there is no reason to expect that the Cartan theory developed earlier

for alternative algebras arises from iterating the associator in A +.

(2) The fact that in (6.2) we define Cartan subalgebras relative to a particular

set "S( )" of linear transformations would suggest that other sets of transforma-

tions on algebras in 91 would yield a "Cartan theory". Indeed, in the Lie case, we

see that "Si )" and "ad" yield Cartan theories that coincide. It turns out that
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the whole concept of a "Cartan theory" can be developed for certain universal

classes of algebras, the above class 9X being an example of one such class. A more

detailed study of this fact is in preparation [3].
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