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Abstract. This paper studies nonaffine biholomorphisms from one tube domain

to a second. A sequel will carry out the same study for arbitrary Siegel domains.

With the help of the Bergman kernel function, we can give an explicit form for such

biholomorphisms; and with the use of structure theory for Jordan algebras, we can

give an algebraic and geometric description of the nature of such tube domains.

I. Introduction. As is well known [10], every bounded complex homogeneous

domain in the space of n complex variables is holomorphically equivalent to a

Siegel domain of first or second kind. This being the case, it is of some interest to

investigate the holomorphic bijections from one such domain to another, even

without the assumption of homogeneity for either. This investigation has been,

from various points of view, the object of several recent papers [3], [4], [9]. In this

paper, we use a simple procedure, already seen in a particular case in [7], for study-

ing this question for domains of the first kind; i.e., tube domains. This study is a

necessary preliminary to the investigation of the general case, which we hope to

present in a projected sequel to this paper. Our method readily yields most of the

known results, as well as several new ones. For example, we can show that if a

tube domain, not assumed homogeneous, has a single holomorphic involution

with an isolated fixed point, it is already a Hermitian symmetric space.

Our method depends principally on the explicit construction of the Bergman kernel

function for Siegel domains, without the assumption of homogeneity. This is already

known for tube domains, but in anticipation of the sequel to this paper, we con-

struct it anew for general Siegel domains. An easy by-product of the analysis is the

known conclusion [4] that holomorphically equivalent Siegel domains are already

affinely equivalent. With a little more care, it is even possible to completely specify

all the holomorphic automorphisms of a Siegel domain, though, as we have said

before, we concentrate in this paper only on tube domains. Analogously, the

infinitesimal generators of the group of holomorphic automorphisms may also be

completely specified.

Briefly, the outline of this paper is as follows. §1 sets some notation and estab-

lishes a few simple facts about the distinguished boundary of Siegel domains. In

§11, we construct the kernel function and indicate how we propose to make use of
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it. In §111, we assume we have a nonaffine biholomorphism from one tube domain

over a cone C to a second tube domain. From this assumption alone, and an

explicit formula for the biholomorphism gained through use of the kernel function,

we are able to conclude that the ambient real linear space of C has the structure of a

Jordan algebra such that Jordan multiplication is an infinitesimal automorphism of

C. In §IV we take the last conclusion as hypothesis, characterize all such cones,

and show that the tube over such cones has nonaffine automorphisms. In §V, we

study the Lie algebra of the group of automorphisms of a tube domain, and

essentially integrate all the infinitesimal motions.

Since we depart slightly from the usual conventions, and in order to fix notation,

it seems appropriate to begin by defining Siegel domains. Let Cm = Rm® iRm,

Cn = Rn@iRn be the usual m and n dimensional complex spaces respectively.

Complex conjugation and real part shall be taken in both cases with respect to

the underlying real subspace. Let C be a regular open convex cone in Rm. Regular

means that C does not contain an entire straight line. Let H be a Cm-Hermitian

form on Cn with respect to C, i.e. H is a function from C"x C to Cm satisfying

(i) H(wx, w2) = H(w2, wx) for wx, w2 e Cn.

(ii) H(awx+ßw2, w3) = aH(wx, w3)+ßH(w2, w3) for a,ßeC, wx, w2, w3 e Cn.

(iii) H(w, w) e C (closure of C) and H(w, w) = 0 if and only if w=0.

Then the set of points (z, w)eCmx Cn with Re z — H(w, w)e C is called a

Siegel domain of second kind. A Siegel domain of first kind, or a tube domain, is the

special case in which n=0 and H=0.

The cone C gives rise to a partial order in Äm, and we write a>b(a^b) if a—b e C

(a—be C). With this notation in hand the Siegel domain 2 above may be described

by

Q) = {(z, w) e Cm x Cn | Re z > H(w, w)}.

Siegel domains have extensive groups of holomorphic automorphisms. The

following three types of maps are always automorphisms :

(i) z —> adz, w -> aw; a an arbitrary nonzero complex number,

(ii) z -> z + 2H(w, b) + H(b, b), w ->w + b; b being any point in Cn.

(iii) z -> z+ib, w -> w; b being any point in Rm.

The distinguished boundary of 3¡ is the set

3S = {(z, w) e Cm x Cn | Re z = H(w, w)}.

Note that the automorphisms just described act transitively on the distinguished

boundary. We need some elementary properties of the distinguished boundary

which do not seem to be readily available in the literature.

A sequence xv of points of 3> is said to approach the distinguished boundary if

either lim xv exists and is a point of J1, or the sequence is unbounded. For a

holomorphic function/defined in 2, the sequence xv of points in 3) is said to be a

maximizing sequence if lim |/(*„)| =sup*e® |/C*0|. The supremum may be infinite,

of course.
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Lemma 1. Let f be a holomorphic function on 23. Then there is a maximizing

sequence for f which approaches the distinguished boundary.

For the proof, let wv = (zv, wv) be any sequence such that lim|/(wv)| =

supues> |/(m)|. Let zv = xv + iyv, xv and yv real. Consider the function of a single

complex variable A,

^vW = f(H(w„ Wy)+\(xv-H(w„ wv)) + iyv, wv)

defined for Re A>0. Note that /\,(l)=/(zv, vvv). If the sequence uv is unbounded,

we are done. Otherwise, we may assume, going to a subsequence if necessary, that

lim uv exists. If then for infinitely many values of v, FV(A) achieves its maximum

modulus at "oo", then Av may be selected so that Z/(ivv, vvv) + Av(xv —//(wv, wv)) has

an unbounded subsequence, and so that |Fy(Av)| ̂  |FV(1)|. So we are done in this

case also. Otherwise, there is a bounded subsequence Av with Re Av -^ 0 and

|FV(AV)| sï |/\,(1)|. Going to a convergent subsequence of such a sequence of Av's,

we have that (//(vvv, wv) + Av(xv - //(wv, ivv)) + iyv, wv) is a maximizing sequence

converging to a point of the distinguished boundary, which completes the proof.

Let 23 and 38' be Siegel domains, and/a biholomorphism from 23 to 28'. Let b

be a distinguished boundary point of 38. fis said to be defined at b if lim^._b/(x)

exists for approaches to b through points of 38.

Lemma 2. If fis defined at b, then limx-,b fix) e 38', the distinguished boundary

of Si'.

For the proof, we introduce the usual scalar product <•, •> in Rm. We extend

the scalar product by linearity to a bilinear form on Cm. Let C* be the dual cone

to C with respect to above scalar product; i.e.,

C* = Interior {x e Rm | <x, c> ^ 0 Vc e C}.

C* is also an open regular (nonempty) convex cone. Now we consider the function

Miz) =       exp < — z, x} dx.
Jc

Miz) is a well-defined [6], [8] holomorphic function for z e Tc, the tube over the

cone C. If p is any point in C, it is easy to see that the function Miz+p) is holo-

morphic in a neighborhood of the closure of Tc, and achieves its maximum modulus

in the closure of Tc uniquely at the point z=0.

We define a holomorphic function F(z, w) in 28 by setting Fiz, w) = Miz+p).

F(z, w) is defined and holomorphic in a neighborhood of the closure of 2) and

achieves its maximum modulus in 28 uniquely at the point (z, w) = (0, 0).

Returning now to the proof of the lemma, observe that since the automorphisms

of 23 are transitive on the distinguished boundary, it suffices to take only the case

b=0. Consider the function h = F°f~1. h is holomorphic in 23'. Let yv be any

maximizing sequence for h. Then xv=f~1iyv) is a maximizing sequence for F.



354 O. S. ROTHAUS [December

From the properties of F cited above, it follows that limxv = 0. Since/is defined

at 0, and yv=f(xv), it follows that limj'v exists. Since by the last lemma, it is

possible to have selected the maximizing sequence yv to approach the distinguished

boundary of Si', it follows that lim yv e 38'.

Finally we have

Lemma 3. If f is holomorphic in S, is defined and continuous in a neighborhood

N of a point beSS, and vanishes on N n B, then f is identically 0.

For the proof, it suffices as before to take only the case b = 0. For fixed (z, w) e S,

z=x + iy, we consider the function of the single complex variable A given by

F(A) =/(//(w, w) + X(x-H(w, w)) + iy, w)

and note that F(l)=/(z, w). Fis defined and holomorphic for Re A>0. What is

more, if w is sufficiently close to the origin, then F(A) is continuous in a neighbor-

hood of A = 0, and vanishes on the imaginary axis in a neighborhood of A = 0. Hence

for such w, F(A) = 0, and this is enough to prove/=0.

II. The kernel function. Since C is a regular cone, we may by an appropriate

coordinate change arrange that C is contained in the first /w-gant in Rm. We will

suppose this has been done. Consider now the function

Ke(z) = {(1 + ezx)(\ + ez2) • • • (1 + ezm)} ~ 2,   where e > 0 and z e Tc.

Our supposition above on C guarantees that Ke(z) is integrable and square integ-

rable in Tc. Moreover |AT£(z)| < 1.

Now let F(z, w) be a square integrable holomorphic function in S. Consider

the function Fe(z, w) = Ke(z)F(z, w). It is clear that lim£_0 Fe(z, w) = F(z, w) in the

L2 mean for 3. And the function Fs(z, w) has some exceedingly useful properties.

For any compactum A in C put

S>A = {(z, w) e S | Re z-H(w, w) e A}.

The distance of the points of the set 3> A from the boundary of S is uniformly

bounded away from zero. Hence it follows from standard arguments that |F(z, w)|

is bounded for (z, w) e SA. Put z=x+iy. Thus for (z, w) e S we may form the

Fourier transform

ge(t, x, w) =       Fe(z, w) exp </>, t > dy.
JRm

On the other hand, another standard argument, which we have used before [6], [8],

shows that in fact

ge(t, x, w) = Ge(t, w) exp <-x, r>

where

G Ah w) =       FE(z, w) exp <z, r> dy.
JRm
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Since the integral defining Ge is uniform in w, for w in any compactum in Cm, it

follows as well that GJt, w) is an entire function of w for any fixed value of /. Now

by Plancherel's theorem

f    \Feiz, w)\2 dy - O)"1 f   exp <-2x, />■ I <?.('. w)\2 dt.
jRm JRm

Since FseL2i28), we must have that J" \FJz, w)|2 ¿v dx, where the integration is

over all y e Rm, and all x> //(w, w), is finite for almost all w. But if t $ C*, then we

have that /*>«<„,, s> exp < — 2x, /> i/x is infinite for any w. Hence we may con-

clude that Geit, w) is zero for almost all t$C*, and since G£ is a continuous

function of it, w), GJt, w) is zero for all t $ C*.

By Fourier inversion, we may write now

(I) F,{z, w) ~ ^ys j    G Jit, w) exp < -z, /> A

which holds as an ordinary equality, by virtue of the following argument. We know

that x>//(w, w), so for some r¡, 0<?j< 1, t;x>//(h', w). Then

f    |G£(i, w)exp<-z, t}\dt
Jc

- Í    |G£(/, w)| exp (-ij<*. f>) exp (fo-l)<x, f» A
Jc

^ j       |G£(?, w)|2 exp (-2i?<x, f» dt-1    exp 2(77- l)<x, 0 dt 1

= j/^ÄS J m l^iOF+ÍK. w)|2 */>•( ( exp 2(77-l)<x, t} dt\     < 00

which shows that the integral exists in the ordinary sense. The same argument

shows, moreover, that the integral is uniform for (z, w) in a compactum in 2),

which establishes the desired equality.

Now let Mit)=\c exp <-?, x> dx. M{t) is well defined for t e C*.

For any teRm, we define a matrix 0(i) by (//(wj, w2), r> = <tva, ©(O^i).

Because of the properties of // cited in §1, 0(i) is Hermitian symmetric, and is

Hermitian positive definite for t e C*. Then let

Liz) = j   exp <-z, t}-j^det 0(f) A.

The integral is a well-defined holomorphic function of z for z e Tc, by virtue of

estimates available in [8] for M it) and the obvious fact that det 0(i) is dominated

by a finite power of <[t, t). We claim

Theorem 1. 3SÜZ, W);(z, w)) = il/7rm+n)LiZ+I-2HiW, w)) is the Bergman

kernel function for 23.
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We have only to show that 38 is defined, is for fixed (Z, W) in S a square

integrable conjugate holomorphic function of (z, w) in S, and that for every

holomorphic square integrable F in S, we have

Í  38((Z, W); (z, w))F(z, w) dz dw = F(Z, W).

That 33 is defined follows from the observation that Z+z-2H(W, w) e Tc. That

38 is square integrable follows easily with use of Plancherel's theorem, and is left

to the reader. For the final statement, it suffices to show that for all e > 0, we have

[  3S-FE(z, w) dz dw = FB(Z, W).
J9

Now we may use the formula (I) developed above for Fe, and apply first Plan-

cherel's theorem.

J31Fe(z,w)dy

= ^ £ exp (-<Z, r>-2<x, t} + 2(H(W, w), f))GE(t, w)-^ det 0(0 dt.

Now holding w fixed, integrate over those x for which x > H(w, w). We obtain

38-Ft(z,w)dydx
J x> H(w,w)

= yAnT-n Í    exP (~<Z> 0-2<H(w, w), t} + 2(H(W, w), i»
¿ rr Jc.

■ Ge(t, w) det 0(i) dt.

Now we want to evaluate

(II) Í    cxp(-2(H(w,w),ty + 2<_H(W,w),t})Ge(t,w)dw.
Jc

It will suffice to evaluate when W= 0, the general case being taken care of by

replacing w by w+ W. For the special case, we replace in the integral w by ®ll2(t)w,

where 01,2(i) is the Hermitian definite square root of ©(;)• The integral in question

then becomes

1/det 0(r) Í   exp <-2w, w)Ge(t, &~ll2(t)w) dw.
Jcn

If we now write w = u + iv, replace each pair of components of (u, v) by polar

coordinates, then expand Ge(t, 0_1/2(Oh') in a power series in w, we find immedi-

ately that only the constant term of the series contributes to the integral. To be

completely precise, we find for the general case that (II) above is equal to
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(Wdet ©(?))• G£(i, W). Hence finally,

f  38FJz, w)dzdw = T±-\   exp <-z, t}GJt, W) dt = FJZ, W)
JB V-ti)    Jc

which completes the proof.

We must note that the formula is valid as it stands, without the provision made

at the outset that C lies in the first ra-gant. This assumption was used only to

construct the functions KJz), which could obviously have been constructed in a

slightly more complicated fashion without the use of this assumption. The remain-

ing manipulations are generally valid.

Also, we want to observe that for the case of tube domains, the formula for the

kernel function agrees with the known result, provided we take det 0(i) = L

It is probably also worth noting that the general nature of the kernel function

for 23, at least to an extent sufficient for our purposes, can be discovered from

functorial properties alone.

For let 3§HZ, W); (z, w)) be the kernel function, 38 holomorphic in the variables

(Z, W) and conjugate holomorphic in the variables (z, w). If T:23<-+23 is a

biholomorphism, then we must have

3§iTiZ,W);Tiz,w))
dTiZ, W)

diZ, W)
dTiz, w)

diz, w)
= 38iiZ,W);iz,w))

where \\8T{Z, W)/d{Z, W)\ is the determinant of the Jacobian of T.

If we now let T be an automorphism of type (iii) described in §1, then we obtain

mz+ib, W); iz+ib, w)) = 3SÜZ, W); (z, w)).

From this it follows easily by analytic continuation that in fact

Se-iiZ, W); (z, w)) = 3S'iZ+I; W, w)

for some function 38', which is holomorphic in the first two variables and conjugate

holomorphic in the third.

Now apply an automorphism of type (ii). Then we obtain

â$'iZ+2HiW, b) + Hib, b) + I+2Hiw, b) + Hib, b), W+b, w + b)

= 3S\Z+I, W,w)

for any b in C\ Put b = - w to yield

8&\Z+I, W, w) = 38'iZ+I, -2HÍW, w), W-w, 0).

Put W=0 in the last. We obtain 3$\Z+I, 0, w) =38\Z+z, -w,Q). Since the

function on the right is holomorphic in w, and the function on the left is conjugate

holomorphic in w, we conclude that 38'(z, w, 0) is a constant function of the second
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variable. Thus,

33'(Z+z, W, w) = 38'(Z + z-2H(W, w), W-w, 0)

= 38'(Z + z-2H(W, w), 0, 0) = 3S"(Z+z-2H(W, w))

for a holomorphic function 3S" which must be defined in Tc.

Finally, using automorphisms of type (i), it is clear that 38" is homogeneous of

degree —(2m + n).

Our use of the kernel function will be as follows. Let Sx and S2 be domains in

Ck, 3Sx(zx, z2) and 382(wx, w2) their respective Bergman kernel functions. 38x is

holomorphic in z, and conjugate holomorphic in z2, and analogously for 332. We

assume the existence of a biholomorphism w=f(z) from 3>x to S2. From general

properties of kernel functions, we obtain then a useful statement (Theorem 2)

about the map w=f(z) which, specialized to the case Sx and 3)2 Siegel domains and

w nonaffine, yields precise information both about the map and the geometric

structure of Sx or S2.

First we want to introduce a little notation. If w=g(z) is a differentiable function

from Ck to C, then by 8w/8z we shall denote the matrix whose z'th row and y'th

column is 8wl/8zi. If A is a matrix, *A denotes its transpose. If A is square, \A\ will

denote the determinant of A. If x=g(z, w) is a differentiable function from Ck x C

to C, then by 82x/8z dw we denote the matrix whose ith row and jth column is

82x/8zl 8wK

From well-known properties of the kernel function we have

(III) 3$2(wx, w2)
8wx

8zx

8w2

8Zn
^i(zi, z2).

Assume for the moment that (zx, z2) is such that 3Sx(zx, z2)J=0, which guarantees

that 382(wx, w2)^0. Put bx(zx, z2) = (l/38x)-83Sx/8zx. Analogously, put b2(wx,w2)

= (l/3S2)-83S2/8wx. Then differentiating the relation (III) above with respect to zx,

we may write

(IV) mb2(wx, w2) +
8wx

8zx
_8_
8zx

8wx

8zx
= bx(zx, z2).

Let Bx(zx, z2) = 8bx(zx, z2)/8z2, and analogously define B2(wx,w2). Bx is holo-

morphic in z, and conjugate holomorphic in z2 on the complement of the set

(zx, z2) for which 38x(zx, z2) = 0. In general the square matrices Bx and B2 are non-

singular, since they are defined and nonsingular on the diagonal. The set of (zx, z2)

for which 38x(zx, z2) + 0 and Bx(zx,z2) is nonsingular is the complement of a

globally defined "analytic" variety in Ckx Ck, so does not disconnect the space.

We call the complement the regular set R in Ck x Ck. (That the functions entering

the statements above are all conjugate holomorphic in some of the variables does

not affect any of the usual conclusions.)
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If we differentiate (IV) with respect to z2 we obtain

(V) \dwx/dzx)B2iwx, w2)idw2/dz2) - Bxizx, z2)

which is valid for (z1; z2) £ R.

Letp be a fixed point in 28x, and put q =fip). Subtract from (IV) the same relation

with z2 replaced by p, to obtain

(VI) \dwx/dzx){b2iwx, w2)-b2iwx, q)} = &i(*i, z2)-bxizx,p)

which is valid for example for each of Zj and z2 in some neighborhood of p.

For izx, z2) e R we may define a function Ci(z1; z2) by

Bxizx, z2)cxizx, z2) = bxizx, z2).

Analogously for (vt>i, w2) in the image of R under map (/,/), we may define

ca(wi, w2) by

B-Jwx, w2)c2iwx, w2) = b2iwx, w2).

Now using these definitions in conjunction with (V) and (VI) we obtain

BJzx, Z2){idw2/dz2)-1c2iw1, w2)-c1(z1, z2)}

= Bxizx, /'){(3w2/8z2)-1(/j)c2(h'1, q)-Cxizx, p)}

which holds for each of zu z2 in some neighborhood of p. Then using analytic

continuation we conclude

Theorem 2. The function

Biizx, z2){(öw2/öz2)-1c2(w1, w2)-Cxizx, z2)}

is defined for (z1; z2) e /? and is independent of z2.

In the particular applications we make of the above theorem, the functions cx

and c2 will extend to be defined everywhere, so that the restriction (z1; z2) e R may

be somewhat relaxed.

HI. Biholomorphisms of tube domains. We begin by applying the considerations

of the last section to the case in which both 3>x and 2)2 are tube domains over

regular convex cones C± and C2 respectively.

We know that J¡(zi, z2)=Li(z1-f-z2) (f=l,2) and so we may take /^(zj, za)

= Biizx +12) as function of sum of the variables only.

Since Li is a homogeneous function, it follows immediately that we may take

Ctizi, z2)= —izx+I2). So we have the following statement:

(I) Bxizx + z2){idw2/8z2) - \wx + w2) - izx + z2)}

is a function of Zj alone and is defined provided Li(zi4- z^O.
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Now let z2 be an arbitrary point in Cm. Select z° e TCl so that z°+z2e TCl, so

that Lx(zl + z2)^0, and so that Bx(zl-\-z2) is nonsingular. It is easy enough to so

choose z2. Then [Bx(z° + z2)] "1 is a holomorphic function of z2 for z2 in a suitable

neighborhood of z2. Hence it follows from (I) that

(oWa/feaJ-HwiOÎHwa)

is a holomorphic function of z2 in the same neighborhood. Since we may permit

the point zj to vary over an open set, so that wx(zx) varies over an open set, it

follows moreover that both

(dw2/3z2)-1    and   (8w2/8z2)'xw2

are holomorphic functions of z2. Hence we have the following conclusion :

Lemma 1. The functions (dw/Sz)'1 and (8w/8z)~1w, initially defined for zeTCl,

extend to be entire functions.

Now the function \8wl8z\~1 does not vanish identically in TCl; hence it cannot

vanish identically on the distinguished boundary of TCl. Since the affine auto-

morphisms of TCl are transitive on the distinguished boundary, we may suppose,

after composing w=f(z) with an affine map of form z-^-z + ib, that (dw/Sz)'1 is

nonsingular at z = 0. Whence it follows from Lemma 1 above that w=f(z) is

holomorphic in a neighborhood of z=0. From the results of §1, we know that w(0)

is a point of the distinguished boundary of TC2, and composing again with an

appropriate affine map as above, we may assume that w(0) = 0. Hence

Lemma 2. After composing fore and aft with affine automorphisms of form

z —»■ z + ib, we may suppose that w=f(z) is defined in the neighborhood ofz = 0, that

w(0) = 0, and that 8w/8z is nonsingular at z = 0.

So let us expand w(z) at z = 0 in a power series as follows :

w\z) = w\z\ z2,...,zm) = 2 Alz»+l-2 Urv,¿rz>+ ■ ■ ■

where i/rv,s= i/sv,r.

Put more succinctly w(z) = Az + (i/2)U(z)z+--- where A is a matrix whose

(v, ß) entry is A\ and U(z) is a matrix whose (v, s) entry in 2r Ur,szT. By its definition,

U(zx)z2=U(z2)zx. It now follows that 8w/8z=A + iU(z)+ ■ ■ ■ and (dw/dz)-1

= A-1-iA-1U(z)A~1+---.

We write as well for z2 in a neighborhood of 0, 51(z1+z2)=51(z1) + Ar(z1, z2)

+ ■ ■ ■, where N(zx, z2) is linear in z2, and owing to homogeneity, N(zx, zx)

= -2Bx(zx).

Now let us return to the function (I), which is independent of z2. Taking power

series expansion of the relevant parts, and sorting out the linear terms in z2 (and

still using homogeneity of the function Lx), we obtain

(II) N(zx, z^I^Wx + iBx(zx)I-1 <7(z7)Z- 'wx + 2Bx(zx)z2 = 0.
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In the last put z2 = Ix. We know that Nizx, zx)= —251(z1). Furthermore, Z?i(zi)

is generally defined and nonsingular for zx e TCl, and is always nonsingular for zx

real. Hence we may cancel ßi(zj) to obtain A_1w—ii/2)A ~1 U{I)A _1w = z, which may

be solved for z near zero as w = [I—(i/2)UiI)A~1]~1Az.

On comparing with the original expansion for w(z), we conclude A=A, i/(z)

= C/(z). We can say considerably more about the matrix A. For let x e Ci and let

A be a positive real number. Then limA_0 (l/A)w(Ax) = ^4x. Since A is real, we

conclude ACx^C2. We know A is nonsingular, and if we reverse the roles of 23x

and 232 and repeat the argument, we conclude A~1C2^C1. Hence d and C2, thus

also 23x and 232, are linearly equivalent. In summary,

Theorem 3. Let w be a biholomorphism of tube domain 2$x onto tube domain 232.

By composing w fore and aft with translations of form z-^z + ib, we may suppose

that w is defined in a neighborhood of z = 0, that w(0) = 0, and that A = dwiO)/dz is

nonsingular. Then A is real and gives a linear map of Cj onto C2 and the resulting w

may be written in the form w=[I—ii/2)Uiz)A~1]~1Az for z near zero. Moreover

D~iz)=Uiz), and Uizx)z2=Uiz2)Zl.

Also ifw is a biholomorphism which is defined in a neighborhood of 0, w(0) = 0, and

A = dwiO)/dz is nonsingular, then w is of form described above.

We now want to investigate in some detail what the possibilities for £/(z) are.

Of course, if £/(z)=0, then the map w=/(z) is simply a linear map. So we will

suppose U^O. If we take the map w=/(z) and follow it by the map z -> A~1z of

232 onto 23x, then we obtain an automorphism of 28x, which we still denote w, of the

form w(z)=[/— H/2)Uiz)\~1z where the i/(z) appearing above differs slightly from

the original, but still satisfies Í7(z1)z2= Uiz2)zx.

Let teRm. Then the function r>((z) = w(z + i7)~ w('0 gives an automorphism of

23x, which is defined and zero at 0, and if t is sufficiently close to zero, wtiz) will

have a nonsingular Jacobian at z=0. A straightforward computation gives the

Jacobian matrix as /(/), where

Jit) = [/+it/(0]-1[/-ic/([/+if/(0]-10].

From the last theorem we conclude

Lemma 4. For all real t e Rm sufficiently close to zero, Jit) belongs to the group

of linear automorphisms of Cx.

Let G be the group of linear automorphisms of Cx. It is known that G is a closed

subgroup of GL im, R). Let © be the Lie algebra of G.

Lemma 5. For all t e Rm, Uit) e ©.

For the proof, let A be a real number confined to a neighborhood of zero. /(Ai)

is a curve in GL im, R) which lies in G. The tangent to this curve at A=0 is easily

seen to be - Uit). Since G is a Lie subgroup it follows that Uit) e ®.
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Now let x and y e Cm. We will define a commutative law of binary composition

in Cm by x ° y= U(x)y. If x and y e Rm, then x ° y e Rm, since U(x) is real for real x.

Define, for all natural numbers b, z" by zb = U" ' \z)z. In these terms, the power

series for w may be written as w = 2"=o (i"/2v)zv+1.

Now we return to the equation (II) of this section, or more precisely, to the

analogue of (II) for the map w of Sx to Sx. The analogous equation is

N(zx, z2)wx + iBx(zx)U(z2)wx + 2Bx(zx)z2 = 0.

Bx(zx) is homogeneous of weight —2, whence N(zx, z2) is homogeneous of weight

— 3 in the variable zx. Also N(zx, z2)wx = N(zx, wx)z2. So from the last we obtain

N(z, w) + iBx(z)U(w) + 2Bx(z) = 0, which is valid for z such that Lx(z) # 0, hence valid

in particular for z real. If we use the power series expansion of w from above in the

last equation, and sort out the homogeneous part of weight v—\, we obtain

\N(z, zv+2) + Bx(z)U(zv+1) = 0   for v = 0,1,2.

Now let z=x be real, sore Cx. Then Bx(x) is defined, and so is N(x, w). From

its definition, it follows that the matrix N(x, w) is symmetric, since Bx(x) is sym-

metric. Thus

Lemma 6. For xe Cx, and all v^O, Bx(x)U(xv +1) is symmetric.

Using the last we shall be able to show that the binary law of composition

defined above gives a Jordan algebra; i.e., we show that x °(y ° x2)=x2 °(y ° x).

This is the same as showing that the matrices U(x) and U(x2) commute. For most

of the references to Jordan algebras, we direct the reader to [5].

The composition w(tv(z)) of w with itself is an automorphism of 3>x, defined and

zero at zero, with Jacobian at the origin being the identity matrix. Hence by

Theorem 3, there exists uniquely a matrix V(z), linear in z, with V(zx)z2= V(z2)zx,

such that w(w(z)) = [I-(i/2)V(z)]-1z.

By direct examination, we see immediately that the quadratic part of w(w(z))

is just iU(z)z. Thus V(z)=U(2z), and so w(w(z)) = [I-iU(z)]~1z. Hence the

homogeneous part of weight 4 in the series expansion of w(w(z)) is just ¿3z4.

On the other hand, direct computation of the composition of w with itself gives

for the homogeneous part of weight 4 the following expression :

|/3z4 + £/3z2oz2,

so we must have z2 o z2=zi. Now we polarize the last identity as follows. Replace

z by x+y, and sort out the linear part in y. We obtain

4U(x2)U(x)y = 2U3(x)y+U(x3)y+U(x)U(x2)y

which says, of course, that

4U(x2)U(x) = 2U3(x)+U(x3)+U(x)U(x2).
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Let x e C\. Then by Lemma 6, i/(xv) (vä 1) is always selfadjoint with respect to

the nondegenerate symmetric bilinear form (/^(x)-, •>. By taking adjoints of the

last equation with respect to this form, we obtain

4£/(x)t/(x2) = 2C/3(x)+(7(x2)i7(x)-r-C/(x3),

and comparing the last two equations, we conclude that C/(x) and C/(x2) commute

for x e C, so commute always. Hence

Theorem 7. The law of composition x ° y—Uix)y, x,yeRm, defines a Jordan

algebra structure on Rm. For any t e Rm, Uit) belongs to the Lie algebra of the group

of linear automorphism of Cx-

In the next section we shall show, among other things, that if the conclusions

of Theorem 7 hold, then the map w(z) = [/—(¿72)C/(z)]_1z initially defined in a

neighborhood of the origin, extends to give an automorphism of 23x = TCl. This

result, taken in conjunction with Theorem 3, gives, modulo information about the

group of linear automorphisms of Cx, reasonably complete and precise information

about the full group of automorphisms of 23x, or about biholomorphisms from

2¡x onto a second tube domain 232.

We shall also give a geometric characterization of cones Cx for which the

conclusions of Theorem 7 hold.

IV. Cones with Jordan algebra structure. We suppose now that we have the

following situation. C is a regular open convex cone in Rm, equipped with usual

scalar product < •, ■ >, which we frequently extend by linearity to the complexification

Cm of Rm. Furthermore, we suppose that Rm may be given the Jordan algebra

structure sé, such that the endomorphism £/(x) :>>->- Uix)y=x ° y is for all

x e Rm an element of the Lie algebra © of the group G of automorphisms of C.

We shall suppose sé is nontrivial, that is we do not always have x ° y = 0. Under

these conditions, we shall completely analyze the structure of C and the Jordan

algebra sé.

Conforming to the notation introduced earlier, but with subscripts 1 and 2 to

distinguish between Cx and C2 now gone, let Liz + w) be kernel function for Tc.

We shall consider L only for real values of the argument.

As a matter of fact, as far as the analysis of this section is concerned, the function

L could be replaced with the Koecher norm function M introduced incidentally

in Lemma 2 of §1, which enjoys most of the same useful properties as L. But since

nothing much is gained (or lost) by such substitution, we will confine ourselves to

the functions we have already systematically introduced.

Let

6(x) = d log L(x)/Sx   and   5(x) = d2 log L{x)/dx dx,

all functions defined for xeC.
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Let ge G. From the law of transformation of kernel function, we have L(gx)\g\2

=L(x).

Let g e ©. Then exp Xq e G. Differentiating the last equality with respect to A,

and then setting A = 0, we obtain

(I) <b(x),Qx} - -2trg,

and differentiating last with respect to x, we obtain

(II) B(x)qx = -Wx) = iQB(x)x

where for the second equality, we have used the additional fact, stemming from the

homogeneity of L(x), that B(x)x = — b(x).

The equations (I) and (II) are the basis of our analysis of sé.

Lemma 1. B(x)U(x) = tU(x)B(x)for xe C.

Since U(s) e © for any seRm, we have from (II) above that B(x)U(s)x

= -fC/(j)è(x). Let t be arbitrary in Rm. Then

(B(x)U(s)x, r> = -<'i7(i)è(x), r>    or   (B(x)U(x)s, r> = -<b(x), s ° r>-

Since the right-hand side of the last equality is symmetric in s and t, we conclude

that B(x)U(x) is symmetric.

There exists a unique de Rm such that tr U(s) = (s, d}. Then we have

Lemma 2. tU(x)b(x)= -2dfor xeC.

We have </>(*), U(s)x} = <b(x), U(x)s)> = {tU(x)b(x), s} = -2 tr U(s)= -2<í,í/>,

which gives desired result.

Associated with every Jordan algebra sé, there is a symmetric bilinear form

/?(•, •), called trace form, defined by R(x, y) = tr U(x o y). If R is nondegenerate,

then sé is called semisimple. The set 0t of x e sé such that R(x, y) = 0 for all y ese

is called the radical of sé, and is an ideal of sé. The endomorphisms U(x) are

selfadjoint with respect to the trace form. We define the kernel JT of sé to be the

set of xesé such that U(x) = 0. Clearly Jf<=J?, and our assumption of non-

triviality of sé implies that Jf ^ sé.

There exists a unique matrix R, necessarily symmetric, such that R(x, y)

= (Rx,y}. But

R(x,y) = tr U(xoy) = {Xoy,d} = (U(x)y, d} = {tU(x)d, y} = </?x, y}.

Hence

Lemma 3. tU(x)d=Rx.

But more significantly, we have

Theorem 4. For any xeC, 2R = B(x){2U2(x)- U(x2)}.

For the purpose of the proof, define P(x) by P(x) = 2U2(x)—U(x2); also, let

[öi> 02] = 9i92 — 9201 be the commutator of the endomorphisms g, and g2.
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Let u, v e Rm, x e C, and put g = í/(x ° v) + [Uix), Uiv)]. Clearly g e ©, and as a

trivial computation shows gx=P(x)i> and gw=gx where q = U(uo v) + [Uiu), Uiv)]

e @. Now using (I) and (II),

<u, Bix)Pix)v} = <«, fi(x)gx> = -<«, *flfe(jc)>

= -<gw, 6(x)> = -<gx,Z>(x)> = 2trg

= 2 tr {/(« o i>) = 2<w, /?y>

whence the statement of the theorem.

Corollary 5. For any positive integer v, and xeC, 5(x)C/(xv)=i£/(xv)5(x).

The statement is true for v= 1, by Lemma 1. Its truth for v=2 then follows from

the last theorem, since R is symmetric. But in any Jordan algebra, i/(xv) is a poly-

nomial in the commuting endomorphisms i/(x) and £/(x2), which yields the general

statement.

The theorem above has some other important consequences, which we give now

for convenience.

Theorem 6. Let r,se3?. Then r ° seJf and í/(r)C/(i) = í/(í)í/(r).

Let x be arbitrary and re 3$. Then [/(r)t/(x)- i/(x)C/(r)= U(r ° x).

For the proof, let re38. Then Rr=0, and since 5(x) is nonsingular for xeC,

{2t/2(x)— £/(x2)}r=0 for all xeC. Since this is just a polynomial identity, holding

for x in an open set, it holds for all x. Replacing x by x+y, and picking out the

part linear in y, we obtain

{Uix)Uiy)+Uiy)Uix)- U(x ° y)}r = 0

identically in x and y, which gives t/(r ° x)=[/(r)t/(x)— f/(x)i/(r), one of the

statements of the theorem. If in the last x=se38, then since the right-hand side

changes sign if r and s are interchanged, and the left-hand side remains unchanged,

it follows that [/(/) and t/(s) commute and that £/(/ ° s) = 0; i.e., rose JT.

The equation í/(x o y)r= [/(x)í/(>>)r+í/(j)[/(x)»- appearing above has a

significance which we will exploit later. For the moment, suffice it to say that the

equation indicates that the map x-> f/(x)|^, where C/(x)|« is the endomorphism

f/(x) restricted to the invariant subspace 38, is a representation of the Jordan

algebra sé in End 38.

As an immediate consequence of the fact that 382<^ Jf, we have

Corollary 7. For r,se38, and x arbitrary f7(x)C/(r)C/(5)=0.

Also,

Corollary 8. Let r e38. The map x -* Uiy)x is a derivation of sé.

We must verify that C/(r)(x o j) = (f/(r)x) °y-\-x° Uir)y. But this follows

immediately from the statement of the last theorem that {/(r)C/(x)-C/(x)C/(r)

= t/(r o x).
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The endomorphism exp U(r) is, of course, a linear automorphism of C. But from

the last corollary we have the important additional fact:

Theorem 9. For r e3i, the endomorphism exp U(r) is an automorphism of sé.

This result is, of course, simply a formal consequence of the fact that the map

x -> U(r)x is a derivation.

Now if r e 3%, then it is known that both r and U(r) are nilpotent. In particular

tr U(r) = (r, d}=0. It follows that d is in the range space of R; i.e., there exists a

vector c such that Rc=d. Actually we can show

Lemma 10. There exists an idempotent e such that Re=d.

Let Rc=d. Then tU(x)Rc = tU(x)d=RU(x)c=RU(c)x=Rx. Hence RU(c) = R,

whence Rcv = Rc—d for all positive integers v.

If c were nilpotent then o'=0. Whence Rx = lU(x)d=0, implying R=0, implying

3?=sé. This implies U(x) is nilpotent for all xesé, in particular for xeC. But

by Lemma 1, U(x) is semisimple, hence U(x)=0 for xeC. But this implies U(x)=0

for all xesé, which contradicts our assumption of nontriviality of sé.

Thus c is not nilpotent. Hence the commutative and associative algebra generated

by c contains an idempotent e. e = 2vg i a^c", and e ° c' = cl for all sufficiently large /.

Then Fe=2v avRcv = d~2av = ad, where we have put a=2 av. Repeating the argu-

ment used above, we obtain RU(e) = aR, so RU(e)c' = aRcl=ad=Rc' = d. Hence

a=l, and we are done.

Lemma 11. Let e' be a second idempotent such that Re' = d. Then there exists an

re M such that e' = (exp U(r))e.

Since R(e'— e) = 0, e' = e+s where sei. Then e' = e'2 = e2 + 2e o s+s2, so s

= 2e ° s + s2, whence s2 = (2e ° s + s2)2 = 4(e ° s)2 = 4U(e ° s)U(e)s, using the fact

that s2 e Jf. Now, using Theorem 6, we obtain that

s2 = 4[U(s)U(e)-U(e)U(s)]U(e)s = 4U(s)U2(e)s

= 2U(s)U(e2)s = 2U2(s)e,

where we have used additionally the fact that ^2cjf to conclude that

U(e)U(s)U(e)s=0, and the fact that {2U2(e)-U(e2)}s = 0, following from text of

Theorem 6.

Finally, e' = e+2e ° s+s2 = e + 2e ° s + 2U2(s)e={exp U(2s)}e, since U3(s)=0

by Corollary 7.

Lemma 12. Let c be any vector such that Rc=d. Then the null space of2U2(c)

- U(c2) is exactly 3t.

Let Rc = d. Then by an argument used earlier, RU(c) = R, whence RU2(c) = R.

Also then, Rc2 = d, so repeating argument, RU(c2) = R. Hence, R{2U2(c)-U(c2)}

= R. We already know that the null space of2U2(x) - U(x2) contains the radical for
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any xe sé. But then the last equation shows that the null space of 2t/2(c)— £/(c2)

is precisely the radical, completing the proof.

Now let e be an idempotent such that Re = d. With respect to e, we will take a

Pierce decomposition of sé, sé=séx©séV2©sé0. If we want to indicate the

dependence of the decomposition on e, we will write sé=séxie) © sé1¡2ie) © sé0ie).

séPie) is characterized by e o ap = pap if ap e sép. As a general property of the Pierce

decomposition, it is known that

sé2 cz séQ, séaséxi2 <=■ séll2,       séQséx = {0},

sé\í2 c sé0+séx,       séll2séx <= séll2, sé\ c jéx.

Thanks to the geometric backdrop of the present situation, we can improve

these inclusions considerably.

Theorem 13. sé0 = jf,sé0+séxi2=3$.

The second statement is immediate, since 38 is precisely the null space of

2U\e)- Uie2)=2U2ie)-Uie).

As for the first, obviously Jf<=sé0. Since we know 382<=-$f, the inclusions

•^0^112Cja*i/2> •%?ii2Cs^o+s^i, and sé%<^sé0 may be sharpened respectively to

<«,2={0}, ^Ïi2 c^o, and sé2^ c8T.

Now let a0 e sé0.1 claim that t/2(a0) = 0. By virtue of the inclusions sé0séll2 = {0}

and séoséx={0}, it is clear that U2ia0)iséll2©séx) = 0. Since sé2^3f, t/(a2)j/=0.

If r is arbitrary in 38, then 2U2ia0)r= C/(a2)r = 0. Hence U2ia0)se0 = 0, which proves

the claim.

Now let x be arbitrary in C, and A any real number. Then exp At/(a0) = 1 + A£/(a0)

is an automorphism of C. Hence exp (Ajy(a0))x=x+AC/(a0)xe C for any real A.

This contradicts the assumption that C does not contain an entire straight line,

unless Uia0)x = 0. Since the last must be true for x e C, it must be true for arbitrary

x. Hence C/(ao) = 0, which implies a0 e C8f, completing the proof.

There is another conclusion, which will be useful later.

Lemma 14. IfJf = {0}, then 3ë = {0}, and sé is semisimple.

For suppose Jf = {0}. Then since 382<^X, 3i2 = {0). Let ref. Then i/2(r) = 0,

for U\r)x is the product of two elements of 3i. The same geometrical argument

used in the last lemma now enables us to conclude that i/(r) = 0; i.e., r e JT; i.e.,

r = 0, completing the proof.

As our next task, we will investigate the case of semisimple sé.

Theorem 15. If sé is semisimple, then C is a linearly homogeneous, self adjoint

convex cone.

For suppose sé semisimple. Then R is nonsingular. Let ceC.l claim that the

linear space spanned by vectors of form C/(x)c and {C/(x) Uiy)- Uiy)Uix)}c, x and

y being arbitrary in sé, is all of sé. Suppose to the contrary that there exists a v

such that (Rv, C/(x)c>=0 and (Rv, Uix)Uiy)c- Uiy)Uix)c}=0.
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Since U(x) is selfadjoint with respect to the trace form, the first implies

(RU(c)v, x}=0, so U(c)v = 0. From the second, we obtain that

(RU(c)U(x)v-RU(x o c)v, y y = 0

whence U(c)U(x)v=U(x° c)v, so U(c)U(v)=U(v)U(c). Hence 0=U(c)U(c)v

= U(c)U(v)c=U(v)c2, or U(c2)v=0. Thus {2U2(c)- U(c2)}v=^0. But for ceC,

since 2F = 5(c){2t/2(c)-t/(c2)}, 2U2(c)-U(c2) is nonsingular, whence v = 0,

proving the claim.

Consider now the Lie algebra ¿p, generated by U(x), xesé, which contains,

of course, the commutators U(x)U(y)— U(y)U(x). This is the Lie algebra of some

analytic group H of automorphisms of C. For ce C,í¡c spans the tangent space to

C at c, as h varies over §. It follows that H is transitive on C, i.e., C is linearly

homogeneous. On the other hand, it is well known that the endomorphisms U(x)

of a semisimple Jordan algebra are a completely reducible family. Hence H is

completely reducible over the reals. By a minor modification of Theorem 1.5 of

[7], it now follows that C is selfadjoint.

As the referee has pointed out, it suffices in Theorem 1.5 to assume only that jé

has a unit, as it then follows from Lemma 14 that Jf={0}, so sé is semisimple.

The ambient Euclidean space for a selfadjoint linearly homogeneous cone already

comes equipped with the structure of a semisimple Jordan algebra sé', satisfying

the hypothesis of this section. Let V(x) be the endomorphism giving multiplication

in sé', and let R' be the matrix associated with the trace form in sé'.

Theorem 16. The multiplications U(x) and V(x) are each "mutants" of the other.

We know 2R = B(x){2U2(x)-U(U(x)x)} and U(e)x = x, since séx = sé. Also

2R' = B(x){2V2(x)- V(V(x))}. Hence

{2V2(x)-V(V(x)x)}R'-1R = {2U2(x)-U(U(x)x)}.

Let R'~1Re=f. Then 2V2(x)f- V(V(x)x)f=2U(x)x. Replace x by x+y, and sort

out linear terms in y, to obtain

U(x) = V(x)V(f)-V(f)V(x)+V(V(x)f).

By definition, the last says V(x) is a mutant of U(x). An analogous computation

gives the dependence of V(x) on U(x).

It will be useful to compute now what the nonlinear map w(z) = [I— (i/2)U(z)]~1z

is in the case of semisimple sé currently at hand.

The formula above for w is, of course, not necessarily defined for all z. It is

certainly defined for small z. Now Tc has a holomorphic symmetry z -^ z*, which

may be computed everywhere in Tc by the formula z* = P~1(z)z, where P(z)

=2V2(z)- V(V(z)z) [5]. From a known formula [5],

2U2(z)-U(U(z)z) = {2V2(z)-V(V(z)z)}{2V2(f)-V(V(f)f)},
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and from the proof of Theorem 16, we see that 2K2(/)- ViVif)f) = R'~1R and so

is nonsingular. Since i/(e) = /,

wiz-2ie) = 2iU-\z)iz-2ie) = 2ie + 4U~\z)e,

since Uiz)e=z, so C/_1(z)z=e. For almost all z,

U~\z)e = [2U\z)-UiUiz)z)Y1z = [2V2if)-ViVif)f)Y1P-1iz)z

= [2V2if)-ViVif)f)]-1z*.

Let A~1 = 2V2if)- ViV(J~)f). A is known to be an automorphism of C. Hence,

wiz)=4Aiz+2ie)* + 2ie which is a formula for w(z) clearly showing it gives an

automorphism of Tc.

We return now to the general case of nonsemisimple sé, e being an idempotent

such that Re = d, and sé=séx+séxi2-\-sé0 the associated Pierce decomposition.

Let ttx, 7r1/2,7T0 be the corresponding projections.

Theorem 17. C0=tt0C and Cx=ttiC are regular convex cones lying in the closure

CofC.
Moreover Cx is a homogeneous selfadjoint cone.

Let xeC, and write x = x1 + x1/2 + Xo. For any real A, exp AC/(e) is an auto-

morphism of C. Hence exp (Ai/(e))x = x0 + (exp (A/2))x1/2 + (exp \)xx e C. Let A go

to — oo to conclude x0 e C. Also

exp (-A) exp (Ai/(e))x = exp (-A)x0+exp (- h/2)xxi2 + Xx e C.

Let A go to +00 to conclude xx e C. Since C does not contain an entire straight

line, C0 and Cx are regular. They are clearly relatively open in sé0 and séx respec-

tively, since projection is an open map.

d is a cone with Jordan structure sex. Since séx has a unit, Cx is homogeneous

selfadjoint.

Using the last and some earlier results, we can draw a rather interesting con-

clusion.

Theorem 18. Let C be an arbitrary regular convex cone. Suppose the geodesic

symmetry at one point of Tc extends to a holomorphic map of Tc. Then C is homo-

geneous selfadjoint and Tc is Hermitian symmetric.

First, we want to note that the geodesic symmetry cannot be an affine map.

For suppose it were, then it must be of the form w=Az + it, t e Rm, and A an

automorphism of C such that A2=I and At= -t. Let z0 be the fixed point. We

cannot have A= —I, since A is an automorphism of C. Hence there exists nonzero

xeRm such that Ax=x. But then for any complex A, w(z0 + Ax) = z0 + Ax, which

contradicts the fact that z0 is an isolated fixed point.

Up to conjugation by an imaginary shift, we have by Theorem 3 of §111 that w

is of the form vv(z) = ^[/-(//2){/(z)]_1z + í7 where t e Rm. A is an automorphism of
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C and U(z) is not identically 0. Let Jf be the kernel of the associated Jordan al-

gebra, and let k e Jf.lt is easy to see that w(z+k) = w(z)+Ak. Replace z by w(z),

and use the fact that w is an involution to obtain w(z+Ak) = w(z) + k. Hence

w(z+k+Ak) = w(z) + k + Ak. Let z0 be the fixed point of w. Then w(z0+k + Ak)

= z0 + k + A, which contradicts the assumption that z0 is isolated, unless k + Ak = 0;

i.e., Ak= —k for all sufficiently small k e Jf, and so for all of Jf.

Now let k e C0. Then k e C. A is an automorphism of C. Hence — k = Ak e C.

This contradicts the regularity of C, unless Jf={0}, which implies the Jordan

algebra is semisimple; hence C is homogeneous selfadjoint. But then it is known

[7] that Tc is Hermitian symmetric, completing the proof.

Let xeC.  Consider the commutative associative algebra séx generated by

Lemma 19. séx is a semisimple associative algebra.

For suppose an element u=a2x2 + a3x3 + ■ ■ • +arxr is nilpotent. Then U(u) is

nilpotent. But we know U(u) is semisimple, since B(x)U(u) = tU(u)B(x), so we

must have U(u) = 0. Hence weJf. Hence 0= U(u)x = a2x3 + a3xi + ■ ■ ■ +arxr + 1.

Now 2R = B(x){2U2(x)- U(x2)}, whence for v^O, 2Rxv = B(x)xv + 2. Thus

R(a2x + a3x2+ ■ ■ ■ +arxr~1) = \B(x)(a2x3 + a3xl + ■ ■ ■ +arxr+1) = 0.

So a2x+a3x2+ ■ ■ ■ +arxr~1 e 3%. This implies that a2x+a3x2+ ■ ■ ■ +arxr~1 is nil-

potent, so U(a2x + a3x2 + ■ ■ ■ +arxr'1) is nilpotent, and the argument used above

shows that a2x+a3x2+ ■ ■ ■ +arxr~1 eJf. Hence u = (a2x + a3x2 + ■ ■ ■ +arxr~1) ° x

— 0, completing the proof.

We let ex be the unit for séx. ex is a polynomial without constant or linear term

in x.

Corollary 20. Rex = d.

U(x) and U(ex) commute. Hence U2(x)ex= U(x)U(ex)x= U(ex)x2 = x2. Also

U(x2)ex = x2. Hence

2Rex = B(x){2U2(x)-U(x2)}ex = B(x)x2 = B(x)U(x)x = -lU(x)b(x) = 2d,

which gives desired conclusion.

Now let xeC. Since ex is a polynomial in x, it follows that ex o (ex o x)=ex ° x

and so ex ° (x—ex ° x) = 0. Hence exx e séx(ex), and x—ex°xe sé0(ex). So we may

write x=xx + x0, xx e séx(ex) and x0 e ¿f. We already know that x0 and xx e C.

Now fix a c e C, and put ec = e the associated idempotent as just constructed

and take associated Pierce decomposition, sé=séx+séxl2+sé0, and associated

cones Cx and C0. Let xeC. We know by Lemma 11 that there exists anrel

such that e* = (exp U(r))e, and it is obvious that we may take reséx¡2. Since

multiplication by exp U(r) is an automorphism of sé, it is clear that

(exp U(r))séx = séx(ex).
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Write as before x=Xi+x0, xx e séxiex), x0 e Jf'. Then there exists ueséx such that

(exp U{r))u = Xx- Hence (exp t/(r))(w + x0) = x1 + x0 = x. Since exp C/(r) is also an

automorphism of C, it follows that u+x0 e C, from which we conclude that u e Clf

and x0 £ C0. Hence we have the following

Lemma 21. C is contained in the set

S=   U   {expi/O-Md + Co)}.

Furthermore the closure of C contains S.

The next result improves on the last, and gives the exact description of C.

Theorem 22. C=S.

Let x e C. Write x = x1 + x1/2+x0, where xxeséx, x1/a£.s/1/2 and x0esé0 = 3t.

There exists ueséx, kesé0, and reséll2 such that (exp Uir))iu + k) = x, by the

last result, whence u—xu r o Xx = x1¡2 and %U2ir)xx+k = x0. Since C is open, it is

possible to select r e séll2 such that r ° Xx = x'x¡2 for all xi/a £ sé1/2 in a suitably small

neighborhood of xi;2, and then since séí¡2 is a linear space, it is clear that we may

select r e sé1¡2 such that r ° Xj is arbitrary in séll2. With this observation made, it

is easy to see that every point of Cx + C0 is an interior point of S. Since C is convex,

C is the interior of its closure, and the conclusion of the theorem is immediate.

For any x e sex, we now define an endomorphism //(x) : séll2 -*■ sé1¡2 by //(x)a

= 2Uix)a.

Lemma 23. The map séx -*■ End séll2 given by x ->■ //(x) is a representation of the

semisimple Jordan algebra séx. If xeCx, Hix) is nonsingular. Hie) is the identity.

That Hix) is nonsingular for x £ Cx is contained in our remarks in the text of

the last theorem ; i.e., the map séll2 -^ séll2 given by alt2 -*■ Uixx)all2 is a surjection.

(Let us remark as well that séx-séxl2<^séxi2 so séll2 is a stable space for //(x^.)

Now we know from Theorem 6 that £/(x °y)r= i/(x)C/(j)r+ Uiy)Uix)r, for

any x, y ese, and r e 3?. Taking x and y in séx, and r in séll2, we obtain //(x o y)

=(//(x)//(j) + //(j')//(x))/2 which shows that the map gives a representation.

Since Uie)r = \r, Hie) is the identity.

For r and s eséli2 define r ° s=Pir, s).

Lemma 24. (1) P is a bilinear map from rf1/2xrf1(2 to Jf.

i2)Pir,s)=Pis,r).

(3) For any xeséx, PiHix)r, s)=Pir, //(x)í).

The first two statements are obvious. For the third start with the fact known

from Theorem 6 that t/(r)í/(í)= Uis)Uir) for r,se3$. Then for any xesé,

Uir)Uix)s= Uir)Uis)x= C/(i)í7(r)x= C/(í)C/(x)r, which specializes to (3).

Now we can give a further description of C. From our previous results, it follows

that C consists of the totality of points x+ Uir)x + iU2ir)/2)x + k where x e Clt
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r e séx¡2, and k e C0. C0 is a regular open convex cone in sé0(e). We introduce in

the usual fashion a partial order in sé0 induced from the cone C0.

In terms of the notations we have already introduced, we may equally well

describe C as the totality of points x + \H(x)r + \P(r, H(x)r) + k with x, r, and k

as before. Put H(x)r = 2s. H(x) is nonsingular. Hence C is the totality of points

x + s+P(H~1(x)s, s)+k where now x e Cx, seséxl2, k e C0. Finally in terms of the

partial ordering introduced above, C is precisely the set of points x+s+k, xeCx,

seséx¡2, kesé0 such that k>P(H~1(x)s, s).

Theorem 25. C is the set of points x+s+k in sé, xeCx, se séxl2, kesé0 such

thatk>P(H-1(x)s,s).

In order to complete the description of C we must exploit the geometrical fact

that C is convex and does not contain entire straight lines. The result is

Theorem 26. For any xeCx and all s e séxl2

(1) P(H'1(x)s,s)eC0,

(2) P(H~1(x)s,s)=0^s = 0.

Firstly, if for any j^O, and xe Cx, we had P(H'1(x)s, s)=0, then C would

contain an entire straight line, so second statement follows.

That C be convex is easily seen to require that

P(H-1(x1)sx,Sx)+P(H-1(x¡¿)sa,sí¿) ^ PiH-^Xx+x^Sx+s^Sx+Ss)

where sx and s2 are arbitrary in séxl2 and x e Cx. Put sx = s2 = s, xx = Xx2 = Xx, X>0,

to obtain

P(H-1(x)s,s) + XP(H-1(x)s,s) ^ 4XP(H~1(x+Xx)s,s).

Let A -s- 0 to obtain P(H_1(x)s, s) = 0> which is the first statement.

Note that condition (1) is equivalent to P(H(x)s, s)^0, since we may replace 5

by H(x)s in (1).

Now we want to establish that our conditions guarantee convexity.

Theorem 27. Let V= Vx ® Vxl2 ®V0 be a direct sum decomposition of vector

space V. Let C0 and Cx be regular open convex cones in V0 and Vx respectively. Let

there be given a linear map x -> H(x) of Vx -> End VXI2 such that H(x) is nonsingular

for xe'Cx. Let P be a symmetric bilinear map from Vx/2x VXI2 to V0 such that

P(H(x)s, s) e C0 and is zero only for s = 0. We suppose also that P(H(x)s, s)

= P(s, H(x)s). Let > be the partial order in V0 induced from the cone C0. Then the

point set S

S = {x+y + z, xeCx,ye Vxl2, zeV0\z > P(H~\x)y, y)}

is a regular open convex cone.
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Clearly S is open. For S to be convex is equivalent to the inequality

PiH-1ixx)s1,Sx)+PiH-1ix2)s2,s2) ä /'(//-1(x1+X2)(í1 + 52),51+52)

tor Xj, x2 £ Cx, Sx, s2 e Vx¡2.

Replace in the above inequality Sx by

Hix1JrX2)H-1ix2)sx

and s2 by //(xj + x2)H ~ 1(x1)i2. After a little manipulation, the inequality reduces

to the equivalent inequality :

/>({// - \xx) + H - Kx^sx, sx) + Pi{H - \Xl) + H - \x2)}s2, s2)

^2Pi{H-1ixx) + H-1ix2)}s1,s2).

Now for any xe Cx and *lf s2 e V1¡2, we have, by hypothesis,

PiH-'ixXsx-s^Sx-sJ à 0,

whence

PiH-^Sx, s1) + PiH-1ix)s2, s2) ^ 2PiH-1ix)s1,s2),

which establishes truth of above inequality.

We have yet to show regularity of S. It is clear that if x+y+z e S, with x e Vx,

y e Vxi2, z £ V0, that xe Cx, z e C0. If 5e is not regular, then there exists a u^O in V

such that u and — u both belong to S. Then we must have u e V1/2, since Cx and C0

are regular. For any point x+y+zeSwe would have then that x+y + Xu+z e S,

for any real A; i.e. z>PiH~1ix)iy + Xu), iy + Xu)) which is impossible unless

PiH~1ix)u, u) = 0, implying u = 0, and completing the proof.

Let Xi and x2eVx. By Hixx + ix2) we shall understand the endomorphism

//(xj) + î//(x2) of complexified Vll2.

Lemma 28. With the hypothesis of the last theorem, ifxx e C1; then //(x,) + ///(x2)

is nonsingular.

For suppose [//(x1) + ///(x2)](>'1 + />'2) = 0 for ylt y2 e Vm. Then //(xj^

= Hix2)y2 and //(x,).ya = -//(x2)^x; hence

PiHixx)yx,yJ = PiHix2)y2,yx) = /»(j>a, H(xa)yi) = -P^Wh.^

and since C0 is regular, we conclude that all of above are zero. Hence yx=y2 = 0.

It is convenient now to exhibit the map w(z) = [/— ii/2)Uiz)]~1z, which gave rise

to this section, making use of the facts and notations already established. The

formula given above for w is valid for sufficiently small z, where it may be written

in form

Let z=zx +z1/a+z0, Zj £ séx © w*i, ^2 e ^1/2 © ^1/2. z0 e ■**!> © i^o-
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It is easy to establish inductively that for v ̂  1 we have

(zx + zxl2+z0y = zvx+Hv-1(.Zx)zm+P(H''-%Zx)zm,Zvù'

Hence

w(z) = [I-(i/2)U(zx)]-1zx + [I-(i/2)H(zx)]-1zxl2

+ (i/2)P([I- (i/2)H(zx)] - Hm, zxl2) + z0.

We have already seen, since séx is semisimple, that [/— (i/2)U(zx)]~1zx extends

to a holomorphic map of Cx ® iséx onto itself.

Also we have just established that H(zx) is nonsingular for zxeCx® iséx. But

then I—(i/2)H(zx)= —(i/2)H(zx + 2ie) is nonsingular. Hence w is defined in Tc.

We want to show that w maps Tc onto itself. Since the inverse map is of the same

form, it suffices to show that w maps Tc into itself. It is somewhat simpler to

consider the map w'(z) = w(z—2ie) — 2ie. We find easily

w'(z) = 4U-1(zx)e + 2iH-1(zx)zxl2-P(H-1(zx)zxl2,zxl2) + z0

where by U'1(zx)e we mean the holomorphic extension of the inverse of U(zx),

restricted to séx, applied to e, as described in the text following Theorem 16.

Let w'(z) = wx + wxl2 + w0, and put zx = x + iy, zx:2 = r + is, zQ = k + il. Then

wx = u + iv = 4U'1(zx)e, wxl2 = 2iH-1(zx)zxl2=p + iq and w0= -P(H-1(zx)zxt2, z1/2)

+z0=g+ih.

Given that k>P(H~~1(x)r, r), we want to show that g>P(H~1(u)p,p). Since H

is a representation, we have immediately that H(w1) = 4H~1(zx). So H(x) + iH(y)

=%[H(u) + iH(v)]~1, and since u e Cx, H(u) is nonsingular, and we find easily that

H-1(x) = \[H(ü) + H(v)H-1(ü)H(v)l Also wxl2 = 2iH-1(zx)zxl2 = (i/2)H(wx)zx¡2, so

we find thatp= -\H(u)s-^H(v)r, and q= -^H(v)s + ^H(u)r. Also

w0 = z0-P(H-\zx)zx,2, Zi/a) = z0 + (i/2)P(wXi2, zxl2),

so

g = k-^P(p,s)-\P(q,r)

= k + iP(H(u)s, s) + iP(H(v)r, s) + iP(H(v)s, r)-\P(H(u)r, r).

Now we compute P(H~1(u)p,p), using the value of p determined above, and

find that

P(//-1(«)A/') = lP(H(u)s,s) + $P(H(v)r,s) + \P(H(v)H-1(u)H(v)r,r).

Hence the inequality g>P(H~1(u)p,p) simply requires that k>\P(H(u)r,r)

+\P(H(v)H-1(u)H(v)r,r). But the right-hand side is precisely F(//-1(*)r\/-)•

Hence we have proved

Theorem 29. The necessary and sufficient condition that Tc have a nonaffine

automorphism is that C have the structure of a Jordan cone. If U(x) is the endo-

morphism giving Jordan multiplication by x then w(z) = [I—(i/2)U(z)]'1z extends

to be an automorphism of Tc.
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It is possible to carry further the description of Jordan cones, by giving a com-

plete description of the representations of the semisimple algebra séx. We know

that sex is a mutant of a compact Jordan algebra á?. If t/(x) gives multiplication in

sex, and F(x) gives multiplication in J1, then we have seen that

t/(x) = Vix)Vif)-Vif)Vix)+ViVix)f)

where / is such that 2V\f)- ViViJ)f) is a nonsingular endomorphism of séx.

This implies that/has an inverse in the compact algebra 38. In fact, the inverse of

/is the unit for séx.

The algebra 38 is known to be the direct sum of simple compact algebras 38u and

it is known [2] that every representation of 38 is the direct sum of representations of

each of the 38t. Furthermore, it is known [2] that every representation of 38 is a

direct sum of irreducible representations.

Finally, since the universal enveloping algebras of compact algebras have been

determined [1], [2], it is known that, aside from the trivial representation, a

compact simple Jordan algebra, which is not the exceptional algebra, has a unique

(up to equivalence) real irreducible representation. The exceptional algebra has, of

course, no nontrivial representation.

There is a simple relation between representations of a semisimple algebra, and

representations of its semisimple mutants, which we now present. (The mutant is

semisimple if the mutating element/has an inverse.)

Lemma 30. Let 38 be a compact algebra, p its unit, and x -> L(x) a representation

of 38 such that Lip) = I. Then x —> //(x)=L(x)L(/) is a representation of its mutant

séx, sucn that Hie) = I. L(/) is nonsingular, so the result above sets up a one-one

correspondence between iequivalence classes of) representations of 38 and representa-

tions of sex.

(The condition Lip)=I is essentially superfluous. It is satisfied as soon as we

assert that L does not contain the trivial representation.)

For the proof, let us simply compute

LiUix)y) = LiVix)Vif)y)-LiVif)Vix)y)+LiViy)Vix)f),

which we find to be equal to (L(x)L(/)L(>')+Z.(>')L(/)I,(x))/2. Hence

HiUix)y) = LiUix)y)Lif)

= iLix)Lif)Liy)Lif)+Liy)Lif)Lix)Lif))/2

- iHix)Hiy) + Hiy)Hix))/2.

f'1 is a polynomial in/ hence L(J) and L(/_1) commute. Since L(/o/_1)=/,(/?)

=/, it follows that Lif~1)=L~1iJ), which completes the proof of the theorem.

(Remark. Altering a representation to an equivalent one gives a linearly

equivalent cone.)
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Now we are faced with the following problem. A representation //, without

trivial components, of séx being given, how do we construct the bilinear function

P(-, ■) satisfying the conditions of Lemma 24 and Theorem 26. We call such a

form a C0 positive form for the representation H. The problem is ameliorated by

the following trivial observation.

Lemma 31. Q(s, s) is a C0 positive form for the representation L(x) of the compact

Jordan algebra 33 if and only ifP(s, s) = Q(s, L(f)s) is a C0 positive form for the repre-

sentation H(x)=L(x)L(f) of séx.

The proof is trivial, and is omitted.

Hence, we are reduced to constructing C0 positive forms for representations

without trivial component of the compact Jordan algebra 38. Since every such

representation is a direct sum of representations of the simple ideals in 38, the

more general problem is easily reduced to the problem of constructing C0 positive

forms for representations without trivial component of a simple nonexceptional

Jordan algebra 38. It is to this that we now turn our attention.

Let x -> K(x) be the unique nontrivial real irreducible representation of 38,

acting in a vector space V. Then any representation L(x) of 38 is the direct sum of k

copies of K(x), so the representation space for L(x) may be identified with V® W,

where W is any real ¿-dimensional space. V® W is a 33 module under the action

x(v <g) w) = K(x)v ® w = (K(x) <gi I)(v <g> w).

From the known structure of the universal enveloping algebra of 33, it follows

that there is a positive symmetric bilinear form (•, •) on Kwith respect to which

the endomorphisms K(x) are selfadjoint. Let [■, •] be any positive symmetric

bilinear form on W, and then define a positive symmetric bilinear form {•, ■} on

V<S> W by setting {vx <g) wx, v2 ® w2} = (vx, v2)[wx, w2] and extending by linearity.

The endomorphisms K(x) (g) / are selfadjoint with respect to {•, •}. Now let

w be any point in sé%; i.e., to is a linear form on the ambient space of C0. If w e C*,

then w is positive on Co—{0}. Consider a>(P(r, s)), P being a C0 positive form for

the representation L(x)=K(x)® I of 33. We may write oj(P(r, s))={Q(w)r, s}.

Then Q(oj) is selfadjoint with respect to {•, •} and the map co -> Q(w) is obviously

linear.

Also, since P(L(x)r, s)=P(r, L(x)s), it follows that L(x)Q(o>) is selfadjoint with

respect to {•, •}, and further that L(x)Q(u) is positive definite when xeCx and

(oeC*. Since L(x)Q(w) is selfadjoint, we conclude, by taking adjoints, that

L(x)Q(w)=Q(oS)L(x).

The commutator algebra of the set of endomorphisms K(x) is isomorphic to the

reals, the complexes, or the quaternions, and all three cases arise. Since K(x) is

selfadjoint with respect to ( •, • ), the commutator algebra is stable under the taking

of adjoints. From this it follows easily [7] that taking of adjoint in the commutator



1971] AUTOMORPHISMS OF SIEGEL DOMAINS 377

algebra simply corresponds to conjugation (complex or quaternion) for suitable

choice of basis.

Suppose for the sake of argument that the commutator algebra is the complex

numbers. Let A be an element of the commutator algebra representing i=>y/—\.

Then the adjoint of A is -A. Since (Aïx) ® /)ö(oj) = ôH(A:(x) ® /), it follows

immediately that ß(a>) may be written uniquely in the form ß(a>)=/(g> ß0(«>)

+ A<g> ßi(c<j) where <20(<°) and Qxio>) also depend linearly on we sé*. ß0(a>) is

selfadjoint and Qxioj) is skew-adjoint with respect to [•, •].

With QÍ<d) as above, then (K(x) ® I)Qi<») is indeed selfadjoint. We have yet to

require that it be positive definite for x e Cx and œ e C*. We may write now

Lix)® QioJ) = iKix)®I)Qico) = Kix)® Q0iw) + Kix)A® Qxiw).

Let r=Vx <g> Wx + v2<g) w2+ ■ ■ ■ +f„® wv. Then

{(L(x) <g> Qi<o))r, r} = 2 (*(*K ^)[ßo("<M, wt]
i

+ 2 iKix)Avi, Vt)[Qxioj)Wi, Wi]
i

+ 2 2iKix)vt,vj)[Q0iw)Wi,w,]

+ 2 2 iKix)Avu vJÍQxi^Wi, Wj]
i>J

shall always be positive for r^O, x e Cx, and w e C*. But if x £ Cx, then it is known

that x is the square of an element in 38; i.e., x=y2. From this it follows, replacing

Kix) by Kiy2)=K2iy), that (#(x) <g> /)ß(o>) is positive definite for x £ Cx if and

only if (/® I)Qico) is positive definite.

Since A is skew-adjoint, we have always iAv, v)=0. Hence,

{(/® I)Qiw)r, r) = 2 ivi, vi)[Qoiw)wi, wt]
i

+ 2 2 ivi, v,)[Qoioj)Wi, w¡] + 2 2 (^Ui, tvXßiHwi, wj.

Let v = 2 and 1)2=^1^. Then we must have

[ßoHwi, wJ + tßoHwa, w2]-2[ß1(£ü)w2, wx] ^ 0

for a) £ C*, and this is immediately seen to be equivalent to the statement that the

endomorphism Qoiw) + iQii<*>) is Hermitian positive with respect to the Hermitian

form extending [ , ] on Wx Wto the complexification of the space W.

The above necessary condition for positivity is easily seen to be sufficient.

Indeed, a basis for V may be chosen to consist of vectors tj¡ and Avt such that

(t;t, v}) = 8U,       ivh Avj) = 0,       iAv¡, Av¡) = 8i;

and writing any r eV ® W using these basis elements for V gives the general result

immediately.

The analogous statements hold for the real and quaternionic cases as well.

Since all the steps are reversible, we have
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Theorem 32. Let the representation of 38 be given by K(x) ® / in the space

V ® W, W being of dimension k. Let the commutator algebra of{K(x)} be P, where

P is R, C, or H. Extend the bilinear form [ , ] on W to a sesquilinear form, now

denoted [ , ]' on Pr ® W. Then the C0 positive forms on V® W are in one-one

correspondence with the linear maps w -> Q(w)from the ambient linear space of C*

into the selfadjoint endomorphisms of P® W with respect to [ , ]' with the property

that Q(oj) is positive for w e C*.

There is a rather interesting way of recasting the last statement, which we now

describe. Let V and W be real vector spaces, and let D and F be regular open

convex cones in V and W respectively. A map h e Horn ( V, W) is said to be order

preserving if hD^E. The order preserving maps, denoted Ohom (V, W), obviously

form a closed convex cone in Horn ( V, W). A map h is called strictly order pre-

serving if he Interior Ohom ( V, W). Clearly, h is strictly order preserving if and

only if hD^E.

By virtue of the natural identification of Horn (V, W) with V* (g) W, we may

identify Ohom(K, W) with the subset of V* ® W consisting of elements

'' = 2i v* ® wi such that 2 v*(v)wt eE for all ve D, which is the same as saying

that 2 vf(v)w¡(w*) ̂ 0 for all v e D, w* e E*.

In V® W*, we may form the open convex cone, denoted D (g) E*, consisting of

elements r = 2 vt <g) wf such that vt e D, wte E*.

It is possible to prove that the closure of D <g> F* is D (g> F*, but we do not

require this result.

At any rate it is clear that the dual cone to D (g> F* may be identified with the

strictly order preserving maps of V into W. Hence

Theorem 33. IntOhom(F, W) = (D® E*)*.

The reinterpretation of Theorem 32 in the light of Theorem 33 is obvious. In

most instances, however, the description of D (g> F* is too complicated to shed

any light on Ohom (V, W).

We close this section with an observation which enables us to give a somewhat

simpler geometrical description of cones with a Jordan structure. Namely, if C

has a Jordan structure given by multiplication U(x), then any mutant of U(x)

also equips C with a Jordan structure. Suppose then we let m be a primitive idem-

potent in séx, and consider the mutant multiplication V(x)= U(x)U(u)— U(u)U(x)

+ U(x ° u). The radical of the algebra with this mutant multiplication is now of

codimension one, and the semisimple part is of dimension one. Repeating the

general analysis for this case, we may arrive at the following conclusion.

Theorem 34. A regular open convex cone C has Jordan structure if and only if

there exists a vector space V, a regular open convex cone D in V, a vector space W

and a symmetric bilinear map P from Wx W to V with the property that P(w, w)e D

and is zero only for w = 0, such that C is linearly equivalent to the set of points (x, v, w)

in R+ x Vx Wfor which xv—P(w, w) e D.
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V. Infinitesimal motions. We can supplement some of the results of [4] on the

nature of the Lie algebra of infinitesimal (holomorphic) motions of Tc.

Denote by 0( the automorphism of Tc given by &tz = etz. Consider again the

automorphism of Tc given by w(z) = [/—072)C/(z)]_1z and put

wtiz) = (0.t o wo 0()(z) = [I-ii/2)etUiz)Y1z.

On examining the 2-jet of w;(z) at the origin, and using the unicity theorem

developed earlier, we immediately obtain

Lemma 1. wt° ws = wt+s; i.e., wt is a one parameter subgroup, and the infinitesimal

generator is ii/2)Uiz)z.

We can give a converse to the last result. Let Wtiz) be a one parameter group of

automorphisms of Tc with infinitesimal generator qiz). qiz) = id/dt)Wtiz) (i = 0).

Using the notation already established for the kernel function of Tc, we know that

LiWtizx)+Wtiz2))
dWlzx)

dzx

8Wtiz2)

dz2
= Lizx+I2).

On differentiating the last with respect to / and setting i=0, we obtain

(bizx +12), qizx) +qiz2)} + tr idqizx)/dzx) + tr idqiz2)/dz2) = 0,

valid provided L(z1+z2)t¿0.

Differentiate the last with respect to z2 to obtain

(I) Bizx+z2)iqizx)+qiz2))+\^yizx + I2)+£2 tr^-} = 0,

also valid for Lizx+z2)^0.

Now for any z° in Cm, we can find a z2eTc such that z\+I2e Tc, L(zf+z2)^0

and 5(zï+z2) is nonsingular. This being so, it is clear that we can solve (I) for

qizx) for all zx in a sufficiently small neighborhood of z\. Hence we conclude that

qiz) is an entire function of z.

We can easily conclude much more. Expand qiz) in a power series about z=0,

qiz) = A0 + Axiz)+ ■ • • +^v(z)+ • • •

where AJz) is homogeneous of weight v. Now in (I) put z2 = 0, and use the fact

that biz) is homogeneous of weight — 1, that 5(z) is homogeneous of weight — 2

and nonsingular for zeCto conclude immediately that AJz) = § for v> 2; i.e., qiz)

is a polynomial of degree at most 2.

It is now convenient to write qiz) in the form qiz) = ia0+Az+ii/2)Uiz)z where

(/(z) is uniquely determined by the requirement that Uizx)z2= Uiz2)zx.

With this notation, equation (I) becomes

B{zx + I2)[ia + Azx+ ii/2) Uizx)zx - iä + AI2 - (//2) C/(z2)z2]

+ [tÂ-itlJi72)]bizx+I2) + â = 0
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where

8     8q(z)      .8      TT/ .
a = 8ztTV = l8ztrU^

is a constant.

Now replace z2 by Xzx, X real, sort out terms according to the powers of A, and

in each of the resulting terms, sort out according to weight in z,, to obtain all of the

following :

(1) B(z)(a-ä) = 0,

(2) B(z)Az + tIb(z) = 0,

(3) (i/2)B(z)U(z)z+á = 0,

(4) B(z)Äz+iÄb(z) = 0,

(5) -itU(í)b(z) + 2a = 0,

(6) - (i/2)B(z)Tj(i)z - /(t7(F)è(z) + ä = 0.

From (1) we infer a = ä. From (2) and (4) we obtain A = A. From (5) and (6)

we conclude that

(i/2)B(z)UiJ)z+ä = 0,

which compared with (3) gives U(z)= U(z); i.e., U(z) has real coefficients.

Now for every real vector a, ia are the contravariant components of an infinitesi-

mal motion; namely the one parameter subgroup Wt(z)=z + tia has ia as its

infinitesimal generator.

Also if wt(z) is a one parameter group with infinitesimal generator q(z), then

wt(z) has infinitesimal generator q(z).

Using this observation and the preceding description of infinitesimal motions, we

have

Theorem 2. The Lie algebra of infinitesimal motions of Tc consists of vectors

whose coefficients are polynomials of degree at most 2, and is the direct sum of its

homogeneous parts of weight 0, 1, and 2. Weight 0 consists of purely imaginary

vectors. Weight 1 are linear polynomials with real coefficients, and weight 2 are

polynomials with purely imaginary coefficients.

Theorem 2 is a special case of more general statements appearing in [4].

The infinitesimal motions consisting of polynomials of degree at most one are

clearly the generators of affine groups of transformations of Tc. But we can now

explain the role of the degree 2 parts. For let iU(z)z, U(z) = U(z), U(zx)z2 = U(z2)zx

be an infinitesimal motion. To find the associated one parameter subgroup it

generates, we must solve the differential system dwt(z)/dt=iU(w)w subject to the

initial condition w0(z) = z.
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From known theorems on differential equations, we may seek the solution in a

neighborhood of z=0 in the form of a power series in t,

oo

wtiz) = 2 aviz)f
v = 0

with a0iz) = z. Solving for the coefficients av(z) recursively readily yields the con-

clusions that a1(z) = /i/(z)z and that for v> 1, «„(z) is a polynomial with no terms

of degree less than 3. Since the automorphism wt(z) is defined in a neighborhood of

z = 0 and has nonsingular Jacobian there, it is completely determined by its two jet.

Hence we conclude that wtiz)=[I-itUiz)z]~1z. So we have

Theorem 3. If iUiz)z is an infinitesimal motion, Uizx)z2=Uiz2)zx, then the

multiplication x ° y= Uix)y, x, y e Rm, gives C the structure of a Jordan cone.

It is clearly of some interest to investigate then the different Jordan structures

on a single cone. The answer is quite simple, and we give it now. The result also

clarifies the nature of the group of linear automorphisms of C.

Theorem 4. Let C be a regular open convex cone. Then all Jordan structures on

C are mutants of a fixed Jordan structure.

Firstly, let sé be a Jordan structure so selected that its radical has minimal

dimension. Let [/(x) give multiplication in sé and let </?•, •> be the trace form for

sé.

Let K(x) give multiplication by x in a second Jordan structure, and let </?' •, • >

be the trace form in this structure.

From Theorem 3 of §V, it follows that //A(x) = t/(x) + A K(x) is for any real A

multiplication by x in some Jordan structure on C. Let c be a fixed point in C.

Then the radical in the structure associated to //A(x) is precisely the null space of

/?A = 2H2ic) — HfyHJyc)). Now for all sufficiently small A, it is clear, by a straight-

forward compactness argument, that no vector in séx is annihilated by RA. And

since sé has minimal radical, it follows that RK annihilates 38 for all small A. On

displaying Rx explicitly in terms of £/(c) and Vic), it is then clear that R' annihilates

38. Hence the radical of K(x) contains the radical of C/(x), so the range space of R

contains the range space of R'.

Now we know that for any x e C we have

2R = Bix){2U2ix)- t/(t/(x)x)},       2R' = 5(x){2F2(x)- K(K(x)x)}.

From above, we know there exists an S such that R' = RS. Hence 2 V\x) — K( K(x)x)

={2U2ix) — UiUix)x)}S. Now let e be an idempotent for the multiplication F(x)

such as described in Lemma 10 of §IV. Then {2F2(x)— F(K(x)x)}e= K(x)x. Put

Se=f. Then K(x)x={2£/2(x)- t/(£/(x)x)}/, and if this identity is polarized, we

obtain that V(x)= U(x)U(f)- U{f)U{x)+ t/(C/(/)x); i.e., F is a mutant of U.
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The last result makes it possible to give a better description of the group © of

infinitesimal automorphisms of C. To this end let us pick a Jordan structure sé

on C with minimal radical, multiplication being given by U(x). Then we know that

iU(z)z is an infinitesimal (holomorphic) motion of Tc. Let g e @. Then gz is also

an infinitesimal motion of Tc. On taking the commutator of the last two, we obtain

the infinitesimal motion 2/i/(z)gz — /gt/(z)z, which may be written in the form

iV(z)z, where V(z) is put equal to t/(z)g — gU(z) + t/(gz). When so written, we

have that V(z)w= V(w)z. Hence by Theorem 3 of §V, V(x) gives multiplication for

a Jordan structure on C. By Theorem 4, there exists/e sé such that V(x) = U(x)U(f)

-U(f)U(x)+U(U(f)x). Put h = g-£/(/). h e ©, and U(x)î)-ï)U(x)+U(i)x) = 0.

The last simply says that the map x -> fix is a derivation of sé. Hence we have

Theorem 5. Let C be a cone with Jordan structure sé. Let sé have minimal

radical, and let U(x) give multiplication in sé. Then @ is spanned by {U(a)}aej¡? and

some subspace of the derivations of sé.

Remark. Of course commutators U(a)U(b)—U(b)U(a) give derivations which

are automorphisms. In the general case there can be other derivations giving

infinitesimal automorphisms of C.
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