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Abstract. We show that there exists a suitable strong Markov process on the

underlying space of each regular Dirichlet space. Potential theoretic concepts due

to A. Beurling and J. Deny are then described in terms of the associated strong

Markov process. The proof is carried out by developing potential theory for Dirichlet

spaces and symmetric Ray processes and by using a method of transformation of

underlying spaces.

Introduction. This paper is a continuation of [10]. We will use those notions

and terminologies adopted in [10].

Let ( Y, m, &, ê) be a D-space. We define (a0-) capacity of an open set A<^ X by

Cap (A) =  inf ê"o(u,u)   if &A # 0,
(0.1) ue^

= +co otherwise,

where a0 is a fixed positive number and

(0.2) SeA = {u e 3F; u ^ 1 w-a.e. on A}.

The capacity of an arbitrary set A <= X is defined by

(0.3) Cap (A) =      inf     Cap (B).
AcB.B open

We show in subsection 1.1 that this definition gives us a Choquet capacity^2). A

set A <= X is said to be polar if A has zero capacity. If A is polar, then m(A) = 0.

From subsection 1.2 to the end of this paper, we will concentrate our attention

on regular F-spaces. According to Definition 2.3 of [10], a F-space is called regular

if m is everywhere dense on X and the space & n C(X) is dense both in !F with

norm êao and in C(X) with uniform norm, C(X) being the space of all continuous

functions vanishing at infinity on X. Our goal in this paper is to establish the

following existence theorem of a strong Markov process.
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(2) This fact has been proved by J. Deny [3] under a kind of regularity condition for a

function space.
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Theorem 4.1. Let (X, m, ¡F, S) be a regular D-space. There exist then a (possibly

empty) Borel polar set B^X and a right continuous strong Markov process

M=(£l,Jt,Jit, Xt,Px) with state space X\Jd — B such that the resolvent of the

process M generates the given D-space (F*, $)(?) : if we put

(0.4) RJ(x) = Ex^' e-atf(Xt) dt),       xe X-B,

for feL2(X; m) n C(X) under the convention that f(d) = 0, then the function Raf

belongs to the space F'* and the equation

(0.5) S"(Raf v) = (f v)x

holds for every v e F. Furthermore the state space X\Jd — B has no branch point

and M is quasi-left continuous on [0, + oo).

In §4 we will prove this theorem by constructing these objects (Í2, JSf, J(t, Xt, Px)

in a specific way and describing more detailed properties that they possess. It

turns out that the process M is actually a Hunt process^).

Here we give a brief account of our procedure.

§1 will provide some basic facts related to a regular D-space most of which are

well known as the contents of Beurling-Deny's potential theory. We reproduce

them because our definition of the regularity is slightly more general than Beurling-

Deny's and further our approach to the potential theory is based on the concept

of quasi-supermedian functions.

Theorem 2.1 of §2 will state that, if two regular D-spaces are equivalent in the

sense of Definition 4.1 of [10], then their underlying spaces are related by a capacity

preserving quasi-homeomorphism^). We need the regular representation theorem

[10] for the proof of Theorem 2.1.

In §3 we examine the relationship between two aspects of a strongly regular

D-space—the potential theoretic one developed in §1 and the probability theoretic

one corresponding to the associated Ray process. For instance, we prove in Theorem

3.12 that a set A is polar if and only if there is an «î-negligible Borel set B=>A such

that almost all sample paths of the Ray process starting at any point of X- B will

never contact with B.

The proof of Theorem 4.1 is accomplished in the following way. Let (X, m, !F, ê)

be a regular D-space. Then by virtue of Theorem 3 of [10], there is a strongly

regular Z)-space (X, m, #, S) which is equivalent to (X, m, IF, $). Owing to

Theorem 2.1, Y is related to Y by a capacity preserving quasi-homeomorphism a.

a will transform the associated Ray process on ft into a process on X which turns

out to have the properties of Theorem 4.1.

(3) J5"* is the quasi-continuous modification of F (subsection 1.2).

(4) See P. A. Meyer [16, Chapitre XVI]. The state space of the process M is not necessarily

a locally compact set but a Borel subset of the compactum X w B.

(5) We can find an analogous reasoning in M. Nakai [17].
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Thus every regular F-space is endowed with a probabilistic structure and we can

see that all theorems of §3 are generalized at once to the case of the regular D-space.

Subsection 4.2 collects some of the generalizations—an identification of decom-

position of the F-space and that of an associated Hunt process, an identification

of quasi-continuity and q.e. fine continuity, etc. In particular our notion of polar

sets turns out to be weaker in general than the usually adopted probabilistic one.

They are identical, however, as we will see in subsections 3.6 and 4.2, if and only

if the underlying measure m is a reference measure for the process.

Although we go no further at present, it may be asserted that sample paths

governed by a Dirichlet space will run along "the roads" indicated by the 0-order

Dirichlet form ê and with "speed" indicated by the underlying measure m.

I wish to express my hearty thanks to T. Shiga who read the original version of

the manuscript and gave me valuable suggestions.

1. Potential theory for F-spaces. Let (X, m, IF, ê) be a F-space. We do not

assume any regularity condition in the first subsection. From subsection 1.2

throughout §1 we will assume that (X, m, ¡F, S) is regular.

1.1. Capacity.

Theorem 1.1. The capacity defined by (0.1) and (0.3) for all subsets of X is a

Choquet capacity, that is,

(a) it is increasing,

(b) for any increasing sequence of subsets An of X,

Cap (U An) = sup Cap (An),
\ n I n

and

(c) for any decreasing sequence of compact subsets An of X,

Cap(fMn) = inf Cap (A).
\ n / n

Furthermore it has the property that

(d) it is nonnegative and countably subadditive.

Our capacity is evidently nonnegative and increasing. Property (c) is also clear.

In fact, for any e>0, there exists an open set E^>(~\nAn such as Cap (C]n^n)

^ Cap (F) — e. However, E=>An for some n and we have Cap (/\ An) = infn Cap (An).

According to P. A. Meyer [15, III, T23], the other assertions of Theorem 1.1

follow from the next lemma.

Lemma 1.1. The capacity defined by (0.1) for all open sets of X has the following

properties. Denote by °U the class of all open sets A for which ^A^0.

(i) It is finite, nonnegative and increasing on ^l.

(ii) It is strongly subadditive on "U'.for any A,Be<%,

Cap (A u FO + Cap (A n B) fi Cap 04) +Cap (B).
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(iii) If Ane% is increasing and (Jn An e ^i, then

Cap (U A A = sup Cap (An).

(iv) For any open set A belonging to %„,

Cap (A) =     sup    Cap (B).
B<=A,Beqi

Proof. For A e °U, there exists a unique element pA e <£A minimizing the quadratic

form Sao(u, u) in 2?A, since 3?A is a nonempty convex set of F closed with norm

«fV Evidently,

(1.1) Cap(A) = SH(pA,pA).

Since (Ov/>a)a 1, being a normal contraction ofpA, is identical with^, we have

(1.2) 0 <: Pa ^ 1       m-a.e. on X,

(1.3) pA = 1       m-a.e. on A.

Further we have

(1.4) S«o(pA,v)liO

for any v e F which is nonnegative m-a.e. on A. This follows from

<?"°(Pa + *», />¿ + ev) = «^o(/>¿, ^),       e > 0.

It is easy to see that pA e !F is characterized by two conditions (1.3) and (1.4).

Keeping these in mind, let us prove Lemma 1.1.

(i) Trivial.

(ii) Since \pA— pB\ is a normal contraction of pA— pB, we have

*"<Pa V pB,pA V Pb) + ^HPa A pB,pA A pB) = Sao(pA,pA) + êao(pB,pB),

which implies the desired inequality,

(iii) For « > m,

£a°(PA„-PAm,PAn-PAj = Cap(v4n)-Cap(^m).

Since Cap (^n) is bounded from above (by the capacity of A = {JnAn), the pre-

ceding equality means that/>¿n converges to a u0 e F in norm <#V m0= 1 «j-a.e. on A

because pAn = 1 m-a.e. on An. Moreover <%a°(u0, v) = limn^ + x $a*(pAn, v)^0 for

every ve^ which is nonnegative «i-a.e. on A. Thus u0=pA and

lim  Cap(A)=   Hm  $a°(pAn, PaJ = $HPa, Pa) = Cap (A).
n-» + oo n-* + oo

(iv) Consider an element ^4 of ^ and put c=supB=í4jBeía, Cap (5). There exists

an increasing sequence of open sets An e <% such that \Jn An = A. By making use of

statement (iii), we easily obtain the equality c=lim„_ + M Cap (An) ̂  +oo. Now this

equality combined with exactly the same argument as in the proof of (iii) leads us to
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the conclusion that c is finite if and only if A e°ll and in this case c = Cap (A). Hence,

if c= -(-co, then A $ <% and Cap (A)= +co by definition. In any case, we get the

desired equality. The proof of Lemma 1.1 is complete.

Theorem 1.1 combined with Choquet's theorem implies that, for any analytic

set A<^ Y,

(1.5) CapL4)=        sup        Cap (K).
Kc A.K compact

In subsection 1.5, we will give some characterizations of the capacity for compact

sets in the case of the regular F-space.

A subset A of X is called polar if Cap (A)=0. The expression "quasi-everywhere"

or "q.e." means "except for a polar set". Let F be an open set of X. A function u

defined q.e. on F is called quasi-continuous on E if, for any e > 0, there exists an

open set co^E such that Cap (w)<e and the restriction of m to X— cu is continuous

there. Quasi-continuous functions on X are simply said to be quasi-continuous.

Theorem 1.2. (i) If A is polar, then m(A) = 0.

(ii) Ifuy and u2 are quasi-continuous on an open set E^X and Uy ̂ u2 m-a.e. on E,

then Uy ̂  u2 q.e. on E.

Proof, (i) This is evident in view of the inequality Cap (A) £S cc0m(A) for the open

set A, which is immediate from (0.1).

(ii) Fix an £>0. There exists then an open set co c E with Cap (cu)<e such that

Uy and u2 are continuous on F—cu. Put w' ={x e E; there exists a neighborhood

U(x) of x such that U(x)<^E and m(U(x)-co)=0}. It is easy to see that cu' is an

open set, œ^co'^E and m(co'-w)=0(6). Hence áCw' = £Cw and, by (0.1), Cap (cu')

= Cap (w)<e. Now let us show A<^w', where A = {x e E; Uy(x) < u2(x)}. Suppose

that there is an element xeA n(E-w'). Since xeA n(F—cu), there exists a

U(x)c:E such that Uy<u2 on U(x) — w. However, m(U(x) — cu)^0 because

xeE—w'. This contradicts the assumption that Uy^u2 m-a.e. on E. Thus A^oj'

and Cap (A) < e, proving that A is polar.

1.2. Quasi-continuous modification ¡F*. From now on we assume that the given

F-space (X, m, IF, S) is regular.

Theorem 1.2(ii) then implies that Cap (A) > 0 for every nonempty open set A.

Moreover, if a subset A<^X has a compact closure, then Cap (A) is finite. In fact,

A is then included in an open set F with compact closure. ¿i?E is not empty for such

anF.

Theorem 1.3. For any ueß\ there exists uneF n C(X) and increasing closed

subsets Fm such that £a°(un-u,un-u)->0, Cap (Hm=i F£) = 0 and un converges

(6) Since X is assumed to be separable, we can use the Lindelöf covering theorem to prove

this point. Cf. Hilfssatz 5.9 in C. Constantinescu and A. Cornea, Ideal ränder Riemannscher

flächen, Springer, 1963.
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uniformly on each Fm. The limit function u* of un is quasi-continuous and equal to u

m-a.e.

Proof. By means of (0.1), we have

(1.6) Cap {x; \v(x)\ > e} ¿ £a°(v, v)/e2

for any e > 0 and v e F n C(X). Take ueF and find une F n C(X) converging

to u with ^ao-norm. Subtracting a suitable subsequence if necessary, we can assume

that Cap(G'n)gl/2n for the open set Gn={x; \un(x)-un + 1(x)\ > 1/2"}. The state-

ment of Theorem 1.3 holds for Fm = (~}¿™m tr£.

If a function u is defined m-a.e. on Y and if u* is quasi-continuous and equal to u

m-a.e. on X, then u* is called a quasi-continuous modification of u. Denote by ¡F*

the set of all quasi-continuous modifications of functions of F. We regard two

functions of F* to be equivalent if they are identical q.e. on X. On account of

Theorems 1.2 and 1.3, the equivalence classes of J5"* with inner product <§a form a

real Hubert space which is just identical with the space (F, S"), two functions of F

being identified if they coincide m-a.e.

The next lemma can be proved exactly in the same manner as in I. Deny and

J. Lions [5, II, Lemme 4.1 and Théorème 4.1].

Lemma 1.2. (i) The estimate (1.6) holds for any e>0 and ve.F*.

(ii) Ifun is a Cauchy sequence in (F*, $a°), then un converges to a function u e F*

with Saa-norm. Further there exists a subsequence nk such that limn|t_ + M unAx)

= u(x) q.e. on X.

1.3. Quasi-supermedian functions and potentials. Let {Ga,a>0} be the L2-

resolvent associated with the D-space (F, S). Each Ga is a linear operator from

L2(X; m) into F. From now on, however, we regard Ga as a linear operator from

L\X; m) into the space F*, as the preceding subsection 1.2 admits us to do.

We call a function u e L2(X; m) (a0-) quasi-supermedian if the following two

conditions are satisfied.

(1.7) m is quasi-continuous and m SO q.e.

(1.8)|SG, + aoM^t/q.e.,iS>0.

Lemma 1.3. A function u e F* is quasi-supermedian if and only if $a°(u, v)^0

for every v e F* such that v^O q.e.

Proof. If ueF* is quasi-supermedian then according to Lemma 2.1 of [10],

£a°(u, v) =   lim  ß(u-ßGe+aou, v)x = 0   for v e F
S-. + 00

such that v =■ 0 m-a.e.

Conversely assume that u e F* satisfies the inequality $a*{u, v) 3; 0 for every

v e F* which is nonnegative q.e. on X. Then u is the unique element minimizing

the norm £ao(w, w) in the convex set J¡fll={weF*; w = w q.e.}. |m| is a normal
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contraction of « and belongs to 3?v Thus u= \u\ êO q.e. proving (1.7). Furthermore

we have, for any v eL2(X; m) such as v^O m-a.e.,

(u-ßGß + aou, v)x = ^+"o(u, Ge + aou)-ß(u, Ge + aov)x = *«.(«, Gß + aov)

which is nonnegative because GB + ttoveF* and GB + aov-0 q.e. (Theorem 1.2(h)).

This proves (1.8). The proof of Lemma 1.3 is complete.

Denote by M0+ the set of all nonnegative Borel measures p. on X satisfying the

following two conditions :

(1.9) F n C(X) ^ LX(X; p).

(1.10) There exists a function u e F* such that

êa*(u, v) = f v(x)p(dx)   for any v e F n C(X).

The function u of (1.10) is uniquely determined by p e A70+. It is called the (a0-)

potential of p and denoted by Up.

Every pe Mi is a Radon measure on X, namely, p is finite for any compactum.

Any ueF* defines a linear functional lu on F n C(Y) by lu(v) = Saa(u,v),

veF n C(X). Meanwhile, F n C(X) is closed under lattice operations and

v A 1 e F n C(X) for any veFnC(X) [10, Lemma 4.1]. Therefore by the

general theory of Daniell integral [14, Chapter 3], lu is an integral by means of the

Baire measure with respect to the class F n C(X) if and only if Iu is a positive

functional and continuous under monotone limits. Since the Baire family generated

by F n C(X) is the set of Borel functions, we get the following

Lemma 1.4. ue F* is a potential if and only if

(1.11) <g"°(u, v)^0for any nonnegative v e F n C(X).

(1.12) S"o(u, vn) j 0 if vneF C\ C(X) converges monotonically to zero.

When X is compact, condition (1.12) is superfluous. If m is a potential, u deter-

mines the associated measure p e M$ uniquely.

Now we will state the relation of quasi-supermedian functions and potentials.

Theorem 1.4. A function u e F* is a potential if and only if u is a quasi-

supermedian function satisfying condition (1.12).

Proof. It suffices to show that condition (1.11) implies the stronger condition

of Lemma 1.3. Suppose that u e F* satisfies (1.11). Let v eF* be nonnegative q.e.

and vneF n C(X) be a sequence converging to v in <fao-norm. Consider vi

= vnv0eF <~\ C(X). Then ia°(v¿, vï)figa°(vn, vn) is bounded in n and

*«o(»«+. GaJ) = (vi ,f)x -» (v,f)x = S«°(v, GaJ)   for any fe L\X; m).

Since Gao(L2) is dense in F, vi converges to v weakly. In particular,

£a°(u, v) =   lim  £a°(u, vi) = 0.
ÍI-+ + oo
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1.4. Basic properties of potentials. Define the support Sp, of p. e M0+ by Sp.

= {x e X; p(Ux)j^0 for any neighborhood Ux of x}. Sp. is a closed set. Let us

begin with an approximation lemma.

Lemma 1.5. Suppose that p. e M0+ has a compact support Sp. Then for any open

set E such that E^>Sp and E is compact, there exist nonnegative functions

fn eL\X; m) which vanish m-a.e. on X—E and satisfy

(1.13) /„-m -* p, vaguely as measures,

(1.14) GaJn -> Up weakly in (F, S«o).

Proof. By virtue of Theorem 1.4, the potential Up is quasi-supermedian, and so

(1.15) ge = ß(Up-ßGe+tt0(Up,))

is nonnegative. Let us prove the equality

(1.16) lim       v(x)ge(x)m(dx) =      v(x)p(dx)
ß-> + ccJX JK

for every continuous function v such as \v\ = v0, where K= Sp and v0 is an arbitrarily

fixed function in F n C(X). According to Lemma 2.1 of [10] and (1.10), the equal-

ity (1.16) is true for every v e F n C(X). Incidentally the measures gß-m are

uniformly bounded in ß on any compactum. Turning to the case of general v,

choose vkeF n C(X) such as \vk\ ̂ v0 and \\vk — v\\x ->0, fc-> +oo, and observe

the following inequality :

v(x)gß(x)m(dx)-     v(x)p.(dx)
\JX JK

¿i vk(x)ge(x)m(dx)-\   vk(x)p(dx) \+\   \v(x)-vk(x)\p.(dx)
\Jx JK JK

+     \v(x)-vk(x)\gs(x)m(dx) + 2\       v0(x)ge(x)m(dx).
JF JX-F

For any e > 0, take a compactum F such that n0<£on Y— F, then the superior limit

in ß of the last term of the right-hand side is less than 2 J^ (v0 A ¿)p(dx) =£ 2e ■ p(K).

Now by taking sufficiently large k, we can make the superior limit in ß of the

right-hand side arbitrarily small.

It is clear that (1.16) implies (1.13) with

(1.17) fn(x) = gn(x)XE(x),       xeX,

XE being the indicator function of the open set E. It follows from (1.13) that

£a°(GaJn, v) = (/„, v)x -► J v(x)p(dx) = S%(Up, v)

for v e F n C(X).
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Since

£a°(GaJn, Gaofn) = (fn, GaJn)x ^ (gn, Gaogn)x

= (gn,nGn + aoUp)x á (gn, Up)x

is uniformly bounded by <§ao(Up, Up), we arrive at (1.14).

We will point out here that, for any p e Mi and compactum K, the measure pK

defined by pK( ■ ) = p.(K n • ) is also in Mi and

(1.18) ¿HUpk, UpK) è SHUp, Up).

Indeed, the inequality

^ jx \v(x)\p(dx) = S«o(Up, \v\)

^ ^(£a°(Up, Up)W(<?a°(v, v)),       veFn C(X),

implies the existence of the potential UpKeF satisfying (1.10). Further we have

p — pKe Mi ■ Therefore, by means of Lemma 1.3 and Theorem 1.4,

é«a(U(p-pK), UpK) = 0,

which means (1.18). Keeping this in mind, let us proceed to

Theorem 1.5(7). (i) If A is polar, then p.(A) = 0for every p e Mi.

(ii) IfpeMS, then F*^L\X; p) and

(1.19) £a°(Up, u) = f u(x)p(dx),       ueF*.

Proof, (i) Suppose that A is polar and p e Mi. For any e > 0, there is an open

set E^>A with Cap (E)<e. Take any compactum K included in E and choose fn

satisfying conditions of the preceding lemma for pK and an open set Ey^E with

compact closure Ey. Then,

£a°(UpK,pE)=   lim   SH(GaJn,pE)=   lim   f   fn(x)m(dx) = p(K).
71-* + 00 n~* + CO J Ey

Hence

KK) ¿ V(<?a°(UpK, UpK)W(<?a°(PE,pE)) è V(<?a°(Up, Up))-V(Cap(E))

and

p(E)fi ^E-^(ê«»(Up,Up)).

lb\isp(A)=0.

(7) This is a version of Theorem 4(iii) of [1] whose proof was recently given in [4].

|   v(x)pK(dx)
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(ii) Consider p. e M0+ and u e F*. It is clear from assertion (i) that u is p-

measurable. Let un e F n C(X), Fk<= X and u* be those of Theorem 1.3 for the

present u. It suffices to show that u* e L1(X; p.) and

(1.20) é"'o(Up,u)= f u*(x)p(dx)

because u = u* q.e. and the right-hand sides of (1.19) and (1.20) are identical.

Let us prove (1.20). We may assume that each Fk is compact. Consider the

sequence of measures pk=pPk, then

ga°(Up,k, v) =       v(x)p(dx)-^ v(x)p(dx)
JFk ^ + «=JUa

j;

'UkFk

v(x)p(dx) = Sao(Up., v),       veF n C(X),
" X

which, combined with (1.18), implies that Upk converges to Up, weakly in (F, $a°).

On the other hand,

£"o(Up.k,u)=   lim  é"o(Upk,un)
n-» + oo

=   lim       un(x)p.(dx) =      u*(x)p(dx).
n- + oo jFk jFk

Therefore,

¿'«»(Up,, u) =   lim   S"o(Upk,u)= f        u*(x)p(dx)= f u*(x)p.(dx).
(£-> + » JUkFk JX

Theorem 1.6. Let Kbe a compact set. Then, for u e F*, the next three conditions

are mutually equivalent:

(i) u is a potential Up with Sp-^K.

(ii) êao(u, v)S0/or any veF n C(X) which is nonnegative on K.

(iii) Saa(u, v)tOfor any v e F* which is nonnegative q.e. on K.

Proof. Owing to Theorem 1.5, (i) implies (iii). Trivially, (iii) implies (ii). All we

have to do is to derive (i) from (ii). Suppose that u e F* satisfies condition (ii).

We will first prove that u has the properties (1.11) and (1.12). (1.11) is trivial. Let

w be a function of F n C(X) which is no less than 1 on K. If vn e F n C(X) is

decreasing to zero, then vn converges uniformly on X and an = supxe^ vn(x) de-

creases to zero. Since vn^anw on K,

Sa°(u, vn) g an£a°(u, w) -> 0,       « -> + oo.

Thus, u satisfies (1.12). By means of Lemma 1.4, m is a potential of a measure

p, e M0+. In view of equation (1.10) and condition (ii), we have Sp.<^K.

1.5. Equilibrium potential and capacity for the compact set. We will first define

equilibrium potentials for open sets in the class % of the subsection 1.1 and study
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their properties. Let A be in % and pA be the function of F which is characterized

by (1.3) and (1.4). Denote by eA any quasi-continuous modification of pA. We call

eA the (a0-) equilibrium potential for the open set Ae%. According to Theorem 1.2,

eA has the following properties :

(1.21) Cap (A) = S"o(eA,eA).

(1.22) eA = \ q.e. on A.

(1.23) Sa°(eA, t>)^0 for any v e F* which is nonnegative q.e. on A.

eA e F* is characterized by (1.22) and (1.23) and indeed, it is a unique element

which minimizes the norm <%a°(u, u) in the convex set {u e F*; u= 1 q.e. on A} of

F*. Obviously eA is a quasi-supermedian function.

In the particular case when the closure A of A is compact, we can see by Theorem

1.6 and (1.23) that eA is a potential of a measure vA e Mi with SVA<=A. We call vA

the equilibrium distribution for the open set A. We have

(1.24) CapL4) = ^(J),

because there is a function w e F n C(X) which is equal to 1 on A and we get

Cap(A) = S%(eA,w) = vA(A).

Now consider any compact set K of Y and put Jt?£={u e F*; u-\ q.e. on K}.

££% is a nonempty convex set of F* and closed in norm Sa° according to Lemma

1.2. Therefore there is a unique element eK of jSf* which minimizes the quadratic

form S"°(u, u) in =5f*. We call eK the (a0-) equilibrium potential for the compactum K.

It is easy to see that eK is characterized as an element of F* which has the following

two properties :

(1.25) eK=\ q.e. on K.

(1.26) Sao(eK, f)^0 for any v e F* which is nonnegative q.e. on K.

By virtue of Theorem 1.6 and (1.26), we see that eK is a potential of a measure

vK e Mi with SvK<=-K. We call vK the equilibrium distribution for the compactum K.

Theorem 1.7. Let K be compact.

(i) The equilibrium potential eK is characterized as an element of F* possessing

properties (1.25) and

(1.27) £a°(eK, v)^0   for anyveF c\ C(X)

which is nonnegative on K.

(ii) The next equalities hold:

(1.28) Cap (K) - £"°(eK, eK) = vK(K).

(1.29) Cap (K) =  inf Sa°(u, u),

where %K={ueFn C(X); u = 1 on K}.

Proof, (i) is evident, since (1.27) is equivalent to (1.26) by virtue of Theorem

1.6. The second equality of (1.28) is immediate from (1.19) and (1.25).
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Let us prove the first equality of (1.28). For any e>0, there is an open set A^K

such that Cap (K) + e>Cap (A). A is in <?/. By (1.21), (1.22), (1.25) and (1.26), we

have ¿«o(eA, eK) = S"o(eK, eK) and 0 ^ Sa°(eA - eK, eA - eK) = Cap (A) - Sa°(eK, eK).

Hence we get the inequality Cap (A') ̂  $a<>(eK, eK). In order to obtain the converse

inequality, let us take a sequence of open sets An such that An is compact, An=>A~n + 1

and n«=i An=K. Let en and vn be the equilibrium potential and distribution for

An respectively. Since £a°(en-em, en-em) = Cap (An)-Cap (Am), n<m, en con-

verges to some eQeF* in <fao-norm. Since en=\ q.e. on An, e0 has the property

(1.25). On the other hand, vn concentrates on An and vn(An) = Cap (An)-¿Cap (A^

by (1.24). Therefore a subsequence of vn converges weakly to a measure v0 whose

support is in K. Now the equality $a°(en, v)=\zn v(x)vn(dx) leads us to $a°(e0, v)

=jK v(x)v0(dx), veFnC(X), which enables us to conclude that e0 has the

property (1.27). Thus, by statement (i), we see that e0 = eK and &"°(eK, eK)

= limn_ + „o *«•>(*», en) = limn^ + . Cap (An) ^ Cap (K).

Finally, we will show the equality (1.29). Put c = infue<gKSao(u,u) and take a

minimizing sequence une^K : lim„_ + 00 $a°(un, un) = c. It is easy to see that un

then forms a Cauchy sequence in norm Sa<¡ and the limit function u0 e F* does

not depend on the choice of the minimizing sequence un. Since un A 1 e ^K forms a

minimizing sequence as well, we have u0 = \ q.e. on K according to Lemma 1.2.

Further the property (1.27) for u0 can be derived from the inequality

Sao(un + £V, Un + ev) ^ &a°(u0, U0)

which holds for any e>0 and veF n C(X) such asu^OonX. Therefore, state-

ment (i) means that u0 = eK and c = $a»(u0, u0) = Cap (K). The proof of Theorem

1.7 is complete.

2. Transformation of underlying spaces. Consider two regular D-spaces

(X, m, F, ê) and (1, m, ÍF, S). The concepts corresponding to the latter will be

denoted with tilde ~.

Definition 2.1. A mapping q defined q.e. on Y taking values in Y is said to be a

quasi-homeomorphism between Y and X if, for any e>0, there exist closed sets

FcY, F^X such that Cap(X-F)<e, Cap~ (Ï-F)<e and the restriction of q

to F is a homeomorphism onto F. X and X are said to be quasi-homeomorphic if

there exists a quasi-homeomorphism between X and X.

It is clear that a is a quasi-homeomorphism if and only if there exist increasing

sequences of closed sets Fk<^X and Fk^X with hmk^ + xCap(X—Fk) = 0,

limfc^ + 00 Cap~ (it— Fk) = 0 such that q is one-to-one from X0 = U™= x Fk onto

Xo = \Jk=i Fk and its restriction to each Fk is a homeomorphism onto Fk. The

domain of definition of a quasi-homeomorphism q will always be considered to

be such an /vset Y0. q and a-1 are then Borel measurable transformations between

Y0 and Jt0. Hence the images by a and q1 of analytic sets are also analytic sets(8).

(8)Cf. [15, III, Til].
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A quasi-homeomorphism q is said to be capacity preserving if, for any analytic

set A<=X0,

(2.1) Cap(^) = Cap~(^))(9).

We will write as Y^ X if there exists a capacity preserving quasi-homeomorphism

between X and X.

Lemma 2.1. Consider the underlying spaces X, X, X of three regular D-spaces.

If Y£ X and X^ Ï, then X^ Ï.

Proof. Suppose that Y and Y (resp. Y and Y)are related by the map^ (resp. q2).

For any e > 0, there exist closed sets F<= X, Fx <=■ X, F2C X and F<= X satisfying the

following: Cap(Y-F)<e, Cap"" (X-Ê1)<e, Cap" (X-F2)<e, Cap~ (g-F)<e

and qy (resp. q2) is homeomorphic from F (resp. F2) onto 7\ (resp. F). Put F'

=qi1(F1 n F2) and F'=q2(Fy n F2). Then, q=q2qy is homeomorphic from F'

onto F' and

Cap(Y-F') ^ Cap(Y-F) + Cap(9r1(F1-F2))

= Cap (X-F) + Cap" (Fy-F2) < 2s.

In the same way, we have Cap ~ (X— F') < 2e. Thus, X and X are quasi-homeo-

morphic by the map q. Evidently q is capacity preserving.

According to Definition 4.1 of [10], two F-spaces (X, m, F, S) and (J?, m, #, i)

are called equivalent if there exists an algebraic isomorphism 0 from F n F°°(Y; m)

onto «# n ¿"(f; m) which preserves three kinds of metrics—F°°-norm, F2-norm

and <f-norm. Notice that we always regard the normed algebra F n Va(X; m)

(resp. ¡F r\ F°°(Y; m)) as the set of equivalence classes in the sense that two

functions of F n La>(X; m) (resp. # n ¿"(f; m)) are identified if they coincide

nz-a.e. (w-a.e.). The isomorphism 5> is viewed to transform each equivalence class

to an equivalence class.

The isomorphism <£ can be uniquely extended to three kinds of transformations :

a unitary map <by from (F, êa) onto (#, ia), a unitary map <5>2 from F§(Z) onto

Ll(ï) and an isometric isomorphism 3>3 from F5°(Y) onto L¡?(%), where Fo(X)

(resp. ¿"(.Y)) is the closure of F n F^ÍY) in the metric space F2(Y) (resp. F°°(Y)).

F§(X) and Lq(X) are defined in the same way. Suppose that two F-spaces are regular.

Then <¡>y is regarded as a unitary map from (F*, $a) onto LF*, Sa), two functions

being identified if they coincide q.e. Moreover we have in this case L%(X)=L2(X)

and L%(X)=>C(X) because F n C(Y) is dense in the metric space L2(X) (resp.

C(X)) (see (5.4) of [10]). We also have L20(X)=L2(X) and L?(X)=>C(X).

Now we will state the theorem of this section.

(9) This definition does not depend on the choice of set X0.
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Theorem 2.1. Assume that two regular D-spaces (X, m, F, ê) and (X, m, ¡F, S)

are equivalent under an isomorphism <J>. Then X^ X under a capacity preserving

quasi-homeomorphism q which has the following properties.

(q.l) q induces the extension of the given isomorphism í>: put

(2.2) (**h)0) = "(T1*),

where u is a function on X and x is a point of X for which w(a_1x) makes sense, then

<D* defines a transformation of functions which coincides on F* with Q>x.

(q.2) a is m-measure preserving: m(A) = m(q(A)) for any Borel set A<=X0.

Before proceeding to the proof of Theorem 2.1, we need several notions related

to a regular D-space (Y, m, F, ê). For a set A <= X, we put

(2.3) A' — {xe X; m(U(x) n A) ^ 0 for every neighbourhood U(x) of x}.

Obviously A' is closed. We say a closed set Fis m-regular if F=F'.

Consider any closed set F. Then F' is a closed set contained in F, m(F—F')=0

and Cap (X— F') = Cap (X—F). We can see this in the same manner as in the proof

of Theorem 1.2(h). Furthermore F' is necessarily m-regular because m(U(x) n F')

^m(U(x) n F)-m(F-F')>0 for any neighborhood U(x) of x e F'.

Denote by YA the compact space obtained from X by adjoining the point at

infinity A. If X is already compact, we regard A to be isolated. For each set A<=X,

we put AA = A u A and consider this to be a topological subspace of Xa. A set

fc x is closed in X if and only if FA is compact.

We further use the notion \u\A defined by |w|a = sup*s¿ \u(x)\ for a function u on

A<=X. Since m is everywhere dense, we have

(2.4) HI. = |«|x,       ueC(X).

Finally let {Fk} be an increasing sequence of m-regular closed sets of Y such that

Cap(X-Fk)-+0. Put C({Fk})={u; u is defined on Y0 = Uf=1 Fk, \u\Xo is finite,

the restriction of u to each Fk is continuous there and continuously extendable to

F£ by setting z/(A) = 0}. Obviously C(X)cC({Fk})cL'°(X; m). C({Fk}) is a Banach

algebra with norm |  |Xo. Further

(2.5) ML = l«Uo»       ueC({Fk}).

This is clear from m-ess-sup^^ \u(x)\ = \u\Fk,k=\,2,..., which is due to the

definition of m-regularity of Fk.

Each element u of C(Y) (resp. C({Fk})) will always be regarded as a function on

Xa (resp. Y0A) by setting u(A)=0.

Lemma 2.2. Let Q be any countable subcollection of F nL™. Then there exists

an increasing sequence of m-regular closed sets Fk with Cap (X—Fk) ->- 0 such that

each element of Q has a unique modification belonging to C({Fk}).
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Proof. For Q = {un}, uneFr\Lx, « = 1,2,..., we denote by u* a quasi-

continuous modification of un specified in Theorem 1.3. Thanks to the countable

subadditivity of the capacity, we can select an increasing sequence of closed sets

FfcC Y with Cap (X—Fk) ->■ 0 such that every function u* has the following prop-

erty: the restriction of u* to each Fk is continuous there. By virtue of the special

manner of the construction of u* stated in Theorem 1.3, we may further assume

that w* is continuously extendable from Fk to F,f by setting u*(a)=0. In order to

complete the proof of Lemma 2.2, we only have to replace Fk with its nt-regulariza-

tion F'k. After the replacement, we can see by (2.5) that u* becomes a unique element

of C({Fk}) which coincides with un «7-a.e.

Now we will prove Theorem 2.1 by means of the next three lemmas.

Lemma 2.3. Under the assumption of Theorem 2.1, there exists an increasing

sequence of m-regular closed sets Ffc<= X, k = 1, 2,..., with limfc_ + „ Cap (X— Fk) = 0

which satisfies the following. We put A^U™»! ^V

(i) There is an algebraic isomorphic and isometric transformation f from

(C(%), | \g) into (C({Fk}), | |Xo). f is just the restriction of the transform O^"1 to

C(X).

(ii) There is a mapping q from X£ into Xa such that q(A) = A and the restriction

ofq to each Fk is continuous there. For each x e YA, qx is characterized by

(2.6) u(qx) = (fü)(x),       ù e C(2).

Proof, (i) Since ,# n C( Y) is a dense subalgebra of C(Y), we can find a countable

subset íjc/n C(X) such that the algebra stf(£y) generated by Cy is dense in

C(%) with maximum norm. Applying Lemma 2.2 to <J>~1C1^F n F°°(Y; m),

we get an increasing sequence {Fk} of m-regular closed sets of X with Cap (X— Fk)

->0 such that, for every üeüy, <t>~1ü has a unique modification belonging to

C({Fk}). Denote this modification by yü. The map </< is extended to an algebraic

isomorphism on ¿/(c\) which is consistent because of

(2.7) \u\x=\fù\Xo,       ùerf(Cy),

where XQ = {Jk = 1Fk. The equality (2.7) follows from (2.4) and (2.5) as \ii\x

= ||w||m = ||(I)3"1o||oo = |'A«|x0. Now y is readily extended to a map from C(X) into

C({Fk}) satisfying conditions of the first statement of the present lemma.

(ii) For each x e Xq, lx(ü) = (t/>ü)(x), ü e C(Á'), is a character (a linear multiplica-

tive functional) on C(Y). Hence there exists a unique element qx e YA such as

lx(ü) = ü(qx), GeC(X). Since l^(ü) = 0, we have qA = A. Suppose that xn e F£

converges to x e Fk. Then ü(qxn) = (t/jü)(xn) converges to (yü)(x) = ü(qx), ü e C(X),

which implies qxn -> qx, n -> oo, and hence the restriction of 67 to F£ is continuous

there.

Lemma 2.4. 7n addition to the assumption of Theorem 2.1, we assume

(2.8) <$>(F n C(X)) <= & n C(X).
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Then all the conclusions of Theorem 2.1 are valid for the map q of Lemma 2.3.

Proof. By assumption (2.8), there exists an algebraic isomorphic and isometric

transformation <p from C(Y) into C()t): <p is just the restriction of the transform

<t>3 to C(X)^Lo(X). Therefore there is a continuous map y from Xa onto Xa

such that, for each x e Xa, yx is characterized by

(2.9) u(yx) = <pu(x),       u e C(X).

On the other hand, the map t/t of Lemma 2.3 is the inverse of <p in the sense that

t/i<pu(x) = u(x), x e X£, for every u e C(X). Indeed u e C(X) and t/xpu (= ft^1 ■ <P3w)

e C({Fk}) are in the same class of Lq(X) and so they are identical on Y£ by virtue

of (2.5). Hence, in view of (2.6) and (2.9), the map y is the inverse of a of Lemma

2.3:

(2.10) yqx = x,       xeX£.

In particular q(X0)<= X because y(A) = A. We put

(2.11) Fk=q(Fk),   A: =1,2,...,        Y0 =  \J Fk.
jc=i

Since the restriction of q to the compactum F^XA is a continuous map, its

image q(FA) = Fk is a compact set of J?A. Fk is therefore a closed subset of 3t.

From now on, let us restrict the domain of the definition of q (resp. y) to X0

(resp. Y) and study the detailed properties they possess.

First of all we know from (2.10) that q is one-to-one from X0 onto )tQ and its

restriction to each Fk is a homeomorphism onto Fk, the inverse being y.

We will prove that q is measure preserving between Y0 and Y0. It is enough to

show

(2.12) m(q-\K)) = m(K)

for any compact set K contained in some Fk. To see (2.12), choose a sequence

üne¡F n C(ft) converging to the indicator function of K everywhere on ft as well

as in L\X; m)-sense. This is possible because !F n C(Jt) is a lattice and a dense

subset 1 f C(X). Then if>ün(x) = ün(qx) converges to the indicator function of q~1(K)

c Fk for each x e X0 and hence m-a.e. on X. Since 1/1 on # n C(Jt) is a modification

of O"1 which preserves Z,2-norm, {</<ön} also forms a Cauchy sequence in L2(X; m)

and further

m(K) =   lim   (an,ün)x=   lim   (</<ön, #n)x = m(q-\K)),
n-* + 00 n-» + 00

getting (2.12).

Exactly in the same way as above, we can prove

(2.13) m(K) = m(y-\K))
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for any compact set F<= X. Moreover, combining (2.12) and (2.13), we come to the

conclusion that

(2.14) m(y-\Fk)-Fk) = 0,       k=\,2,....

Indeed, fix a number k and take any compact set Kcy'1(Fk) — Fk. Then put

K=y(K) and Ky=q(K). K and Ky are compact sets in Fk and Fk respectively.

Since y~1(K)^Ku Ky, we have

m(Ky) = m(q-l(Ky)) = m(K) = m(y-\K)) ^ m(K(J Ky)

from which follows m(K) = 0.

Next we have to show

(2.15) w(y-x(A)) = 0.

Observe that y_1(A) = {x£ Ï; yu(x) = 0 for every ue C(X)}. Notice further that,

since F n C(X) is dense in L2(X; m), the space <p(F n C(X)) ( = $>(F n C(X)))

is dense in L2(X;m) ( = <S>2(L2(X; m))). Hence for any compactum K<=y~x(A)

there is a sequence un e F n C(Y) such that <pwn converges w-a.e. on X to the

indicator function of K. But <pun(x) = 0, xe K, n= 1,2,..., and we have m(K) = 0

proving (2.15).

We are in a position to complete the proof of Lemma 2.4. Let us derive the

inequality

(2.16) Cap~ (K) ^ Cap (K),

where K is any compact subset of y~x(X) and K=y(K). Since y is continuous, K

is a compact set of X. Consider the sets c€K={ueF n C(X); u^ 1 on A'} and

lj={i¡£# n C(X); ü= 1 on K}, and observe the inclusion <p($>k)^k- Since <p

coincides with $ on F n C(Y) and i> preserves «^o-norm, we get from (1.29) that

Cap (K) =  inf é"o(u, u) =  inf Íao(9u, <pu)
ue<gK ue<gK

=    inf   Íao(ü, u) ^ Cap~ (K).
tte<f(.'eK)

We can now show that q is capacity preserving on X0. On account of Theorem

1.1(b) and (1.5), it suffices to prove for any compact subset K<^Fk with a fixed k,

(2.17) Cap (K) = Cap~ (K),

where K=q(K). Noting the inclusion

<£(*?*) c {u e F n C({FJ); «Moni}c ¿p*,

we have

Cap~ (A) =  inf /"o(fl, ü) =  inf i«o(0fl, #j)

=    inf   <?ao(w, „) £ Cap (F),

which combined with (2.16), proves (2.17).
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For the proof that a is a capacity preserving quasi-homeomorphism and measure

preserving, it only remains to show

(2.18) Cap~(Y-Y"0) = 0.

Choose any e > 0 and fix a number k such as Cap (X—Fk) < e. We are going to show

(2.19) Cap~ (X-Fk) < e.

Observe that X—Fk is an open set of Y consisting of three disjoint parts: ft—Fk

= y-1(X-Fk) + (y-1(Fk)-Fk) + y-1(A). By (2.14) and (2.15), m-measures of the

last two terms of the right-hand side are zero. y~1(X—Fk) is open and contained in

X—Fk. Hence by definition (0.1) of the capacity, we have

(2.20) Cap~ (X-Fk) = Cap~ (y-\X-Fk)).

On the other hand (2.16) and (1.5) mean the following:

Cap~ (y~\X-Fk)) = sup Cap~ (K) è   sup  Cap (K)
it K=y(K)

úCap(X-Fk)<e,

the supremum being taken for all compact set K^y~1(X— Fk). Thus we arrive at

(2.19).
It is easy to see that our q possesses the property (q.l) of Theorem 2.1 : (2.9) and

(2.10) mean, for u e F n C(X),

(2.21) <D*h = «DjM   q.e.,

which can be extended to F* by virtue of Lemma 1.2. We have completed the

proof of Lemma 2.4.

Lemma 2.5. Under the assumption of Theorem 2.1, there exists a regular D-space

(ít, m, &, <§) satisfying the following:

(1) Both the given regular D-spaces are equivalent to (ft, m, F, S) by isomor-

phisms, say, $' and <D". 0 is equal to (O")-1-«!)'.

(2) <b'(F n C(X))^F n C(X), <!>"(# n C(X))^F n C(X).

Proof. This lemma is an application of the regular representation theorem of [10].

First of all we will establish the inclusion

(2.22) ®3(C0(X)) c L\X; m),       03- \C0(X)) c L\X; m).

It is enough to prove the first. For any function u e C0(Y), there is a nonnegative

function veF n C(X) such asv~^\/\u\onX. Since <ï>3 is a lattice isomorph as well

as an algebraic isomorph and since <i>3v e tF^L2(ft; m), we have ^(VM)

eL\X; m) and |03i/| =((D3(y|w|))2 eLx(ï; m).

Now denote by L the closed subalgebra in Lô(X) generated by C(X) u O3 XC(X).

Then L satisfies the condition (C) of [10, §5]. (C.l) and (C.2) are clear. By (2.22),

L1(X;m)nL includes the algebra generated by C0(X) u 0>3 ̂Cq^)) which is
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dense in F, proving (C.3). Therefore we can take as (X, m, F, S) the regular

representation of (Y, m, F, ê) with respect to F (Theorem 2 of [10]). The algebraic

isomorphism O' associated with this representation is translating F n F onto

F n C(X) getting the first inclusion of (2). The second is also clear because

(X, m, F, S) is the regular representation of (X, m, F, S) with respect to L under

the isomorphism <!>'■ O"1, L being the closed subalgebra of Lq(X; m) generated by

<D(C(Y)) u C(Y).

Proof of Theorem 2.1. Lemmas 2.1, 2.4 and 2.5 admit us to conclude that

X^ X under a capacity preserving quasi-homeomorphism q possessing the property

(q.l). (q.2) is a consequence of (q.l) because $* is F2-norm preserving from F*

onto F*. The proof of Theorem 2.1 is complete.

If two F-spaces are equivalent and if one of them is regular, then it is said to be

a regular representation of the other.

Corollary to Theorem 2.1. The underlying space of a regular representation

of a given D-space is unique up to a capacity preserving quasi-homeomorphism.

3. Potential theory for symmetric Ray processes. Let (X, m,F,S)bea strongly

regular F-space and {Ra(x, E), a > 0} be its associated symmetric Ray resolvent

kernel on X. For a function u on X, put

(3.1) Rau(x) = i   Ra(x, dy)u(y),       xeX,

whenever the right-hand side makes sense. The images by Ra of Borel (universally)

measurable functions are also Borel (universally) measurable. By definition,

(F, S) is generated by {Ra(x, E), a>0}, that is, Ra(L2(X; m) n C(X))cF n C(X)

and Rau, u e L2(X; m) n C(X), satisfies the equation

(3.2) <S«(Rau, v) = (u, v)x

for every veF. Moreover F n C(Y) includes a set Cy attached to the Ray re-

solvent (Definition 2.5 of [10]).

3.1. Super median and excessive functions.

Lemma 3.1. For any nonnegative measurable function u ofL2(X; m), the function

Rau defined by (3.1) belongs to the space F* and satisfies the equation (3.2) for each

ce>0.

We will prove this lemma by making use of the following proposition:

Proposition. Suppose that a set H of real-valued functions on X satisfies the

next conditions.

(H.l) If fy,f2eH and Cyfy + c2f2~¡z0 with some constants Cy, c2, then Cyfy

+ c2f2eH.

(H.2) 7//n e 77 increases tofe L\X; m), thenfe 77.

(H.3) C0+(*)^77.

Then 77 contains all nonnegative Borel measurable functions of L2(X; m).
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For the proof of the Proposition, it is enough to take any open set E<= X with

compact closure and consider the class S of all Borel subsets of E whose indicator

functions are in H. S contains all open subsets of E. Since S is a A-system relative

to E, it contains all Borel subsets of E (Lemma 0.1 of [7]). The rest of the proof is

clear.

Proof of Lemma 3.1. Let H be the set of all nonnegative Borel measurable

functions u of L2(X; m) such that Rau belongs to F* and satisfies equation (3.2)

for each a>0. H satisfies (H.3) because L2(X; m) n C(X)<=//". Suppose that

une H increases to u e L\X; m). Then

Stt(Raun-Raum, Raun-Raum) = (un-um,Ra(un-um))x

è (l/a)(un-um,un-um)x^0,       n, m->- +co.

By virtue of Lemma 1.2, a subsequence of Raun e F* converges to a function F*

q.e. on X as well as in <fa-norm. However Raun(x) converges to Rau(x) for each

xe X. Therefore Rau belongs to F* and satisfies (3.2). Condition (H.2) is verified.

Thus we see by the proposition that Lemma 3.1 is valid for any nonnegative Borel

measurable function u of L2(X; m).

Finally let m be a nonnegative universally measurable function of L2(X; m).

There exist nonnegative Borel measurable functions ux and u2 such that u± ̂  u ̂  u2

on X and Wj = u2 m-a.e. on X. We have Rau^ ^ Rau ^ Rau2 on X. Further, by the

symmetry of Ra,

0 ^      (Rau2-Rau1)(x)m(dx) =      Ra\(x)(u2(x)-u1(x))m(dx)
J x Jx

g - Í  (u2(x)-Ul(x))m(dx) = 0,
a Jx

which implies Rau1 = Rau2 m-a.e. on Y. Since R(Xui and Rau2 are quasi-continuous,

we see by Theorem 1.2(h) that Rau1 = Rau = Rau2 q.e. on X and consequently

Rau e F*. The equation (3.2) for u can be derived from that for nx. The proof of

Lemma 3.1 is complete.

Definition 3.1. A function m on Y is said to be (a0-) supermedian if the following

two conditions are satisfied :

(3.3) it is nonnegative and universally measurable,

(3.4) ßRß + aou(x)eu(x),xeX, ß>0.

A supermedian function u is said to be (a0-) excessive if

(3.5) lim^ + 00 ßRs + aou(x) = u(x), xe X.

If m is nonnegative and universally measurable, then Raou is excessive.

If m is a nonnegative universally measurable function and lim^. ßRß+aou(x)

= ü(x) exists for every xe X, then the limit function « is said to be the regularization

of u. Every supermedian function has its regularization which turns out to be

excessive.
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Theorem 3.1. If a function u is nonnegative universally measurable, belongs to the

space F and has its regularization w, then it is a quasi-continuous modification of u.

In particular any excessive function belonging to F is an element of F*.

Proof. We see by Lemma 3.1, that Rau e F* and the operator Ra applied to u

is identical with F2-resolvent associated with (F, S). Hence by taking Lemma

2.1(iii) of [10] and Lemma 1.2 of the present paper into account, we see that a

subsequence of ßRe+aou converges q.e. on Y to a quasi-continuous modification of

u. Thus we get Theorem 3.1.

Remark 3.1. Every supermedian function belonging to the space F* is quasi-

supermedian in the sense of subsection 1.3. According to Theorem 3.1, every

excessive function belonging to the space F is quasi-supermedian.

3.2. The associated Ray process and the branch set. Put Y= Xvd where d is

adjoined to X as the point at infinity if X is noncompact and as an isolated point

if X is compact. Extend the kernel {Ra(x, E), a > 0} to X in the manner of Remark

2.2(h) of [10]. Then the extended kernel becomes a conservative Ray resolvent over

the compactum X to which the original set Cy is still attached if we extend each

function u of Cy to X by setting u(8) = 0.

Therefore the results of D. Ray [18, Theorem I, II and III] concerning resolvents

on compact spaces and their improvements by H. Kunita and T. Watanabe [13, §2]

can be brought over to our situation and we get the following conclusions.

The first conclusion is about the branch set. For each x e X, the measure

aRa(x, ■ ) on X converges to a unique substochastic measure p(x, ■ ) :

lim   aRJ(x) = \  p(x, dy)f(y)   for any/e C(X).

A point x e X is said to be a branch point if the measure p(x, ■) is not a unit dis-

tribution at x. The set Xb of all branch points of X is called the branch set. The

measure p(x, ■ ) is not supported by Xb for any x e X. X„ is characterized as follows :

(3.6) Xb =  (J \x;g(x) > f g(y)p(x,dy)\,
gec\  L J* J

where C[={g=fA c;fe Cy, c is any positive rational number}.

The second is about the transition function. There is a unique sub-Markov

transition function Pt(x, E) on X such that

(3.7) PJ(x) = £ Pt(x, dy)f(y),      fe C(X), xeX,

defines a right continuous function of t > 0 with

(3.8) ¡ + <°e-"tptf(x) dt = RJ(x),       « > 0.
Jo
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The third is the existence of a right continuous strong Markov process on X

with transition function Pt. This is called the Ray process associated with

{Ra(x, E), a > 0}. We can adopt as the Ray process the canonical realization

M=(W, J?, Px) of{Ra(x, E), a>0} in the following sense(10). IK consists of paths

w = w(t), te[0, +00), taking values in X such that w(t) is right continuous in

t e [0, + 00), has the left limit at any t e (0, + 00) and stays at 3 after its lifetime

£(co). The rth coordinate o)(t) of w is denoted by Xt(w). £(w) is defined by

inf {t^O, Xt(oj) = d}. J? is the o-field of subsets of W generated by {Ys e E} with

0^s^ t and Borel set 2s<= X. For each x, Px is a unique probability measure on

^° = Vtao^i0 which satisfies

Fx(Xt1 e Eu Y(2 6 E2,..., Xtn e En)

(3.9) r    r       c   _
•••      Ptl(x,dy1)Pti-tl(y1,dya)---Ptn-tn_l(yn-1,dyJ

JEí JE2 JE„

for 0<t1<t2< ■ ■ ■ <tn and Borel sets Ex, E2,..., En of X, where Pt(x, E)

=Pt(x, E n X) + (l -Pt(x, X))8lSi(E).

The Ray process M = ( W, 3S\, Px) has the following properties :

(M.l) PX(X0 e E) = p(x, E) for x e X and Borel £<= X. Define 38 to be the com-

pletion of &° with respect to the family of measures {Pp,(-)= (% p(dx)Px(-); p is a

finite measure on X} and 38t to be the completion of á?° in J1 with respect to the

same family(n).

(M.2) Strong Markov property with respect to the augmented fields {^¡}: for

any stopping time T, t>0 and Borel E^X, Px(XT+t e E\3ST)=Pt(XT, E), Px-

almost everywhere for each xe X. Here, Tis said to be a stopping time if {T^t}

e 38t for any / ̂  0 and J'y is defined as the collection of those sets Ae ää such that

{T^t}nheS$t for all t.

(M.3) Quasi-left continuity in the restricted.sense: if stopping times Tn increase

to T, then XT = limn_ + œ XTn P^-almost everywhere on the set

T < + 00,   lim   XTn e X— Xb>   for each xe X.
n— + 00 J

(M.4) Px(Xt e X- Xb for any / ^ 0) = 1, x e X.

For a set A <= X, we define the first entry time oA(w) and the hitting time o'A(w) by

a Aw) = inf {r > 0;XteA},(3.10) y J x   -    ,   t

°'a(«») = inf {t > 0; XteA}.

We define oA(w) or a'A(w) to be l(w) when the set in the braces is empty. If A is

analytic, then random times aA, o'A and T=inf{t>0;Xt_eA} are J'i-stopping

times. We can see this by [15, Chapter IV, T47 and 53].

(10) See [16, XIII] for the canonical realization of a Feller semigroup.

(") See R. M. Blumenthal and R. K. Getoor [2, p. 26] for the terminology.
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Theorem 3.2. The branch set Xb is polar in the sense o/§l.

Proof. By Lemma 4.1 of [10] and by the inclusion Cy<=F C\ C(X), we see that

F C\C(X) includes the countable collection C'y which appeared in (3.6). The members

of C'y will be numbered as gy, g2,..., gk,.... Put Y£n={x ; gk(x) - aRa+a¡¡gk(x) > l/n},

which includes the set {x; gk(x)> jxgk(y)p(x, dy) + \/n} for every a>0. Lemma

2.1(iii) of [10] and the estimate (1.6) lead us to

Cap (Xl„) ^ n2£a°(gk - aRtt + aogk, gk -ccRa + clogk)^0,       a -> + co.

For any e > 0, take £k > 0 such as 2^=™ Ek < e. For each k and n, choose a such that

the open set Y% = X£tn has the capacity less than ek/2n+1. Now Xb is included in

the open set {Jk (Jn Y¡¡ whose capacity is less than e, as was to be proved.

3.3. Symmetry of the process. Here we will observe how the behaviours of the

associated Ray process reflect the symmetry of our Ray resolvent. It is clear that

the symmetry of {Ra(x, E), a > 0} implies the symmetry of the associated transition

function {Pt(x, E), t>0}: for any t > 0 and nonnegative Borel measurable functions

/ and g on X

(3.11) Í Ptf(x)-g(x)m(dx) = Í f(x)-Ptg(x)m(dx) ̂  +co.
Jx J x

Lemma 3.2. For 0<ty< ■ ■ ■ <tn_y<tn and nonnegative Borel measurable func-

tions /o,/,.. .,/„-!,/„ on X,

f  Ex(f0(X0)fy(Xh)- - •/,.1(I(,.1)/»(It>(à)

(3.12) '

Ex(fn(X0)fn.y(Xt^tn_íy ■ -fy(Xtn.tl)f0(Xtn))m(dx).

Proof. Notice that Px(X0 = x)=l form-a.e. xe Ybecauseof (M.l) and Theorem

3.2 of the preceding subsection and Theorem 1.2(i). We will prove this lemma by

induction. Suppose that (3.12) holds for a given n. Then

j;
Ex(f0(X0)- - f„(Xtn)fn + y(Xtn+1))m(dx)

X

= £ Ex(f0(X0)- • ■(Jn-Pln + 1.tJn + y)(Xtn))m(dx)

= jxPtn + 1-tJn + 1(x)Ex(fn(X0)f^y(Xu_tn_1). • -MXJMdx)

which is equal to

¡xfn + i(x)Ptn+1-tn(E-(fn(X0)fn_y(Xtn_tn^). ■ -/0(Y(n)))(x)/n(c7x)

= £ Ex(fn + 1(X0)fn(Xtn+1_tny ■ .f0(XtnJ)m(dx)
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by virtue of (3.11) and the Markov property. Thus (3.12) holds for n+1, completing

the proof of Lemma 3.2.

Since d is not a branch point of M, (M.3) implies as in [2, (9.3)] that the left

limits of sample paths must lie in Y up to their lifetimes almost surely. In the follow-

ing we assume without loss of generality that every weW has the property that

Xt-(w) 6 X for every /< t,(w).

Fix a positive number c>0. Denote by S the set of all functions <p(t) (O^t^c)

taking values in X. The (time reversal) transformation q of the space S is defined

by qcp(t)=<p(c — t), O^r^c. For we Wsuch as Xc_(w) e X, we define vrw and vtw

e2by

(vrw)(t) = Xt(w),      0i/<c,        (vtw)(t) = X0(w),      t = 0,

= Xc.(w),   t = c; = Xt_(w),    0<t^c.

Finally we put for rc{Ic. e X},

(3.13) yr = T Vrr(12).

Denote by ^(0>c) the restriction to {Yc_ e Y} of the a-field \Jt<c3S°t.

Theorem 3.3(13). //rc^(0c), then yYe3êWtC) and

(3.14) f Px(yY)m(dx) = \ Px(V)m(dx) Ï +oo.
J x J x

Proof. It suffices to prove the theorem for the set

(3.15) T = {X0 e EQ, Xh eE,,..., Xtn_x e En.,, Yc_ e En},

where 0<tx<t2< ■ ■ ■ <tn_1<c and E0,..., Enare Borel subsets of X. Clearly

yr = {X0 e En, Y(c_in_l)_ £.£„_!,..., Y(c_(l)_ e Eu Yc_ e E0}.

By Lemma 3.2 we have for sufficiently small £>0 and 8>0,

jx Ex(f0(X0)f1(Xh+e)- ■ ■fn-iW^JMX^MmVx)

= ^^(/„(Jro)/»-!^-^.,-«-,). • ■f1(Xo-h-s-o)fo{Xc.ô))m(dx).

Assume that/0,/i,... ,/„ e C0+(Y) and let e and S tend to zero. Then after a routine

procedure we get the equality (3.14) for T of (3.15).

(12) The operator y was introduced by E. B. Dynkin [7, IV, §4] in connection with the

multidimensional Brownian motion. The present author used a similar notion in the analysis

of a reflecting Brownian motion [8]. However the notion y defined in [8, p. 206] was insufficient

for the situation there and he likes to correct it here: it must be replaced by the present definition

(3.13).
(13) Cf. Theorem 4.12 of [7].
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Here we give two applications of Theorem 3.3.

According to the proof of IV, T52 of P. A. Meyer [15] we observe that, for any

Borel set Be X and ?>0, the set {o'B<t} is in the completion of the a-field âS°

relative to Pp, p being an arbitrary probability measure on X. This fact will be used

in the proof of the following theorem :

Theorem 3.4(14). For q.e. x e X,

(3.16) Px(Xt -eX-Xb for every t e (0, £)) = 1.

Corollary. 7/Fn are increasing stopping times with limit T, then

(3.17) Px( lim   XTn = XT, T < à = PX(T < Q
\n-> + oo /

for q.e. xeX.

This corollary is immediate from Theorem 3.4 and property (M.3). Here, the

exceptional points x e X do not depend on the choice of {Fn}.

Proof of Theorem 3.4. Put fc = {o'Xb<c, Yc_ e X} and AC = {Y¡_ e Xb for some

t e (0, c), Yc_ e X}. Xb is a Borel set (actually an F^-set) and F*(rc)=0, x e X,

according to (M.4). Hence there exists a set F'ceBi0¡c) such that rccré and

¡xPx(T'c)m(dx) = 0. Since Ac = yYccyY'c, Theorem 3.3 implies that F*(Ac) = 0 for

m-a.e. xe X. Notice that A = {Y¡_ e Xb, for some t e (0, £)} = UceQ ^-c, Q being the

set of all positive rational numbers. We have therefore Px(A) = 0 for m-a.e. xe X.

On the other hand u(x)=Px(A) is an excessive function : u is universally measurable

and

exp ( — a0s)Psu(x) = exp ( — <x0s)Px{Xt_ e Xb for some t e (s, £)} t u(x),   s | 0.

Thus u(x) = 0 for q.e. x e Yin view of Theorem 3.1 and Theorem 1.2.

Finally for an open or a closed set A c X we define

(3.18) P?(x, E) = Px(Xt eE,t < *A),       t ä 0.

{P°(x, E), t ̂  0} is a sub-Markov transition probability on X. Since P°f(x)

= Sx P°(x, dy)f(y) is right continuous in t^Oforfe C0(X), P°(x, E) is measurable

in (t, x) e[0, + oo) x Y for each fixed Borel set F<= X. Put

(3.19) R°(x, E)=[   C°e-atP?(x,E)dt.

{R°(x, E), a > 0} is a sub-Markov resolvent on X. Obviously Fg/(x)=Jx R°(x, dy)f(y)

satisfies

(3.20) Rlf(x) = Ex{J\~"f(Xt) dt),       xeX,

iff is Borel measurable and R°af(x) is well defined.

(14) Cf. Lemma 3.7(iv) of [8].
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Theorem 3.5(15). For an open or a closed set A<=X, the transition probability

and the resolvent kernel defined by (3.18) and (3.19) are m-symmetric:

(3.21) f f(x)-Pt°g(x)m(dx) = f P?f(x)-g(x)m(dx),       t ^ 0,
Jx Jx

(3.22) f f(x).R°ag(x)m(dx) = f R°J(x)-g(x)m(dx),       a > 0,
Jx Jx

forfgeC+(X).

Proof. (3.22) is a direct consequence of (3.21). Let us show (3.21) when A is an

open set. Fix a positive number c and Borel sets F, G<^X. Consider the set

r = {Y0 e F, c ̂  aA, Xc _ e G}. Since A is open, Y e ^0,o and

yr = {Y0eG,c^ <7A, Yc_eF}.

Noting that Px(X0=x)= 1 m-a.e., we get by Theorem 3.3,

£ F,(YC_ e6,cS aA)nt(c/x) = £ F*(YC_ 6 F, c ^ ajmirfx)

from which follows the equality

f f(x)Ex(g(Xc_), c ^ oA)m(dx) = f  Ex(f(Xc_), c ^ ajg^m^)
Jx J X

for/ g e C0(X). By putting c = t+\/n and letting n tend to infinity in this equality,

we obtain (3.21).

Next suppose that A is closed and choose a sequence of open sets An such as

An=>An + 1=>A and An j A. By virtue of the quasi-left continuity (Corollary to

Theorem 3.4)

(3.23) PJfAn \ oA) = I,       q.e. x eX.

Hence (3.21) for the closed set A follows from those for open sets An.

3.4. Probabilistic decomposition of(F*, S"). Let A be an open or a closed set of

X. We put

Ha(x, E) = Ex(e - a°A ; XaA e E),

H'a(x,E) = Ex(e-"°'A;Xa'AeE).

In this subsection we will consider the kernels 77a and 77a on X as well as the

localized resolvent R° defined by (3.19) and reveal the roles they play in the strongly

regular F-space (F, S).

Any Borel measurable function on X is extended to X= Yu d by defining its

value at 8 to be zero. It holds under this convention that Haf(x) = Ex(e~a<,Af(XaA))

and Raf(x) = Ex(jl e~atf(Xt) dt) for all xe Y when / is Borel measurable and

(15) Cf. Lemma 14.1 of [7].
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H<xf(x) = }x Ha(x, dy)f(y) and Raf(x) are well defined for x e X. H'af can be ex-

pressed in a similar way. If a Borel measurable function / is excessive, then HaJ

is supermedian and H'aJ is excessive. When A is open, aA = a'A and Ha = H'a.

Lemma 3.3. If fis a bounded Borel measurable function on X, then for each xe X

(3.25) RJ(x) = R°J(x) + HaRaf(x),       a > 0,

(3.26) HJ(x) - Hef(x) + (a- ß)R°Hßf(x) = 0,       ß > 0.

Proof. We can use the strong Markov property (M.2) to obtain the formula

(3.25). (3.26) is a result of the Markov property.

By virtue of Theorem 3.5, the kernel {R°(x, E), a>0} is an m-symmetric sub-

Markov resolvent kernel on X. Let (Fm, Sm) be the Dirichlet space generated by

{R°(x, E), a>0} : R°(L2(X; m) n C(X))<=Fm and the function R°affeL2(X; m)

n C(X), satisfies

(3.27) S^-"(R°af, v) = (/ v)x   for every v e Fm.

Theorem 3.6. Fm<=F and£{0) is the restriction of i to Fm:

(3.28) Sm(u, v) = S(u, v),       u,ve Fm.

Proof. Denote by S3 the set of all bounded Borel measurable functions on X.

Since R°ao(L2 n C) is dense in Fm with metric £m-ao, it suffices to prove the

following :

For   every feSônL2,   R°aJeF   and
(3.29) °

S«°(R%J, R°J) = (f, R°0f)x.

We can observe by Lemma 1 of [9] that u e L2(X; m) is an element of F if and only

if lims_ + c0 ß(u-ßRe+aou, u)x is finite and in this case the limit is equal to Sa°(u, u).

Thus the relation (3.29) is equivalent to

(3.30) lim  ß(u-ßRe+aou,u)x = (fu)x
ß-> +00

where u=R°J,fe S3 nL2.

Let us show (3.30) for an open set A. By (3.25) and the resolvent equation for R°,

ß(u-ßRe + aou, u)x = ß(R°e + aJ, u)x-ß2(Hß + aoRß + aou, u)x.

Since i?2 is symmetric and its L2-norm is no greater than 1/ce,

ß(Ri+«J, u)x = (f RIJ- R°ß+aof)x -► (/, u)x,       ß -> + CO.

We have to prove

(3.31) ß2(Hß+aoRß+aou,u)x^0,       /S->+co.

We may assume without loss of generality that / is nonnegative. By the symmetry

of R%0 and the formula (3.26), the left-hand side of (3.31) is no greater than
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ß(HaoRB + aou,f)x. Notice that u is the difference of two excessive functions:

u=RaJ-Haa(RaJ). Hence lim^ + 00 ß(HaoRB+ctou,f)x = (Haou,f)x. However, since

°Aiß,/») = 0 for «6{ai4<0, we have HaoHao(Raof)(x) = Hao(RaJ)(x), xeX,

which means Haju(x) = 0, xeX, yielding (3.31). Here 8 denotes the usual trans-

lation operator on IP (cf. [16]).

Thus (3.30) and hence (3.29) are established when A is open. (3.29) for a closed

set A is now to be proved. Find open sets An such that An=>An + 1 and An j A.

Denote by nR° and "77a kernels corresponding to An. Put un = nR°0f for a non-

negative/e 93 nL2. Then owing to (3.20) and (3.23), w„ increases to F°0/q.e. as

n -> +00. Now observe the following equality: for m fin,

ß(un-ßRB + aoun,um)x

= ß(mR°B + aof um)x+ß(mHB + ao nR°B + aJ, um)x-ß2(nHB + aoRB + aoun, um)x.

Here we used the identity nR°Bf=mR°Bf+mHB nR°Bf. Let ß tend to infinity. Then the

first term of the right-hand side of the equality tends to (/ um)x as was proved

earlier. The second term is, in view of the symmetry of mR°0 and (3.26), no greater

than (mHa<¡ nRB+aof,f)x, which decreases to zero. The absolute value of the last

term is no greater than ß2(nHB+aoRB+Cioun, un)x, which also tends to zero by (3.31).

What we have proved is £"°(un, um) = (/ um)x, m fin, which in turn tells us that un

converges to R°0fin «J^o-norm, arriving at (3.29) for the closed set A. The proof of

Theorem 3.6 is complete.

On account of Theorem 3.6, Fm is a closed subspace of F with metric $a°.

Let us denote by J^ao the orthogonal complement of Fi0) in the Hubert space

(F, S"o).

Lemma 3.4(16). If u is either an element of F n C(X) or of the form RaQh,

he Sa n L2, then HaQu is quasi-continuous and

(3.32) Haou = P*eaau,

Pjtao being the projection on the space ¿Faa.

Proof. Let us first show this for u = Raoh, h e 33 n L2. By (3.25), (3.29) and Lemma

3.1, we have

£"°(HaoRaoh, R°aog) = S"°(RaQh-R°aoh, R°aog)

= (A, R°aog)x-(h, R°aog)x = 0

for every g e 93 n F2. This means that the formula (3.25) represents the direct

decomposition of u = Raoh into the sum of elements of Fm and J^ao, getting (3.32).

The quasi-continuity of 77ao« is clear if A is open, because it is then the difference

(ie) We have further Haou = Ha¿u, q.e. for u e SP n C(Y). Since HaoRaouis the regulariza-

tion of the quasi-continuous function HaoRaou, these two are equal q.e. From this we can get

the desired equality.
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of excessive functions Hao(Raoh+) and Hao(RaJ%~) of F to which we can apply

Theorem 3.1. Coming to the case when A is closed, consider open sets An and

corresponding kernels nR%0 and nHao just as in the second part of the proof of

Theorem 3.6. Then the quasi-continuous functions nHctQu = u—nR0aoh converge to

u—R°Qh = Haou q.e. on X as well as in <fao-norm. Hence the latter must be quasi-

continuous (Lemma 1.2).

Next take any ueF n C(X). Since, for each j8>0, Rßu is equal to RaJi with

some h e 33 n L2, we have Hao(ßRßu)=Px'ao(ßRßu).

By Lemma 2.1 of [10], ßRßu -> u and hence

F^ao(ßRßU) -*■ P*aou,       ß -> + co,

with respect to S"o-norm. On the other hand,

lim  Haa(ßRßu)(x) =   lim  Ex(exp(-aQaA)ßGßu(XaA); XaA$ Xb)
0-> + oo u Ä-. + 00

= .r^íexp (-a0aA)u(XaA)) = Haou(x),       xeX,

by virtue of property (M.4). Thus we get (3.32). Haou is quasi-continuous because

it is the limit of quasi-continuous functions Hao(ßRßu) in «fo-norrn as well as in

the pointwise sense.

Lemma 3.5. Suppose that A is compact. Any quasi-supermedian function belonging

to the space F?a¡¡ is a potential of a measure whose support is concentrated on A.

Proof. Assume that u is quasi-supermedian and u e J^aQ. Then u e F* and we

have by Lemma 1.3 that <%tt<>(u, v)^0 for all v e F* such as v^O q.e. Let v be any

function of F n C(X) which is nonnegative on A. By Lemma 3.4, <%a°(u, v)

=Sao(u, Haov) which is nonnegative because Haov(x)^0, xeX. According to

Theorem 1.6, we arrive at Lemma 3.5.

The next two are the main theorems of this subsection.

Theorem 3.7(17). Put

(3.33) FX_A = {ueF*;u = Oq.e. on A}.

Then F*:_A = (Fm)*, where (Fm)* denotes the set of all quasi-continuous modifica-

tions of functions in the space Fm.

Proof. On account of Theorem 3.6 and Lemma 1.2, (Fim)* and FX_A are closed

subspaces of the Hubert space (F*, £a°). IffeL2 n C, then R°J(x)=0 on A- Xb

and R°aJ= RlJ- Hao(RaJ) is quasi-continuous in view of Lemma 3.4. Hence

F*_A contains R°ao(L2 n C) which is dense in (Fm)*. Thus, FX_A=>(F(0>)*.

C) We can assert even more: for any nonnegative universally measurable function

feL2(X; m), ^/belongs to the space &t-A and the equation 8"(Rlf, v) = (f, v)x holds for

every v e &*-A. In view of the proof of Theorem 3.7, this is true for fe V n C(Y). Now the

general case can be obtained exactly in the same manner as in the proof of Lemma 3.1.
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Let us prove the converse inclusion. Denote by ^f*0 the space of all quasi-

continuous modifications of functions of the 3^aa. It suffices to show that 2?*0—the

orthogonal complement of (Fm)* in (F*,S"o)—is orthogonal to FX_A. Since

HaoRao(L2 n C) is in 3*i?*0 by Lemma 3.4 and dense there, it is enough to prove

(3.34) S"o(HaoRaJ, v) = 0,      feL2nC + ,veF*_A.

Assume first that A is compact. Since HaoRaof is supermedian, it is quasi-super-

median (Remark 3.1) and is a potential of a measure p e M0+ with Sp*=A by virtue

of Lemma 3.5. Owing to Theorem 1.5, the left-hand side of (3.34) is equal to

¡Av(x)p(dx)=0.

In the case when A is open or closed, we can find compact sets An such that

An f A. Denote by n77ao the kernel corresponding to An. It is easy to see that

nHaoRaof then converges to HaoRaof increasingly and in <?ao-norm. lfveF*_A,

then veFx_An and the left-hand side of (3.34) is equal to limn Sa°(nHaoRaJ, v)=0.

The proof of Theorem 3.7 is complete.

Owing to this theorem, we get an important conclusion about a local property

of the space ^*0: Any function in 3^*0 is determined by its restriction to the set A.

In fact the space (F*, ea¿) is expressed as a direct sum F* = F* _ A_@ Jt*0 and

so any function of 'FP*a which vanishes q.e. on A should vanish q.e. on X. Keeping

this in mind let us prove the next theorem.

Theorem 3.8. Suppose that A is a compact set or an open set belonging to the

class °U. Then we have for q.e. xe X,

(3.35) eA(x) = Ex(exp (-*0<ja); aA < Q = Ex(exp (-a0a'A); o'A < 0.

Here eA denotes the equilibrium potential of A defined in subsection 1.5.

Proof. Suppose that A is compact. By (1.25) and (1.26), eA is an element of

Jt*0 which is equal to 1 q.e. on A. The function u(x) = Ex(exp (-a0aA); aA<Q has

the same property. Indeed u(x) = 1, x e A — Xb, and hence q.e. on A by Theorem 3.2.

u can be expressed as Haof(x) with any function/e F n C(X) such as/(x)= 1 for

xe A. Hence u e 3t*0 by Lemma 3.4. Thus we get the first equality of (3.35). The

third term of (3.35) is the regularization of the second. Hence they are equal q.e.

on .Yin view of Theorem 3.1.

When A is an open set of the class %, (3.35) is also obtained by approximating

A with a sequence of compact sets increasing to A and by noting (1.22) and (1.23).

3.5. Regularity of quasi-continuous transformations along sample paths. Let us

begin with a lemma which states a probabilistic feature of polar sets.

Lemma 3.6. Let Abe a Borel polar set and {An} be a decreasing sequence of open

sets such that An=>A and limn_ + „o Cap (An) = 0. Then the equalities

(3.36) Px(Xt or Xt- eAfor some t ^ 0) = 0,
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(3.37) Fxi^A^ = I for some nor   lim   aAit = +oo) = 1
\ n-> + 00 /

hold for q.e. xe X.

Proof. (3.36) is a consequence of (3.37). In order to show (3.37), let us put

un(x) = Ex(exp ( - a0aAn) ; aAn < £). By Theorem 3.8 and (1.21) we have £ao(un,un)

= Cap (An) which decreases to zero by the assumption. Since un is quasi-continuous,

Lemma 1.2 implies that limn^ + „ un(x) = 0 q.e. on X. We arrive at (3.37) on account

of the identity

lim   un(x) = Ex(exp(-a0 lim a A; f) {aA   < (A.
n-> + 00 \\ n /     n=l /

Since the branch set Xb is polar (Theorem 3.2), we can apply the above lemma

to Xb to get

(3.38) Px(Xt. e Xb for some t ^ 0) = 0,

for q.e. xe X. Notice that (3.38) is stronger than (3.16). We will further strengthen

the assertions of Lemma 3.6 as follows:

Theorem 3.9. Under the same assumption as in Lemma 3.6, there exists a Borel

polar set B including A such that the equalities (3.37) and

(3.39) Px(Xt or Y(_ e B for some t ^ 0) = 0

are simultaneously valid for every x e X— B.

Proof. By virtue of Lemma 3.6, we see that (3.36) and (3.37) are valid for every

xe Xexcept on a polar set N-¡_. By replacing N1 with a G^-polar set including it if

necessary, we may assume that A'1 is a Borel set. Apply again Lemma 3.6 to the

Borel polar set AuN^ We get

(3.40) Px(Xt or Xt_ e A u Nx for some t ^ 0) = 0

for every xe Xexcept on a Borel polar set N2. Repeating the same argument, we

have a sequence {Nk} of Borel polar sets such that for each k the equality

(3.41) Px(Xt or Xt. e A u Ny u • • • u'Nk for some r ^ 0) = 0

holds for every x e X-Nk+1. Put B=A u ((JÍA Nk). B is polar by Theorem 1.1.

If x e X-B, then (3.41) is valid for every k. Letting k tend to infinity, we get (3.39).

Turning to the main task of this subsection, let us consider a quasi-continuous

function q on X taking values in some nice topological space. We fix a decreasing

sequence {An} of open subsets of X such that q is continuous on each X-An and
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limn^ + 00 Cap (An) = 0. By virtue of Theorem 3.9, there is a Borel polar set B such

that 5=> n»+=" An and equalities (3.37) and (3.39) hold for every xeX-B: if we put

(3.42)

W^ = {weW; Xt(w) and Xt_(w) eX-B for all t Z 0},

W12 = \ w e W; oAn(w) = l(w) for some « or   lim  o-A([w) = +oo L
I, n-» + 00 J

then

(3.43) Px(W1) = l,       xeX-B,

where IFi denotes the set Wu n W12.

Now let us put

(3.44) 381 = <%■ Wu   3S\ = 3St-W^,       t à 0,

and denote the restrictions of measures P*, x e X— B, to á?1 by P* again. We also

maintain the notion Xt to express its restriction to W^. It is then clear that the

process M1 = {W1, SS1, 38\, Xt, Px} is a right continuous Markov process with state

space X—B.

Theorem 3.10. (i) The process M1 is a strong Markov process with state space

X— B. The resolvent kernel of M1 is the restriction to X— B of the Ray resolvent

kernel {Ra(x, E), a > 0} of the original process M. Further

(3.45) Ra(x, B) = 0,       xeX- B.

(ii) The a-field Se1 (resp. SS}) is the completion of âS°- Wx (resp. âêf- W-, in âS1)

with respect to the family of measures

Fu() — p(dx)Px(-); p is a finite measure on X—B >.

(iii) Assume an additional condition that

(3.46) Xb ci  ft An.
n = l

Then the process Mx is quasi-left continuous on [0, + oo) : if {3S}}-stopping times

Tn increase to T, then limn_ + 0O XTn — XT Px-a.e. on {T< +00} for every x e X—B.

(iv) Assume an additional condition that

(3.47) q can be extended to X— ("V^i An in such a way that the restriction ofq to

X—An is continuous therefor every n.

Then, for each we W, q(Xt(w)) andq(Xt_(w)) are well definedand Yt(w)=q(Xt(w))

is right continuous in t^0. Yt(w) has the left limit at every t>0 with

(3.48) Tt_H = q(Xt.(w)).

(v) Assume that both the conditions (3.46) and (3.47) are valid. If {3S\}-stopping

times Tn increase to T, then limn-, + 0O YTn= YT Px-a.e. on {T< +00} for every

xeft-B.
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Proof, (i) The latter assertion together with (3.45) is evident. My is now a

Markov process on X— B with right continuous sample paths and right continuous

a-fields {3S\}. Obviously the right continuity of Raf fe C(X), along the sample

paths is preserved under the transfer from M to My. Thus, My is a strong Markov

process on X—B.

(ii) Take a set A e a?1 and consider its property with respect to the original

process M. Property (M.l) implies that

F*(A) ^ Px(Wyy-{Y0 = x}) = 0   ifxeB-Xb

and

Px(A)=i        p(x, dy)Py(A) = f       p(x, dy)Py(A)   ifxeY,.
JX-Xb JX-B

Therefore, for any finite measure p on X, F(1(A)=F„1(A) with a finite measure py

supported by the set X-B. This means statement (ii).

(iii) By the hypothesis (3.46),

Px(Xt- e Xb for some t ^ 0) = 0,       x e X-B.

Combining this with statement (i), we can prove the quasi-left continuity of My

on [0, +oo) exactly in the same way as in [13, §2] (see [16, XIV, T15] for more

information).

(iv) Fix an coeWy. If £(co)< +oo, then oAJoi) = £(cu) for some n and hence

Yt(cu) and Y¡_(cu) belong to the closed set Y—An for all t-0. Hence we get the

desired properties of Yt by the hypothesis (3.47). If £(cu)= +co, then for any i^O

there exists an An such that oAn(w) > t. Hence we get the desired conclusion in this

case also.

(v) By the preceding two statements (iii) and (iv), we have limn_ + 00 YTn

=c7(lim„_ + 00 XTn)=q(XT)= YTPx-a.e. on {F< +co} for every x e X-B. The proof

of Theorem 3.10 is complete.

Remark 3.2. Here we give some remarks on the hypotheses (3.46) and (3.47) in

Theorem 3.10. We can assume (3.46) without loss of generality because the branch

set Xb is polar. Assertions (iv) and (v) are still valid up to the lifetime £ without

assuming (3.47). Condition (3.47) is satisfied by two important cases in which we

have interest. Theorem 1.3 implies that each numerical function ueF has a

modification ü which is not only quasi-continuous but also satisfies (3.47) by

setting ö(0)=0. In case that q is a quasi-homeomorphism from Y to the underlying

space X' of some regular F-space, q satisfies (3.47) if we put q(8) = 8'. We can see

this immediately from the definition of quasi-homeomorphism.

Theorem 3.10 will be the key to prove Theorem 4.1. Here we state another appli-

cation of Theorem 3.10. Consider a function u defined q.e. on X. Let us agree to

say u to be Borel (resp. universally) measurable if there is a Borel (resp. universally)

measurable function ö on X such as u = ü q.e. We call u finely continuous q.e. if
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there exists a nearly Borel polar set B satisfying the following: 5=>Xb, X—B is a

fine open set and u is finely continuous at each point x e X— B, fine topology being

defined in terms of M(ia). For instance take a quasi-continuous function u (not

necessarily real valued). Then u is clearly Borel measurable in the above sense.

Furthermore from the first and second remarks in Remark 3.2, we can see that u

is finely continuous q.e. Thus we get the first part of the following theorem.

Theorem 3.11. (i) Every quasi-continuous function on X is finely continuous q.e.

and Borel measurable.

(ii) Conversely if a function u of F is finely continuous q.e. and Borel (or more

generally, universally) measurable, then u is quasi-continuous.

Suppose that a function u e F is finely continuous q.e. and universally measur-

able. Denote by wa quasi-continuous modification of u. Then by the first part of

Theorem 3.11, the m-negligible function v = u — ü is finely continuous q.e. Therefore

the second part of Theorem 3.1.1 follows from the next lemma which is a counter-

part of Theorem 1.2(h).

Lemma 3.7. If a function v is finely continuous q.e. and universally measurable

and ifv = 0 m-a.e., then v — Oq.e.

Proof. By making use of Theorem 3.9, we see that there is a Borel polar set

5=> Xb such that X—B is finely open, v is finely continuous at each point of X—B

and v is universally measurable on X—B. The set C={x e X—B; v(x)=¿0} is then

a fine open and universally measurable set which is consequently contained in the

set D={xe X—B; Rao(x, C)>0}. Since C is m-negligible and Rao is symmetric,

D is m-negligible. Hence D becomes polar by virtue of Theorem 1.2(ii) and Lemma

3.1. v now vanishes except on the polar set BvC.

3.6. Polar sets and absolute continuity conditions. The first half of the preceding

subsection gives us probabilistic interpretations of polar sets. Here we will com-

plete them.

We say a Borel set Tez x is M-invariant if the equality

P*(Y; and Y(_ e fu d for all f ^ 0) = 1

holds for every xe Y.

Theorem 3.12. The following statements are equivalent to each other:

.(i) A Borel set A is polar.

(ii) For m-almost all xe X,

(3.49) Px(a'A <t) = 0.

(iii) There exists an m-negligible Borel set B including A such that X—B is

M-invariant.

(18) See [2, II] or [16, XV].
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Proof, (i) implies (iii) according to Theorem 3.9. Statement (iii) means (ii).

Suppose that statement (ii) is valid. Then Fx(exp (—a0o'K); a'K<Q=0 m-a.e., for

any compact set K^A. We have Cap (K) = 0 by Theorem 3.8 and (1.21). Owing to

(1.5) we arrive at the statement (i).

It should be noticed that we cannot generally strengthen the above statement (ii)

by replacing "m-almost all x" with "all x". The simplest example illustrative of

this point is the case when F=L2(X) and S = 0. In this case each nj-negligible set

is polar but every point of Y is trap with respect to the corresponding Ray process.

The next theorem will concern the conditions to eliminate such irregular situations.

Suppose that a Borel set A is of potential zero: Ra(x, A)=0 for all x g A and

a>0. Then m(A) = 0. Indeed symmetry of the kernel implies a (A Ra\(x)m(dx)

= a Jx Ra(x, A)m(dx)=0. Letting a tend to infinity, we get m(A)=m(A — Xb)=0.

Theorem 3.13. The following conditions are mutually equivalent:

(i) A Borel set A is polar if and only if (3.49) is satisfied for all xe X.

(ii) m is a reference measure of M: a set A is of potential zero if and only if

m(A) = 0.

(iii) Ra(x, ■ ) is absolutely continuous with respect to m for each xe X and a > 0.

Proof. It suffices to show the equivalence of (i) and (iii). Suppose that condition

(iii) is satisfied and consider a Borel polar set A. By Theorem 3.12, we have u(x)

=Px(o'A<Q=0, m-a.e., and consequently M(x) = limj3_ + 00 ßRßu(x)=0 for every

x e Y. Thus condition (i) is valid. Conversely assume that (i) is met. Let A be an

m-negligible Borel set. Symmetry of the kernel and Lemma 3.1 then imply that

Ra(x, A)=0 holds for every x e Y except on a polar set, which is of potential zero

under condition (i). Thus we have Ra(x, A) = \imB^ + «, ßRB + aRa(x, A) = 0 for every

xe Xarriving at condition (iii).

Remark 3.3. Suppose that condition (iii) of Theorem 3.13 is satisfied. Theorem

3.13 then tells us that we can adopt the set (H"= i -¿n) u -*& as the set B in Theorems

3.9 and 3.10.

4. Regular Dirichlet spaces and strong Markov processes.    Let (X, m, F, <?) be a

regular F-space. We adjoin a point 8 to X as the point at infinity if Y is noncompact

and as an isolated point if X is compact.

4.1. Construction of a strong Markov process—proof of Theorem 4.1. This sub-

section is devoted to the proof of Theorem 4.1 mentioned in the beginning of the

present paper.

(I) By Theorem 3 of [10], there exists a strongly regular F-space (Y", m, &, S)

which is equivalent to (X, m, F, S). Every notion related to this strongly regular

F-space will be written with tilde ~. We already have several related notions

specified in §3—the Ray resolvent {Ra(x, Ë), a > 0}, the branch set %b, the transition

function {Pt(x, Ë), t>0} and the Ray process (W, ä>t,Px) on the extended space

X\jI.
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By Theorem 2.1, there exists a capacity preserving quasi-homeomorphism a from

X to X: there are decreasing sequences of open sets Ak^ X and Äk<= X such that

lim  Cap (Ak) = 0, lim  Cap~ (Äk) = 0
k-* + oo k-> + oo

and the restriction of q to X— Ak is homeomorphic onto it— Äk for each k. The

equality (2.1) holds for every analytic set A<= X- Ç\£=i Ak. If we extend q by setting

q(8)=8, then according to Remark 3.2,

(4.1) the restriction of a to lu d — Ak is a homeomorphism onto A*u § — Äk.

Moreover we can assume without loss of generality that

(4.2) itb c  H Àk,
fc=i

because we can replace Äk (resp. Ak) with

Äk u Dfc = lfc u (iJfc- n^»)    (resp. A u a"1^- f^ 4.))

if necessary. Here {Dk} is a decreasing sequence of open sets of it such that Dfc=> Yb

and limfc^. + 0<) Cap~ (Dfc) = 0.

By Theorem 3.9, there exists a Borel polar set B^> (\k=i Äk which satisfies the

following : if we put

J^n = {¿ief; Y((cS) and Y(_(cD) e JPu ê-5 for all t ^ 0},

(4.3) f i
Wi2 = s ¿S e W7; o¿ (w) = i(w) for some « or   lim  <r¿ (tu) = +oo Y,

( n-> + oo J

and 0^= IT7!! n ^12, then

(4.4) Px(^i) = 1>       * eitvd-B.

According to Theorem 3.10, we have a right continuous strong Markov process

Mx = (iFi, ä\, Xt, Px) with state space X\Jd-B which is quasi-left continuous on

[0, +00).

(II) Definition ofM=(Q., J(, J(t, Xt, Px). Let us define a set ßc Y by

(4.5) X-B = q~\it-B).

Since B=((~)kc=1 Ak) u q- \B- f]k=i Äk), Bisa Borel polar set including the set

flfc-i^k. We put

(4.6) a = wx, = «1

The element of Q, (resp. Jt) is denoted by co (resp. A) instead of & (resp. Ä).

Define Xt and Px by

JTt(») = g-Hlk"»)).       we£l,t^0,

PX(A) m Pqx(A), xeX\Jd-B,AeJ!.
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Xt takes values in Yu 8 — B. The field ^#t°=^(°- Wy is generated by functions

Xs, s fit, because it is generated by %s, s fit, and both q and q ~1 are one-to-one

Borel measurable between X u 8-B and Y" u 8-B. The field J?°=J°- ^ is of

course generated by Ys, i^O.

By (4.4), F* is a probability measure for each x e Xu 8 — B. PX(A) is for each

A e Jt* a Borel measurable function ofxe Yu 8 — B because it is the composition

of two Borel functions q and F(A).

The field Ji is the completion of Jiü with respect to the family of measures

{F(i(-)=JXug_B p(dx)Px(-); pis a finite measure on X(J 8 — B}. This follows from

Theorem 3.10(h) and from the following observation: there is a one-to-one corre-

spondence between finite measures on Y u 8 — B and those on % u 8 — 77 by the

relation p(E)=p(q(E)) and in this case we have FA(A)=F¿(A), A eJt°. The field

Jlt is the completion of Ji^ in Jl with respect to the same family of measures.

(III) M is a Hunt process on lu 8 — B. M has namely the following properties

(M.a)~(M.e).

(M.a) The sample path Xt is right continuous for r^O and has the left limit in

Yu 8-B for t>0, F*-a.e. (xe Yu 8-B). Further Xt = 8 for i^£Fx-a.e., where

Ç(co) = inf {t^O; Xt(oj) = 8}.

(M.b) Px(X0 = x)=l,xeXu8-B.

(M.c) Jtt=J¿t + , t>0. Jtt is the completion in the sense of the preceding para-

graph of the CT-field generated by {Xs, t^s^O}.

(M.d) Strong Markov property.

(M.e) Quasi-left continuity.

In the present case, the statement (M.a) is valid for all eu e Q, in view of Theorem

3.10(iv) and (4.1). By (4.2) we see Xb^B and Px(X0 = x)=Pqx (Yo=?x)=l,

x e Y u 8 — B yielding (M.b). The second property of (M.c) is evident by the

observation of the preceding paragraph. The first is due to the right continuity of

3St. (M.d) follows from Theorem 3.10(i). To see this, consider an ^¡-stopping time

F and a set A e J(t. Then for any t>0 and any Borel set F^ Y u 8-B,

Px(XT+t e E, A) = Pqx(XT+teqE, A) = Ëqx(PXr(XteqE), A)

= Ëqx(Pq-iiXT)(Xt e E), A) = Ex(PXT(Xt e E), A).

(M.e) is due to Theorem 3.10(iv): if {Tn} is an increasing sequence of Jtt-

stopping times and if F=limn_ + O0 Tn, then

Px\  lim   XTn = XT, T < co) = Pqx\  lim   XTn = XT,T < oo)
\n-» + °o / \n-> + oo /

= Pqx(T < co) = PX(T < oo).

(IV) The resolvent of the process M generates (F*, £). If we define the resolvent

kernel {Ra(x, E),a>0} on x-B by

(4.8) TUx, E) = Ex^ V«'Xi(Xt) dt),
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then for any nonnegative universally measurable function/on X—B which belongs

to the space L2(X; m),

(4.9) RJeF*

and Raf satisfies the equation (0.5).

In order to prove this statement, put /= i>*/ with O* defined by (2.2) : <b*f(x)

=f(q~1x), xe it— B. fis then a nonnegative universally measurable function on

it—8. If we extend/to a function on X by setting/(x) = 0, x e B, then/becomes

universally measurable on Y. Further by virtue of (q.2) of Theorem 2.1 ,/e L2(it; m).

Hence we can see by Lemma 3.1 that ita/belongs to F* and satisfies the equation

i"(Rj, v)=(f, v)x for all v e &. On the other hand we have R~J(x) = <b*(Raf)(x),

xeft—B, because

Raf(x) = Ex^C°e-<"f(Xt)dt}

= Ëqx(j* °° e - «'/(Y,) dt} = (Rj)(qx),       xeX-B.

Now (q.l) of Theorem 2.1 leads us to (4.9) and the equality Sa(Rafv)

= ia(Raf, <ï>*v)=(f, ®*v)x which is equal to (/ v)x for veF* according to the

property (q.2).

4.2. Generalizations of theorems o/§3. All results of §3 are still valid when the

strongly regular D-space and the associated Ray process of §3 are replaced with the

regular D-space (Y, m, F, S) and its associated Markov process due to Theorem

4.1 respectively.

We consider a Borel polar set 5<= X and a Markov process

M = (£2, Jt, Jit, Xt, Px)

on X u 3 — B which enjoys the properties (III) and (IV) of subsection 4.1(19).

Observe that in the course of arguments of §3 the speciality of the Ray process

that its resolvent leaves the space C(X) invariant has been essentially used nowhere

except in the proof of Lemma 3.1. Besides we now have the counterpart of Lemma

3.1, namely, property (IV) of 4.1. Thus all the arguments of §3 are immediately

applicable to the present context to establish following generalizations.

Theorem 4.2. If a function u is nonnegative universally measurable on X—B,

belongs to the space F and has its regularization ü on X—B, then ü is a quasi-

continuous modification ofu. In particular any excessive function on X—B belonging

to F is an element of F*.

This corresponds to Theorem 3.1. The next is a generalization of Lemma 3.4,

Theorems 3.7 and 3.8.

(19) It is sufficient to assume property (IV) only for/e L? n C.
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Theorem 4.3. Let A be an open or a closed subset of X. Put

FX_A = {ueF*;u = 0 q.e. on A}.

(i) The   D-space  (FX_A,£)  is generated by  the  resolvent  kernel  Ra(x, E)

= Ex(l"0A e~atxE(Xt) dt), a>0, on X—B:for each nonnegative universally measurable

function fon X—B belonging to L2(X; m), the function R°f(x) = ^x_B R°(x, dy)f(y),

x e X—B, belongs to the space F*_A and the equation <%a(Raf, v) = (f, v)x holds for

every veF*_A.

(ii) Denote by J(f* the orthogonal complement of FX_A in the Hubert space

(F*, êa) and define the kernel Ha(x, E) on X- B by

Ha(x, E) = Ex(exp (-cc<ja); XOA e E).

Then the relation Px"au = Hau holds for every ueF n C(Y) where Pœ-a stands for

the projection on Jf*.

(iii) If A is an open set of the class % or a compact set, then the equality (3.35)

holds q.e. on X.

The first assertion of the above theorem generalizes Lemma 3.7(h) of [8].

Finally we give generalized versions of Theorem 3.11, 12 and 13.

Theorem 4.4. A function ueF is quasi-continuous if and only if u is finely

continuous q.e. on X and universally measurable.

This essentially generalizes a theorem of J. Deny and J. Lions [5, Chapitre II,

Théorème 3.2] concerning BLD functions and Cartan's fine topology.

Theorem 4.5. The following statements are equivalent to each other:

(i) A Borel set A is polar.

(ii) (3.49) holds for m-almost all xe X.

(iii) There exists an m-negligible Borel set C=> A u B such that X— C is M-

invariant.

Theorem 4.6. The following conditions are mutually equivalent:

(i) A Borel set A is polar if and only if(3A9) is satisfied for every x e X—B.

(ii) m is a reference measure of the process M.

(iii) Fa(x, • ) is absolutely continuous with respect to m for each x e X— B and

a>0.

(iv) m is strictly positive on every nonempty finely open set.

The last condition of Theorem 4.6 follows from condition (iii). The converse is

also true because of symmetry of Ra.
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