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IMPROBABILITY OF COLLISIONS IN NEWTONIAN
GRAVITATIONAL SYSTEMS

BY

DONALD GENE SAARK1)

Abstract.   It is shown that the set of initial conditions leading to a collision in

finite time has measure zero.

1. It is well known that binary collisions of point masses in a Newtonian gravita-

tional system are improbable in the sense that the set of initial conditions leading

to this catastrophe at some finite time has (Lebesgue volume) measure zero. One

would expect the same to be true for multiple collisions if only for some sort of

aesthetic reasoning—there seems to be a binary collision contained within a

multiple collision. What is shown here is that this is indeed the case; that is, the

set of initial conditions leading to collision in finite time has measure zero. This

problem has gained attention in recent years with its inclusion in J. E. Littlewood's

list of problems [2, Problem 13].

It must be emphasized that the fact that the force law is the inverse square force

law plays a crucial role in the proof of this result. To see that this is not true for all

force laws, let 21= 2 mKrf, where m¡ is the mass and r{ the position vector of the ith

mass relative to the center of mass of the systems. It is well known (see [3], [6], [8],

for example) that in the inverse p force law I=i3-p)T+ip-l)h. Here T is the

kinetic energy, A is the total energy of the system and the dots denote differentiation

with respect to time. Note that if p^3, l-¿ip-\)h. Integration yields

IHp-i)ht2/2 + IiO)t + IiO). It follows that all initial conditions possessing

negative A have the property that in finite time /—>- 0. Hence if the solution lasts

long enough then the system will suffer a complete collapse. In particular, if n = 2

and A<0, there will be a collision. But the set of initial conditions yielding negative

A has measure greater than zero. (Of course in the inverse square law the above is

not true as for « = 2, negative energy leads in general to elliptic motion.)

The reason that binary collisions are improbable in the inverse square law is

that the system retains its analytic dependence on initial conditions at collision.

(This comes from the fact that a binary collision can be regularized. See, for
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example, the work of Sundman [7].) Hence the (6« — 2)-dimensional manifold

rx = r2 in R6n + 1 corresponds to binary collisions of mx and m2 at any time. Here

R6n+1 = R6nx{t}; that is, phase space augmented by the time coordinate. The

analytic dependence on initial conditions can be used to map this manifold into the

set of initial conditions, /?6nx{0}, forming a submanifold of dimension 6« —2,

which is of (volume) measure zero. As there are only a finite number of combina-

tions of indices for binary collisions, the result holds. (This result seems to be due

to G. D. Birkhoff [1, pp. 270-272].) The problem with multiple collisions is that the

analytic dependence may not hold.

The idea employed here for multiple collisions is a slight variation of the above

and is essentially the following: Let 9JÎ denote the set of initial conditions leading

to a common collision of particles mx — mk at some time t0. Prior to collision, the

flow <£((9Jl) is measure preserving. From the analytic theory of collisions we then

show that as ti->t0, <t>t(^)cAi where meas/ij-^0 as z->-oo. That is meas 9JI

= meas^(S!K) = 0.

The result described above holds for all collisions of the n-body problem but not

necessarily for all singularities of the n-body problem. The question of whether a

singularity is necessarily a collision is still an open question [4], [5], [9].

Further notation and necessary analytic results from the theory of collisions will

be given in §2. The statement and proof of the theorem will be given in §3. An

extension of the result for other force laws will be discussed in §4. Finally I would

like to thank Harry Pollard, Carl Simon and Sheldon Newhouse for some inter-

esting discussions on this topic.

2. Notation. Our basic assumptions are that «, the number of particles, is

finite and that we have an inertial coordinate system. Let mk, rk and vk denote

respectively the mass, position and velocity of the /cth particle. We define further

rk=\rk\, vk=\vk\ = \fk\ and2T=2mkv^.

Following Pollard and Saari [4], we say that we have a collision at time t0 if as

t^-t0 each particle approaches a definite position in the inertial coordinate frame

with at least two particles sharing the same limit point.

The analytic result upon which we will rely most heavily is quoted below and

can be found in [4].

Theorem. If there is a collision at t=t0 then J=\ 2 m^.ri—L¡f~A\t — Z0|4'3 and

T~%A\t — ?0| ~2/3. A is some positive constant and r¡ ->- Ltas t -»■10.

3. Statement and proof of the theorem.

Theorem. The set of initial conditions leading to collision in finite time has

(Lebesgue volume) measure zero.

Actually what will be proved is that the set of initial conditions leading to the

simultaneous collision of mx,..., mk (k^n) at a common point has measure zero.
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With only minor modifications the proof carries over to the case where we have a

simultaneous collision at more than one collision point. As there are only a finite

number of combinations (« is finite) the theorem follows.

As we will be assuming that m1,...,mk collide, we will denote the subspace

(fx,..., rk, 0,..., 0, vlt..., vk, 0,..., 0) by R6k and its orthogonal complement by
^6(n-fc)

The concepts employed in the proof are straightforward with the major com-

plications coming from the facts that (1) the collision may occur at any finite time,

(2) the collision may take place at any point along the line rx= • • • =rk in con-

figuration space of R6k, (3) the constant A and the o(/4/3) term in/=^i4'3 + o(/4/3)

may depend upon the initial conditions, and (4) the state of the noncolliding

particles is arbitrarily located in R6^n-k\

Proof. We consider the case where only particles mu..., mk collide with a

common limit point at some finite time. We further limit ourselves to the cases

where the common collision point is on an arbitrary but fixed unit interval on the

line !■!=■•• =rk. Let B be an arbitrary positive constant and Sip, 1) be a sphere

in /?e<n-fc' of radius 1 about the rational point/;. Motivated by the analytic be-

havior of collisions, we define for positive integer a, Baiti) to be the set of points in

R6n with the following properties :

1. Assuming the point to be an initial condition at time tu the solution exists

in the interval [0, fj.

2. At tlt the coordinates for mk+1,..., mn are in Sip, 1).

3. At time tu the coordinates in R6k satisfy

2w¡(r,-L)2 á MB2i2-")il3   and   £ m,«? i iMB\2-lla)-213

where L is any point on our arbitrary but fixed interval on r1=-=rk and M

=2%
By construction Bait1) is a measurable set. That (2) and (3) define a measurable

set is obvious. A standard argument employing "continuity with respect to initial

conditions" shows that (1) defines a measurable set. Hence B"^) is measurable.

We now estimate the measure of 5a(ii). From condition (3),

|rf-£| Û Bil)-2"13   and    |i>,| Ú (f)1'2^)1-1*'3.

Taking into account that the above estimates are for vectors and the length of our

unit interval is unity, it follows that

(1 ) meas B"^) g X»(2 - a)°-9k ' 2I3

where Z)=(vol Sip, l))£6fc-1(f)3W2[l+25](2)6,£-1.

We now consider an arbitrary unit interval of time with rational endpoints, say

[1, 2], and divide it into 2a+4 equal parts. This defines points t, where i0 = l and

/2«+4=2. Let Ba[\, 2] be the set of initial conditions leading to \J B"^).



270 D. G. SAARI [December

As the «-body problem is a conservative dynamical system, its flow is measure

preserving. By condition 1 in the definition of Ba(tx), Ba(tt) can be pulled back to

the zero with the resulting set having the same measure. Hence B"[l, 2] is measur-

able (finite sum of measurable sets) and

(2) meas B"[l, 2] = 25D(2-a)°-9k-5'3.

Define ß[l, 2]=lim sup B"[l, 2] as a -> oo. The measure of ß[l, 2] is zero. This

follows from the fact that the minimum value for the integer k is 2. Hence the

exponent on the (2~a) term is positive. Now, if one sums the right-hand side of (2)

for a =1,2,..., one obtains a convergent series. By construction meas|S[l,2]

^2?=n rneas B"[l, 2], which can be made arbitrarily small for large enough N.

We now relate the above construction of ß[l, 2] to the collision problem. Let

© be the set of initial conditions such that

1. Particles «t1;.. .,mk collide at a common collision point which is located on

our specified interval on rx= ■ • ■ =rk.

2. The first collision occurs at time r* where t* is in the interval [f, J].

3. The state of the noncolliding particles at collision is in S(p, \).

4. J~A\t-t*\il3 where 4A^B2M.

We claim that ©C/S[l, 2]. Consider a point in © and assume that its collision time

is t* (e[|, l\). By the constraint on A and as J~A\t-t*\ils it follows that, for all a

after some integer, if |i-r*|<2-athen/^M52(2-a)4'3. Likewise as r~t^|r-i*|-2'3

and as |i—/*|_2,3/|r—i*|_(11)2/3->0 as r->r*, for all a after some integer,

2~(a+2)<\t-t*\<2-" implies that TèMB2222al3. The position and velocity

vectors of the noncolliding particles approach definite limits in S(p, Jr) as t -*■ t*,

hence for all a after some integer, \t—1*\ <2~a implies that the state of the non-

colliding particles is in S(p, 1). (By the equations of motion, f, = 0(l) as i-> t*

for i>k. Hence r approaches a limit as t —> ?*.)

The above implies that for all a greater than some integer, we can find a tt which

lies between t = 0 and t * such that at time ?( the image of our point in (£ is in Ba(ti).

Note that there is more than one choice for í¡ and that it cannot be the partition

point immediately preceding t*. (Recall that the unit interval was subdivided into

2a+4 equal parts.) This implies that for all a after some integer our point in © is

also in B"[\, 2], hence it is in ß[l, 2]. This completes the proof of the claim.

Clearly meas ($=0. Note that (£ depends upon the time interval of collision (of

length ■£), the state of the noncolliding particles (in S(p, Jr) where /? is rational), the

value of B and the unit interval of collision points. By summing the various ©'s

over all rational endpoints of intervals of time of length £, over all rational p

(for the state of the noncolliding particles), over all rational positive values of B

and over the denumerable number of unit intervals (containing the location of the

collision points along rx= ■ ■ ■ =rk), a new set, "2), is obtained. As 'S) is the countable

union of sets of measure zero, meas "0=0. By construction, ® contains all initial
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conditions leading to collision of mx,..., mk in finite time, hence the proof is

completed.

4. Extension. The above proof and result is not peculiar to the inverse square

force law. With only minor modifications it applies to other inverse p force laws.

To accomplish this, we need the analytic theory of collisions for other force laws [6].

A collision at / = t0 in the inverse p force law, 1 <p < 3, is characterized by

J~A\t0-t\iKv + 1) and r~(4(3-/0/(/>+l)2)^|f0-i|2((1-!')/(,' + 1)). A is some positive

constant.

With this result it follows that

Corollary. In the inverse p force law \<p<\5/l, the set of initial conditions

leading to collision infinite time has measure zero.

Proof. In equation (1), replace the value 1.1 with q. The present constraint on o

is that it is greater than unity. With this substitution, the measure of Ba[\, 2] is

bounded above by a positive constant times 2~" raised to the

ip+l)-1[-pi3kq+l) + ki6 + 3q)-3)

power. To force ß[l, 2] to have zero measure, this exponent must be positive. As

the minimum value for k is 2, p and a can always be chosen to satisfy this constraint

if p < 15/7, and the proof is completed.

With more care, this range could possibly be extended to, say, 1 <p < 3.

Of course the above results hold only for point masses. For homogeneous

spherical bodies of positive radius the measure of initial conditions leading to

collisions is positive. (Here we define a collision to be between mass / of radius a¡

and massy of radius at if \rt — rf\ =a{ + aj.)
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