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Abstract: Let P be a polynomial such that k of the n— 1 principal curvatures are

different from zero at each point of N(P) = {s e R" : P(s) = 0}; N(P) is assumed to be

nonempty, bounded, and n—\ dimensional. If Supp y<= Ui = {s e Rn : \P(s)\ < 8}

with S small and <p e C?(R"), let ç>» be the integral of y over N(P-q) i(q e [- S, B] and

<P°(s) = <p'(P(s)) on U* and =0 outside U*. Then y" e C?(R"). We define the sym-

metrization v" of a distribution v, with Supp v<^ U", in a natural way. Setting

u = 9'~'i{v} and «0=^""1{¡''7}, we prove that u0 is the integral of the product of u with

some function w( , ) which depends only on P. This result is used to prove a Liou-

ville type theorem for entire solutions of /•( — iDx)u(x)=f(x), with/e C?(R").

Introduction. We define the concept of symmetrization tf (Definition 1.3) of a

distribution v and the concept of quadratic symmetrization w (Definition 1.2)

associated with the real null set N(P) of a polynomial P. It is assumed here that

N(P) is nonempty, bounded and without double points. In §3, we represent the

inverse Fourier transform u0 of v" in terms of u and the quadratic symmetrization

w (Theorem 3.1). This involves the representation of w in terms of the inverse

Fourier transform of some density function defined on N(P-q), \q\ <8 (8 small)

(Theorem 2.1). Estimates of the behavior of u0 and w at infinity are also derived

(Theorem 4.1).

In §5 we find a criterion (Theorem 5.1) for the existence of a C™(Rn) solution of a

partial differential equation

(*) P(-iD)u=f      feC?(R%       Dx = 8/8x.

The results in the first five sections are used in the last section to derive a Liou-

ville type theorem (Theorem 6.1) asserting that if for each irreducible factor P} of a

polynomial F such that N(P,) is nonempty, bounded, and «—1 dimensional, at

each point of N(P,) there are at least k¡ principal curvatures, kj>0, of N(Pj)

different from zero, and if u is a solution of the equation (*) such that u(x) = o(\x\~d)

as x approaches infinity with o*=n— 1 — min1Síár k}/2, then u belongs to C™(Rn);

moreover u = 0 iff=0. A result similar to Theorem 6.1 was proved by W. Liftman
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[9]. Neither result includes the other. Our Theorem 6.1 has the advantage that it

allows repeated factors in the polynomial P, while Littman's result is not restricted

by the condition that A/(/") be bounded. Our proof is entirely different from

Littman's. The idea of our proof, in the homogeneous case, is motivated by A.

Friedman [3] who discusses the decay at infinity of solutions of a polynomial of the

Laplacian; in his proof another type of symmetrization is employed. A symmetriza-

tion of still a different nature appears in [13].

The results of this paper are based on the author's doctoral thesis written at

Northwestern University, Evanston, Illinois. He would like to express his gratitude

to his advisor, Avner Friedman, for his encouragement and helpful advice and to

the referee for his kindly suggestion.

1. Symmetrization of distributions. Let (D) be the space of C"(An)-functions

with the topology defined in L. Schwartz [11] and (/)') the space of distributions.

Let S be the space of fast-decreasing functions and S' denote the space of tempered

distributions. (£)') and 5" are the conjugate spaces of (/)) and S, respectively, [2]

and [11].

Definition 1.1. A polynomial Pis) is said to belong to (w) if

(a) A(£)={s £ Rn : P(i) = 0} is nonempty and bounded;

(b) gradA(i)#0on A(A).

Let A be a bounded neighborhood of A(£), U6 = {se U: |£(s)|<8}, and

Sô = {yeS :Supn y^U6}. Let N0iP-q) = NiP-q) n U. \N0(P-q)\ and dSJs)

denote the area and the surface element, respectively, of the n— 1 dimensional

manifold N0iP-q) in Rn. For y eL\Uô), define

^ = \N(P   nV f 9>(ä) dSq{s)   if M < 8'
l^olA-AJÍ JN0(P-q)

= 0   if|?| 5; 8;

and

y"is) = y"iPis))   ifseU6,

= 0 if s $ W.

Remark. dSq is defined by dSq dq = dV where dV is the volume element of Rn.

This definition coincides with the usual intrinsic definition of the area element dSq

[4] and [15].

Lemma 1.1. For each polynomial P e (w), there is a neighborhood U ofNiP) and a

number S0 > 0 such that if 0 < 8 < 80 and if y belongs to S6, then y" is well defined,

y°eC?i[-8,8]),andy°eS6.

Proof. We must show that (i) N0iP-q) is a C^-manifold if |fl|<8 and (ii)

ye is C°. Since grad A(s)^0 on A(A), for each a e A(P), there isj=jia), 1 èjèn,

such that DSjPis)=/=0. By the Inverse Mapping Theorem there is a neighborhood
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Ua of a and a ball Bt(a)Ma) in Rn with center t(a) and radius e(a)>0 such that the

mappingt = t(s)givenby tj=P(s)and ti=Si,ifi^j, 1 =/á«,isaC°°-diffeomorphism

from Ua onto Bt(x)Ma); furthermore, on Ua, DSjP(s)^0. Denote the inverse mapping

by s = s(t), or by s,=Sj(t), with í¡ = íj for all i+j, l|¡áíi. Since A'(F) is compact,

there is a finite number of points a1,..., ar belonging to A^(F) such that the corre-

sponding neighborhoods t/0i,..., U¿ form an open covering of N(P). Let U be

the union of these sets Uai.

Let Wbe a neighborhood of A^F) whose closure is contained in U. For 80 > 0

sufficiently small, N0(P-q)<= W if \q\ < 80. Indeed, if there is no such number 80,

then there are sequences {q^R1 and {s* : s'e N0(P-q¡)\W} such that P(s*)

=q¡ -> 0 when i -> oo. Hence there is a subsequence of {s'}, say {s'}, convergent to

some point s°. Since W is open and s' $ W, s° $ W. On the other hand, since P(s°)

= limP(si) = 0, j°e A(F)<= If—a contradiction. We have thus proved that there

exists 80>0 such that N0(P-q)^ Wif |a|<80.

Therefore Uô is a neighborhood of N(P) and its closure Cl (Uö) is contained in

W, hence in U. Moreover N0(P-q) is a C°°-manifold.

Construct the partition of unity subordinate to the covering {{/at} of Cl (U6) in

the following way [10]:

<PieC?(Rn),   <Pi^0,   Supple t/a>,   and      2^ = 1    onCl(U6).
ISiâr

Then for <p e Ss,

(1)      f <p(s)dSq(s)=   2    f <p(s)9i(s)dSQ(s)=    2   W-
JN0<.P-q) lgiSr J N0(P-q)r\Uai lSfSr

Consider a term Y,. For simplicity we assume that j=j(a)=l. The image of

F0' n N0(P-q) under the C^-diffeomorphism í = /(í) is

{(?, O = (?, ía, • • -, O : |f'-W)T < «V)"?2}-
The inverse mapping s = s(q, t') is given by sx=sx(q, t'), s' = t', and the Jacobian of

the inverse mapping is equal to l/DSlP(s); DSiP(s)=£0 on Ua>. From the definition

of dSq, dSq = (l/DSlP(s))dt'. Hence

<p(s)<pt(s) |

J|t'-(al)'|<[e2(a1)- .Q2jll2     DS1P(S)

Then ^(a) is a C°°-function in a, and hence the left-hand side of (1) is C°° if \q\

< S0. If we take <p= 1 in (1), the integral is \N0(P—q)\ which is a C'-function of a,

|a| < 80. This implies that <p" e Cca>([-8, 8]) and completes the proof of the lemma.

Definition 1.2. For any function <p e S6, 0 < 8 < 80, 9?" is called /Ae symmetriza-

tion of<p with respect to the manifold N(P) in the function sense.

Let xo be a function in C^(R1) such that yo = 0, y0= 1 on [—8, 8], 0<8<S0, and

Supp xoŒ(—¿"o* S0). Let vis) be equal to xo(-P(s)) on U6» and 0 outside Í/V Then

y belongs to S6o. For any distribution F with support in U6, define //¡e symmetriza-

tion T" of the distribution T with respect to N(P) as follows :

(T, <p) = (T, [X<pY),       ?eS.
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One easily sees that if/is a continuous function with support in U6, then the

symmetrization of/in the sense of distribution is the same as the symmetrization

off in the function sense.

Lemma 1.2. Every tempered distribution v with compact support can be expressed

in the form

vis) = D\pis) = d"pis)/idsx ■ ■ ■ 8sn) (1 = (1,..., 1)),

where p belongs to LmiRn) with support contained in

Gb + E = {seRn : \Sj\ < bj + ejj = I,..., n),       e > 0,

where b > 0 is any vector such that Supp pc Gb.

Proof. It is well known [2] that if v in 5" has compact support, then its inverse

Fourier transform h(x) can be extended to an entire function u{z) of exponential

type ■¿b. From [2, p. 163] or [6, p. 157], there is a completely additive complex

measure dv with support contained in the bounded neighborhood Gb + S of Supp v

such that

w(z) = Í       ei2S dvis),       e > 0.

This implies that the Fourier transform of u is the measure dv, i.e. v — v.

For any ye C?iGb + e),

iv, y) = yis) dvis).
"Gb+e

Since

vit) = íl   •••í"   D¡yis)dsx---dsn,
J — CO J — CO

we have

sup{|<p(f)|} ̂  ||0V|U»<Ot+,)-
seR"

Moreover, denoting by \v\ the total variation of v, we have

\iv,y)\ S   sup   {\<p(s)\}-\y\(Gb + t) Ú C||/)V|U\Gö+£>.
seGn + e

So the map Dry^-iv,y) is a bounded linear functional on D1C^iGb+e), as a

subspace of L1iGb + e). By the Hahn-Banach Theorem it can be extended to a

bounded linear functional on L1iGb+e). Therefore there exists a function

feLxiGb + s) such that (/ Z>V) = (v, y) for all ye C?iGb + l¡). Hence v = D1p,

p = i—l)nf. This is the assertion of the lemma.

Definition 1.3. For any nonnegative integer h we define the Dirac-measures

iDh8)iP) on A(£) as follows:

((Z>"8)(/>), y) = (£>*S, [x2y]»)   for any y e S,

where 8 on the right-hand side is the Dirac-measure in A1.



1971] SYMMETRIZATION OF DISTRIBUTIONS 459

Theorem 1.1. Let the polynomial P belong to the class (it). If v is a distribution

with support contained in A(£), then the support of v" is in A(P) and v" is a linear

combination of Dirac-measures on A (A),

(2) tf =    2    ChiD»8)iP),       ch = {-^iv,x2Ph).

Proof. The first assertion is obvious. We shall prove the second assertion. For

any y e S, set

\x\YAq) = [x\nq)~   2   ¡£W9>]'(0),        kl < 3,

[x2(p\l{s) = [x2yt.iPis)) on U" and =0 if s $ U6. We retain the notation in the proof

of Lemma 1.1. On each Ua<, tj = Pis), tm = sm, m^j=jii), 1 fkm,jSn, and we see

that

Aa=     2    ahis)Dll+Qis,Dt),
1S«SI«I

where ah e C°iU6) and Qis, Dt) is the differential operator of which each term

contains a factor different from Dtj. Hence on Ua<,

(3) mx2<pUs) - 0,        |«| Ú n.

By Lemma 1.2 the order of v is Sí zz. Since the support of v is compact, by a result

in [2, p. 65] iv,y) = 0 for any yeiD) for which Day = 0 on Supp v for |a|ázz.

Therefore (3) implies that (zj, fx2<p]n) = 0. Hence

iv°, 9) = (v, bcW) =   2  rr W<p]'(0)(f, x'jP*)

=  2 ¿(s(fl).^[x2<p]e(fl))(f,x2i"1)

= (   2   ChiD»8)iP),y),       yeS,

by Definition 1.3. This yields (2).

2. Quadratic symmetrization.

Definition 2.1. Let P he a polynomial in in). Define Eis, x) = x(s)eixs'< tnen

E"iq, x) and £%y, x) are defined for each x £ Rn. We call the inverse Fourier

transform w( , x) of x£"( , x) the quadratic symmetrization of the polynomial P.

Lemma 2.1. If w is the quadratic symmetrization of the polynomial P e (w), then

w(x, y) = J*   \N0iP-q)\E"iq, x)E"(q, y) dq = w(y, x)

for all (x, y) e Rn x Rn.
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Proof. Since xE"( , y)£ Sao, by Definition 2.1,

w(x,y) = ^-\XE\ , y)}(x) = f     eixsx(s)Ea(s,y) ds
Ju'o

= f °   if eixsx(s)dSq(s)\E"(q,y)dq
J-60    \.jN0(P-q) J

= f° |A0(F-a)|F"(fl,x)F'>(fl,>')a'a.
J-60

Definition 2.2. Let {nk) be the subclass of (n) consisting of polynomials satisfy-

ing the condition:

(c) At each point of N(P) there are at least k principal curvatures of N(P)

distinct from zero.

Lemma 2.2. Let the polynomialP belong to the class (-rrk). If 80>0 is sufficiently

small then, P—q is in (irk) for each q, \q\ < S0.

Proof. We retain the notation in the proof of Lemma 1.1. It suffices to prove the

assertion at all the points which belong to Ua, a e N(P). For simplicity let j(a)=\.

Since s = (sx(q, t'), t') is a C^-diffeomorphism which maps BUa)Ma) onto Ua, where

t'=s', we can write s(q, s') = (sx(q, s'), s') to express a point in N0(P—q) n Ua with

sx e C'°(BUa)iHa)). Denote by s*(q, s') the derivative of the vector s(q, s') with respect

to s¡ and let s"(q, s') = DSiDSjs(q, s'), 2^ ij^n. Let /c(a, s') be the normal of N0(P-q)

at the point (sx(q, s'), s'). It is well known that

(4) K(q, s') = grad P(sx(q, s'), i')/|grad P(sx(q, s'), s')\.

Let Lij(q, s') be the scalar product of the normal with s"(q, s'). Then

Ly e Cx(Btia)¡eia)).

By definition, the n— 1 principal curvatures cu¡(a, s') of N0(P—q) at the point

(sx(q, s'), s') are the n— 1 eigenvalues of the matrix (L¡¡(q, s')). But the determinant

of the matrix (X8ij — Lij(q, s')) is a polynomial in A of degree n— 1 ; i.e.

det(X8ij-Lii(q,s')) = X*~1+   2    Hfasyi-'-\
l§j<n

where H¡ e Cco(BtwMa)). Moreover, for 1 =/'<«,

Hi(q,s') = (-iy 2 «>h(q,s'y..a,jt(q,s').
lSi1<-. <li<n

By condition (c) we can assume that the number of nonzero principal curvatures

of N(P) at a is h with k^h<n. Hence H¡(q, s')=0 at a for all h<i<n and Hh(q, s')

#0 at s = a. Since ff|,eC°(itWi!W), there is a neighborhood, say Ua, of a on

which Hh(q, s')^0. Using the Heine-Borel theorem, we obtain the assertion of the

lemma.
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From Definition 2.1 we see that E"iq, ) is the inverse Fourier transform of

8iP-q) if \q\ <80. Hence by the result of [8] (with correction in [9]) and by the

assertion of Lemma 2.2, we obtain the next lemma.

Lemma 2.3. Let the polynomial P belong to the class iirk). If k = n—l, then for

each \q\ < 80 and for each unit vector u>, there is only a finite number ofpoints ptiq, oS)

on N0iP—q) at which the normal of N0iP—q) is co; further, for x e Rn, \x\a> -> co,

E»iq, x) = \ \x\ -<--»»ß) 2l      1     ,   )       iu/2
I \2/       y      \Kn-iiPÀq, <o))\'

xoiq)

[n\ (n-l)/2        n _|_ j\d + (?/«,«)))/• j _ j-\<i_(p/i.a>»

\Kn-xiPÀq,™))\112

x exp iip}iq, <o)■ x) + 0(\x\_n/2)
l^o(A-fl)|

Ifk<n—l, then for each \q\ < 8Q there is a nonempty open set &iq) of unit vectors

such that, for each co e i2(o), there is only a finite numbers of points p,iq, co) on

Ao(A-fl) with neighborhoods Uj = {pi£) e N0iP-q) : £ e S¡iq, co)} at which the

normal /<(/>(£)) is co for allj. Here S¡iq, co) are open subsets of Rn'1~lc. Moreover, as

Ixlcu -» 00,

^(iM-n^w'^s1^
(] -L iy+(Pj(q,o>))n _j-w_(pj(iz,u)))

xoiq)xexp (z>,(fl, a,)-x) + 0(|x| -* + «»)
|Ao(A-fl)|

Here \S¡iq, oS)\ is the volume ofS¡iq, co) in R"'1'", Kkip¡iq, oí)) is the product of the

k nonzero principal curvatures of N0iP—q) at p¡iq, co), d+ip¡iq, co)) and éAíjz/a, tu))

are the numbers of the positive and negative principal curvatures of N0iP—q) at

Piiq, oj), respectively. iNotice that Kk{t)= 1 ifk = 0.)

Theorem 2.1. Let the polynomial P belong to the class iirk). Then for each pair of

unit vectors co and co and any integer p^O,

wi\x\u>, \y\w) = Oaxl-'-^M'-^tlxl + ljl]-1),

as i\x\co, \y\û))^-co in the direction (tu, di). Here we assume that k is the small

integer such that the class ink) contains P.

In the definition of w we took 0< 8< 80. In the proof of Theorem 2.1 we need

80 to be a sufficiently small number (independent ofp}, co and to). We shall need

Lemma 2.4. Let the conditions of Lemma 2.3 with k=n — l hold and suppose that

DSlPis)J=0 atpjiO, tu). Then

Piiq, a>) = isxiq, s\q, to')), s\q, co')),   qe[-80, 8„],

where s'iq, co') = (f2iq, to'),.. .,fiq, tu')) and fi , ) e C^íf-So, 80] x Í/) for some

neighborhood U^R"'1 of to' and some number So>0.
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Proof. With the notation in the proof of Lemma 2.2, we first prove that the

(n — l)xn matrix

(DS2kx(s), ..., DS2Kn(s)\

Ms) = [.
\DSnKX(s),...,DSnKn(s)!

has rank n— 1 with s=(sx(q, s'),s') in U6, for some small 8>0, where k(s)

=(kx(s), ..., Kn(s)). Indeed, since the n—l principal cruvatures of N0(P—q) at the

point s are the n—l eigenvalues of the matrix (Fw(s)), by condition (c) with

k=n— 1, the matrix (L(j(s)) is nonsingular; i.e. its rank is n- 1 for all se Uô with

the number 8 > 0 satisfying the assertion of Lemma 2.2. But on the other hand

k(s)-DSís(s)=0, i=2,...,n. Hence for 1 <i,j^n,

Lu(s) = -DS)k(s)DSis(s).

Let T(s) be the nx(n— 1) matrix with — DSts(s) as its (i'+l)th column, 1 </ = «.

Then (Lu(s)) = A(s) • F(s), and therefore A(s) is of rank « — 1 for each s e U6.

At Pj(0, ai) = (sx(0, só),s¿)=s0, we can assume the last n — \ columns of A(s0),

denoted by A*(i0), are linearly independent; i.e. the («— 1) x (n— 1) matrix A*(j0)

is nonsingular.

Let

Ft(s',q,ic') = Ki+X(sx(q,s'),s'),       i= l,...,n-l,

Fn(s', q, k') = q

and denote by JF(s, q, k') the Jacobian of

F(s', q, k') = (Fx(s', q, k'), ..., Fn(s', q, *'))

with respect to the variables (s', q). Then since JF(s', q, «:') = det A*(s) at s=s0, by

the Implicit Function Theorem there is a number 80>0 and a neighborhood

i/cu»-1 of to' suchthat

*'(?,*') = (/ai?,«'),..-. /»(?.«'))

with/y( , ) e C°°([—80, 80] x U). This completes the proof of the lemma.

Proof of Theorem 2.1. (For the case k=n— 1.) By condition (b), we can assume

DSlP(s)¿0 at/7/0, w). Then Lemma 2.4 yields

q = P(Pl(q, w)) = P(fx(q, eu'), ■ ■.,/»(?, ">')),       qe[-B0, 80],

withfx( , o>')=sx( , s'( , a)')) e CM([- S0, 80]). This implies

1 = DqP(pi(q, o>)) = gradF(/?X?, <»))■ Dqpt(q, w).

Hence this and (4) imply

(5) Dq[p¡(q, co)w] = Dqpi(q, w)-u> = l/|grad P(p¡(q, w))\.
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By Lemma 2.3 and the definition of the quadratic symmetrization of the poly-

nomial P,

w\i\x\co,\y\co) = i\x\\y\y«-™

f
(6) x 2       Bn_x,K,iiq, «>, co) exp {ipjiq, co)x + iphiq, to)-y} dq

+f_ôOi[\x\\y\]-«'2)dq,

when (|x|<u, \y\co) ->• +oo with co and cô fixed, where the summation is independent

of q and

M ^_ a<i + (PJ(?.m)) + d+(ph(<i,¿3))/-l _/*\<i_(P/(<I.co» + d _(ph(«,cä))

X" |*»-iM?.«M«-i(M?,*))|1/a

Since the principal curvatures are continuous in s=siq, tu) = (/1(o, co),.. .,/n(o, to))

which is continuous in q, we can choose 80 so small that d+ipfá, to)) and

d-ÍPjiq, co)) are independent of q if \q\ < 80. Hence for each pair of unit vectors co

and ¿j,

Bn-x,U,™,*)£C?([-8o,Z0])   and

ßn-i.h.iiq, co,cö) = 0   if \q\ ^ 8„.

Let the integrals on the right-hand side of (6) be denoted by Aiy(|x|to, \y\co). By (5)

D„ exp {ipjiq, co)- \x\to) = i\x\ exp Qpjiq, to)-x)D„[pJiq, co)-co]

= (/|x|/|grad Pipfy, co))\) exp (//>/?, tu)- |x|tu).

Integrating by parts and using (7) and (8), we have

h.ii\x\o>, \y\co) = Bn-x,h,jiq, <», û) exp iipuiq, to)y)
J-Öo

\\grad PÍp¡iq,co))\ 1
x L-i\x\ "exp (v^' ^'^J   q

x exp {z>/o, tu)-x+z/zh(fl, ¿>)-j} i/o+0(|x| -1),

when (|x|tu, |j|tû)->co. Repeating the argument/? times, we obtain

i   i\  l     i   i -^      MY r°   » < _, \\grad PjPiiq, co))\y
4,(1-1-. \yH = y J_% WA.*«) [lefadPiPhiq,&ß

x exp {z/z/o, tu)-x + z/;ft(fl, tu)-j} t/fl+ 0(|y l""1^ "»)

B^-i.H.Aq, co, cô)

xe\p{ip¡iq,to)-x + iphiq,co)-y}dq+Oi\y\p-1\x\-p)

MY f°
In/ i-«,
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when (|x|tu, \y\to) -> co, where B(nplx¡hJ satisfies (7). By (8),

Dq exp {ipj(q, oí) ■ x + iph(q, ¿o) ■ y} =   ,-     \  \-r^ +-.-    'j y \—^—.
Llgradi'OX?.*'))!    IgradF(^Ä(a, oi))|J

xexp {ipj(q, w)-x + iph(q, w)■ y}.

With this replacing (8) in the integration by parts, we get

/R.,(|*K \y\&) = MY f° flSWi,»,«)
\|X|/     J~t0

Dq exp {pig, w)-xi + iph(g, w)-y}

/|x|/|grad P(Pj(q, «))| +i|j/|/|grad P(Pn(q, «S))|

+ 0(|>'|i,-1|x|-!')

= o([^}]Vl + l>'|]-1),

when (|x|to, \y \o~>) -> co. From the proofs in [8] (with the correction in [9]), we see

that the above technique can be employed for the last term in (6). Therefore when

(x, y) -> co,

w(x,y) = 0(|x|-(n-1>/2-p|>'|!'-<n-1),2[|x| + |>'|]-1).

This is the assertion of Theorem 2.1 for the case k = n — 1.

From the idea introduced in [8] and by the technique used above, we can obtain

the assertion for the case k < n — 1.

3. A representation theorem.

Theorem 3.1. Let the polynomial P belong to (-nk), k>0. Let u be a distribution

such that the support of its Fourier transform v is contained in U6, 0 < 8 < 80 with S0

sufficiently small. Then the inverse Fourier transform u0 of the symmetrization v" of

v with respect to N(P) can be expressed in the form

u0(x) =       u(y)w(x, y) dy,
Jr"

where w is the quadratic symmetrization of P.

Proof. Since w(x, ) = ^r~1{xE"( , x)}, with XE"( ,x)eS, w(x, ) belongs to S

for each x e Rn. Moreover, it is a C "-function in (x, y) e Rn x Rn. Let </> be any

element of S, <P = &r-1{i/J}, and ■/-0 = ^r"1{[x2<p]<7}- Let y, 6 Cc°°(Fn), xièO, equal to 1

on the support of y and with support in U", 0 < 8 < 80, with 80 satisfying the

assertions of Theorem 2.1. Then xXi=X- Tl"s and tne note made after the proof of

Lemma 1.1 yield

Mx) = ^-HfcWto = ÜX29>r, Xi exp{/x- })

= (xV [Xi exp [ix- }]*) = (<p, xbi exp {/x- }]*)

(9) = (9, xE°(x, )) - (0, ̂ -\XE\x, )})

<\,(y)w(x,y)dy.
Jm
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Since the support of v is compact, u(x) is analytic and |w(x)| S C(l + |x|)m, m^O

and C>0. Hence, by this and Theorem 2.1, the integral

j;
u(x)w(x, y)i/j(y) d(x, y)

S»x8»

is absolutely convergent for all feS. Thus, (9) and Fubini's Theorem yield

(m0, -A) = (^'1{v% +) = (if, x\) = (v, \x2<pY)

= («, <M = ( J n u(y)w(x, y) dy, A,       </- e S.

Hence u0(x)=}Bn u(y)w(x, y) dy.

4. Decay at infinity of the inverse Fourier transform of the symmetrized distribu-

tion. Using Theorems 1.1 and 3.1, we can determine the decay at infinity of

u0, which depends on the class to which the polynomial F belongs.

Theorem 4.1. Let the support of the Fourier transform v of a distribution u be

contained in N(P), Pe(irk) with smallest k>0, and let u0 be the inverse Fourier

transform of the symmetrization v" of v with respect to N(P). Then, as \x\ —> co,

u0(x) — O(\x\~"), u0(x)^o(\x\~d), for some d^k/2, provided m0/0; on the other

hand, M0(x) = o(|x|n-1-'£-'') ifu(x) = o(\x\-"), b^O.

Proof. Definition 1.3 yields

¿^{(Z^SXF)}^) = ((Dh8)(P(s)),eixs)

= ((Dqy8(q),[x2exp{ix- }Y(q))

= ((Dqy8(q), E"(q, x)) = (8(q), (- DqyE"(q, x)).

This and Theorem 1.1 imply

(10) «„(*) = &-\tf]ix) =    2    Ch(8(q),(-DqyE°(q,x)).

First assume k = n— 1. Lemma 2.3 implies that, when |x|a> —> +oo,

E"(q, \x\a>) = lx[-<"-"'2 2 An.x(Pj(q, œ))-exp(iPi(q, <o)x)      Xf]
nn i \iyo(r — q)\

+ 0(|x|-"'2),

where

wo = (I)"
\Kn-X(t)\112

is a C00-function in t e R1. By Lemma 2.4p,(q, w) is a C°°-function in q e [— 8, 8],

0<8<80, with 80 satisfying the assertion of Theorem 2.1. By (5) and (11), when

|x|co->-oo,

D\ED(q, \x\œ) = |x|"-(',-1),2/;(a, w, IxD + Odxl'1"1-^-1"2),



466 KUANG-HO CHEN [December

for any O^h^n, where

f(„       iv-h      v An^xiPiiq,^))-ih _,,■„/„    n .„i   ,     Xo(fl)
fiq, tu, |x|) = 2 |gradP(/,X9>w))|z, exp («/>A?, «)■ M«) |^o(P_?)|-

Hence when |x|tu ->■ co,

(8(g), Z^fo, |x|tu)) = /)J£"(0, |x|tu)

= |x|h-(n-1),2/,(0, co, IxD + Odxl"-1-«"-1"2).

For each fixed h and co, we see that /,(0, tu, |x|) is a uniformly almost periodic

function [1] in |x|. If there is more than one index, we choose a suitable point in

A" as origin to make the projection |x|/7;(0, tu) tu of |x|/z;(0, co) in the direction tu

distinct from each other. Since

An_xiPÀ0,<»))-ih    Xo(0)    , n

|grad/>(/7;.(0,tu))|"|A(£)r   '

/,(0, co, |x|)^0 for some fixed unit vector tu for each h. Hence for any O^h^n,

when x-^- +00,

DhqE"iO, x) = Odxl"-^-1"2),        DhqE"iO, x) + oi\x\h^n-1)l2).

Similar arguments using the idea introduced in [8] can be applied to the case

k<n— 1. Therefore this and (10) yield the first assertion.

For the last assertion, let e>0 be given, by the condition zz(x) = o(|x|_i,)asx-» co,

there exists a number Me>0 such that Ix^míx)! <e if |x| > Ms. We write the in-

tegral in Theorem 1.3 as the sum of three integrals whose integration ranges are

\y\ ^ A/£, M£á \y\ ^ |x|, and |x| ^ \y\. Then this and Theorem 2.1 show that w0(x)

is bounded by

C1M?+n-'c,2|x|-'c'2-!'-1 + C2|x|'v-1-í'-'c + C3|x|n-í,-'£-1,

when |x| >M£ and p is an integer >max{0, b+k/2+l—n, n — b — k/2}. Hence we

obtain the assertion.

5. A criterion for existence of solutions of nonhomogeneous equations.    The

result in this section is of interest in itself. At the same time, we provide an applica-

tion in the next section.

Definition 5.1. Let (II) denote the class of the polynomials

Pis) = Pois) n  [PÁs)Y>,       seR\

satisfying conditions :

(i) N(Po) = 0;

(ii) P¡ e (77) and is irreducible for each 1 újúr;

(iii) no two of manifolds A(£j), 1 ̂ jér, are equal.
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By the definition, if Fe(II), then for each a e N(P), there is an integer ka,

lúka-¿r, such that a is in Nh...ika = N(Ph) n- --n N(Pika), 1 ̂  ix < ■ ■ ■ < ika £ r, and

a$ N(P()ifi^ix,..., 4a; for simplicity, assume i¡=j. Condition (b) in the definition

of (77) shows that there is an integer v = v(a,j), If^v^n, such that DSvP}(s)^0 at

s=a. By the Inverse Mapping Theorem there is a C°°-diffeomorphism t = t(s): ty

=Pj(s), tm=sm, m^v, l^m^n, which maps a neighborhood UaJ of a onto a

neighborhood VKa)J of t(a), and whose inverse mapping s=s(t) is given by

sv=sv(t) e C"(VKa)J), sm=tm. For any <p e Ccc(Rn), we can define, on UaJ,

D)<p(s) = DhP,<p(s) = Dl<p(tx,..., tv_x, sv(t), rv+1,..., rn)|f=i(s).

Then on Ua = (~\Xiiika UaJ, Dk>- ■ ■ Dkl(p(s) is meaningful.

Definition 5.1. With Fe(II) denote by (CP) the class of functions fe (D)

which satisfy the condition

(A) For l^ix<-<idúr, at each point of Nh..,id, £>£?■ • • D^[^{f}(s)]=0,

0èhd<rd,0âh,âr, l£j<d.

Theorem 5.1. With Pe(Tl), we have P( - iD)(D) = (CP).

Proof. It suffices to show that (A) is the necessary and sufficient condition about

the existence of a solution u e (D) of

(12) P(-iD)u=f      fe(D),

with/^0. We assume first that u e (D) is a solution of (12) with/#0. Then

v=&r{u} e S and (12) yields

g(s) = F{f)(s) = P(s)v(s) = P0(s) fi [PÀs)Y<v(s).

Hence condition (A) follows from the definition of D{<p and direct calculation.

Next we assume that the condition (A) holds. We require the following [12]

Lemma 5.1. Let Q(s) be an irreducible polynomial with complex coefficients and

let 31(0) be the set of zeros of Q(z) in n-dimensional complex space Cn. Let <p be an

entire function in C. Assume that the function <p/Q is defined in Cn andy/Q can be

extended as a holomorphic function to an open set Y intersecting 3Ï(Q). Then <p/Q

can be extended to Cn as an entire function.

Pick a point a e N(PX). The set of complex zeros of F, restricted to a complex

neighborhood U of a is an analytic set of complex dimension n—l. Since/(x) has

compact support, g = ^{f) can be extended to an entire function g(s+it) of

exponential type. The set A of common zeros of Px(s+it) and g(s+it) in U, with

small U, either coincides with the set of zeros of Px(s +it) in U or has complex

dimension fin-2. In the latter case the restriction of A to Rn must have real

dimension g« —2. But condition (b) of Definition 1.1 and (A) show that the

restriction is n — 1 dimensional. We have a contradiction. Hence whenever Px(s+it)

vanishes in U, g(s + it) must also vanish. From this and condition (b) at the point a,
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it follows that gis+it)/Pxis + it) can be extended as a holomorphic function to a

complex neighborhood of a. Using Lemma 5.1, we see that gxis)=gis)/Pxis) can

be extended to all of Cn as an entire function. It is well known [12] that this function

must be of exponential type and of the same type of g. This implies that

f = ^~1{gi} must have compact support. Now, Pxis)gxis) = Piis)gis)/Pxis)=gis),

so that we have Pxi — iD)f=f This and the definitions off and gx show that/

satisfies condition (A) with z-j replaced by rx — 1.

Next we consider (12) with/replaced by/ and P replaced by P/Px- Repeating

the above arguments rx+ • ■ • +rr— 1 times, we obtain a function ur e (£>) which

satisfies (12) with/=wr; i.e.

P0i-iD)u = ur,       ureiD).

Since Pois)^0 on An, we take ^{u}is) to be «F{wr}(s)/P0(j), which can be extended

to an entire function of the same exponential type as ^{tz,}. Therefore w is a func-

tion in (£>) and PQi — iD)u = ur. Thus £( — //))«=/. This completes the proof of the

theorem.

Corollary 5.1. Let the polynomial P e (77-) be irreducible and the function /^ 0

belong to (L>). Then the equation (12) has a solution in (/)) if and only z/^{/}(i) = 0

on A(P).

Remark. The sufficiency part of Corollary 5.1 appears implicitly in a proof

in [9].

6. A Liouville type theorem. As an application of the results in the first four

sections we obtain the homogeneous case of the equation Pi~iD)u—f which is a

result for the Liouville type theorem in partial differential equations. The non-

homogeneous case is just the application of the results in §5. In fact, W. Littman

[9] proves the similar assertions as those in Theorem 6.1 under somewhat restricted

conditions. But the method used there is quite different from the symmetrization

introduced in §1.

Theorem 6.1. Let the polynomial P belong to (II) and suppose that its irreducible

factors Pj belong to ink¡), k¡>Q, z/A(£i)^0. Let übe a solution of the equation (12)

such that uix) = oi\x\~d) as x-s-oo with d^n— 1 — min1SJár k¡¡2. Then u belongs

to (/)).•Furthermore tz = 0 z//=0.

We first give its restricted form to make its proof clear and simple in the following

Lemma 6.1. Let P be irreducible and belong to ink), k>O.IfueS'isa solution

of the partial differential equation (12) and K(x) = o(|x|"d), d^n—l-k/2, when

x -> 00, then ueiD). If, further, f= 0, then u = 0.

Proof of Theorem 6.1 (assuming Lemma 6.1). Let ux =P[i~iD)u with P[ =P/Px,

v=&r{u} and v1=&r{u1}. (12) implies that Supp 1; <=#(/>) which is bounded. Let
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xeC?iRn) he nonnegative,  x=l  on a neighborhood  of A(£).  Then, with

^P-^P'xx),

Ux = SF-^P'xv) = SF-^P'xx} * ^-x{v} =$!*«.

Hence zz1(x) = o(|x|"'1) when x—> +00. On the other hand, ux is a solution of the

equation Pxi — iL>)ux=f,fe (D), where Px is irreducible. Since

d ^ zz — 1 — min zc;/2 ̂  zz — 1 — zVx/2,
ISíár

Lemma 6.1. yields Ux e (/)) and Ux = 0 if/=0.

Repeating the above arguments r± + ■ ■ • +rr-1 times, we see that zz is a solution

of the equation P0i-iD)u=f0,f0 e (D). If/0 = 0, taking the Fourier transform of

each side shows that Supp J^zz} ̂ NiP0) =¿0, which implies zz = 0. If f0=£0, then

/0 e (/)) implies that g0=^{fo} is an entire function of exponential type. Moreover

PoV=go> NiPo)=0. Then vis)=g0is)/P0is) is well defined and entirely analytic on

Cn with the same type of growth as that of g0. Hence u = &r~1{v} belongs to (/)).

Proof of Lemma 6.1. First we assume/=0. Let v be the Fourier transform of u.

Then by taking the Fourier transform of each side of (12), we see that the support

of v is contained in A(P). Hence by the first assertion of Theorem 4.1, if uQ^Q,

then as x-^00, z/0(x) = O(|x|_i>) and u0ix)^oi\x\~b), b^k/2. On the other hand,

its last assertion implies that as x->- +00, zzo(x) = o(|x|""1_li"fc). Here m0 is the

inverse Fourier transform of the symmetrization v" of v with respect to A(P).

Since d^n- 1 -it/2, n- 1 -k-d^ -zc/2g -b. Hence zz0 = 0.

We claim that h(0) = w0(0). Denote x(s)e'*'s by £(5, x) and the inverse Fourier

transform of x£( , x) by w0( , x), where x is the function defined in Definition 1.2.

Since £( , x) is in S, w0( , x) is in S for all x e Rn. For any if1 £ S, with y = SF{>\>),

F-\x\){y) = i<pis),x2(s)eiys) = i<P,xEi ,y))

= i<l>, Woi , y)) =       0(x)wo(x, y) dx.
Jr"

But from the definition, w0(x, y) = ^{x2Kx+y), with x2 £ S. It is obvious that

uix)w0ix, y)yiy) dix, y)
jRZn

is absolutely convergent. Then by Fubini's Theorem,

iu,</1) = iv,x2<p) = iu,F-1{x2y})

= lu, I    </>(x)w0(x, )dx\ = Í I    uiy)wQi ,y)dy,y\.

Hence

zz(x) =       uiy)w0ix, y) dy.
JR"
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On the other hand, with w( ,y)=& 1{xE"( , y)} as the quadratic symmetrization

of F, Theorem 3.1 implies that

Ko(0) =   Í
JR"

But by the relation x=Xff> we have

u(y)w(0, y) dy.

V(0,y) = P-Wi ,y)}(0) = f   ei0sx(s)E"(s,y)
Ju'

ds

Therefore

= f   x°(s)E(s,y)ds=\   el0°x(s)E(s,y) ds = w0(0,y).
Ju' Jv°

"o(0)= f   u(y)w(0, y) dy = u(0).

Hence w(0) = 0. But we see that, for each yeRn, u(x+y) is a solution of the

equation ( 12). Then u(y ) = 0 for each y e Rn. That is, u = 0.

Next assume that/V 0 in (12). Let its Fourier transform be g. We claim that g

satisfies the condition in Corollary 5.1, i.e. condition (A) in Theorem 5.1 with

r = rx = l. Suppose, on the contrary, that there is a point aeN(P) such that

g(a)^0. Since g is entirely analytic on Cn, there is a neighborhood F of a in Rn

on which g(s)^0. We can assume K<= (/*. Let <p0 e C?(Rn) and X) 6 Cf(Rx) be

nonnegative, <p0(a)=l, Supp^o^^ and Supp *,<=[—1/y, l/j]. Set Cl (x(s))

=g(s)<p0(s). Then ye Cc°°(Fn), x£ = 0> and X^>0 on some neighborhood Vx of a

such that Vx<= V. By (12) Pv=g. We have for all;> 0, P[vxxÂP)] = gXXÁp)> which is

positive at a. Making the symmetrization with respect to F on both sides, we get

q[vxY(q)xÀ<l) = [gxYiqMql

Letj —>■ oo ; since xAq) converges to the Dirac-measure 8(q), we have 0 = [gx]"(0) > 0.

This is impossible. Hence g satisfies the condition in Corollary 5.1. Therefore there

is ux e (D) which is a solution of (12). But u — ux satisfies the condition for the case

/=0. We then have u=ux e (D). This is the assertion of the lemma.
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