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CRITERIA FOR ABSOLUTE CONVERGENCE OF FOURIER

SERIES OF FUNCTIONS OF BOUNDED VARIATION

BY

INGEMAR WIKC1)

Abstract. The usual criteria for establishing that a function of bounded variation

or an absolutely continuous function has an absolutely convergent Fourier series are

given in terms of the modulus of continuity, the integrated modulus of continuity or

conditions on the derivative. The relations between these criteria are investigated. A

class of functions is constructed to provide counterexamples which show to what

extent the existing theorems are best possible. In the case of absolutely continuous

functions a few new criteria are given involving the variation of the given function.

A couple of necessary and sufficient conditions are given for a class of absolutely

continuous functions to have absolutely convergent Fourier series.

1. Introduction. We study functions, /, with period 1 and their Fourier co-

efficients

i
e2Mnxf(x) dx.

A is the class of functions/such that 2-» ] cc„ [ <oo. The modulus of continuity of/,

co(f, h), is defined by

u>{f,h)=    sup \f(x1)-f(x2)\

and the integrated modulus of continuity a>p(f, h) is

a>p(f,h)= sup (f |/(x + r)-/(x)|^1/P-

We state here three basic criteria for a function f, of bounded variation (or

absolutely continuous), to belong to the class A. Theorems I and II are Zygmund's

[9, pp. 241-242], while Theorem III originates from Szasz [6]. The last theorem

applies to any function of L2.
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Theorem I. Let fbea continuous periodic function of bounded variation, satisfying

(1.1) § < oo.
71= 1

;

Then fed.

Theorem II. Let f be an absolutely continuous function with period 1, satisfying

(1-2) £|/'|log+ < °o-

ThenfeA.

Theorem III. Let fbe a continuous periodic function, satisfying

(1.3) I «a(/,«-W»< «3-
n=l

ThenfeA.

That Theorem I is weaker than Theorem III is an immediate consequence of

some properties of moduli of continuity. We shall prove in §6 that also Theorem II

is weaker than Theorem III. To make the paper self-contained and for references

we give the proof of Theorem III.

Proof of Theorem III. Let cn be the Fourier coefficients of /. We apply Parseval's

relation and get

4| |cn|2sin2«/7r= C\f(x + t)-f(x)\2dx.
- co Jo

Hence

CO

2 |cn|2 sin2 «/i7r ̂  wlifih).
— 00

Choosing h = 2~p~1 we obtain

2p

2   Ic^sin2^ ^ ^iC/^-"-1)

and thus

2"

2    |cn|2 ^ 2^(/,2-"-1).
n = 2"- 1

By Cauchy's inequality

2P /  2P \l/2

(L4) 2   |c,| S   2 W2^"1     ^ 2"'2Co2(/,2-"-1).

If 2?-i "2(/, it" W<°o. then 2» ?%#0f. 2-")<oo and thus 2J°-i <»•
The same estimations are valid for negative values of n and hence /e A. This

completes the proof.
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We want to examine to what extent the three theorems above are the best pos-

sible. §2 is used for developing some properties of the moduli of continuity and in

§3 we state a few lemmas.

In order to give some counterexamples we construct in §4 a function, which we

will use in the following sections.

Szasz has shown in [6], that condition (1.3) is best possible in the sense that if

22=i oj2(k~1) = 0(nw2(n~1)) and 2f ^2(n~1)/\/n = (Xi, then there exists a function

f eL2,f <£ A such that cu2(f h) 5= &2(h).

We show in §5 that a modified condition (1.3) is the best possible even for

absolutely continuous functions.

In §6 we show that condition (1.2) implies condition (1.3). We also give an ex-

ample of an absolutely continuous function, satisfying (1.3) but not (1.2).

- It is doubtful that the condition (1.1) is best possible. Salem has in [5] shown that

the exponent \ of win-1) cannot be replaced by a greater one. We prove in §7 a

theorem that contains Salem's theorem as a corollary. For absolutely continuous

functions we establish a stronger theorem than Theorem I.

In §8 we prove criteria when conditions are posed on cop(fi h),p>\. For further

theorems in this case see M. and S. Izumi [2].

There are two functions with the same modulus of continuity and yet one of the

functions belongs to A and the other does not. Thus there are no necessary and

sufficient conditions that f e A if we pose conditions on the modulus of continuity

only. The only necessary and sufficient condition that applies to a given individual

function is given by Zygmund [8]. See also Bari [1, pp. 181-183]. It reads,

Theorem IV. If the function f(t) satisfies the following conditions

(a) / belongs locally to A for every t=£0,

(b) / is odd in a neighborhood of zero, /(0) = 0,

(c) /' is nonincreasing in a right neighborhood of zero,

then f e A if and only if

We prove in §9 that the conditions (1.2) and (1.3) are necessary and sufficient for

/ to belong to A, under considerably weaker conditions on f than those of Theorem

2. Moduli of continuity.   We will need a few properties of m(f h) and o)p(f, h),

(2.1) wp(Cf, h)=\C\wp(f, h); C is a constant.

(2.2) cop<J+g, h) ̂  mJJ, h) + u>p(g, h).

The latter inequality follows from Minkowski's inequality and the definition of

a>p as a supremum.

IV.
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We now restrict ourselves to functions satisfying f(x+l)—f(x) = C. Then we

have, again using Minkowski's inequality,

\f(x + 2t)-f(x + t)+f(x + t)-f(X)\> ^ 2^ \f(x+t)-f(x)\' dxyP-

This implies

(2.3) «„(/, 2A) ̂  2^p(/, Ä).

Choosing h = 2~"~1 we obtain

(2.3.a) 2««üpC/, 2~") S 2" + ̂ p(f, 2"*"1).

If / is real, satisfies f(x+\)—f{x) = C and is monotone, then a=f(x + 2h)

—f(x + h) and b=f(x + h)—f(x) have the same sign. Using the inequality (a + b)p

^ap + bp we get

i/(x+20-/(*+o +/(x+1)-f(X)\* dxy ^ (2 £ i/(x+0^)1/P.

This implies

(2.4) a,p(f, 2h) ä 2»*<*,(f, h),

which for h = 2~"~1 gives

(2.4.a) 2«tuJ(/, 2« + 1w*(f, 2"9"1).

In particular for/? = 2 this means that (25,2cu2(/, 2~5))i1' is a nonincreasing sequence.

If / is of bounded variation, we denote by Vf(x) the total variation of / in the

interval [0, x]. Then Vf is nondecreasing and satisfies (2.3) and (2.4), / being

replaced by Vf.

We denote by V, the total variation of/on [0, 1], Vf(\). Then

fo\Ax+t)-f(x)\dx ^ tVf,

which implies

(2.5) <°i(/> h) ^ hVf.

Moreover, for 1 ̂ p^2,

fV(*+')-/Mla<k ̂ ^(X02-p C\f(x+t)-f(x)\"dx.
'0 '0

Thus

(2.6) a>2(f, h) ^ (Mf, h)f ~ p/2kc/; h)Y\

In particular, for p=\, this yields, using (2.5)

(2.7) ^(fh) s {o*f,hWXhVfr*
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3. Some lemmas and a useful function.

Lemma 3.1. Let 2i° an be a divergent positive series with nonincreasing terms.

Then 2i° min (an, l/n) diverges.

Proof. For any positive series with nonincreasing terms bn we use

n=2"

to find that

2 bn = co o 2 2"b2» = CO.

Thus

co co oo oo

2 an = co => 2 2pa2p = 00 =*■ 2 mm (2Pa2p> 1) = 00    2 mm t0"'       = 00 •
n=l p = 1 p = 1 1

The second implication follows from the fact that either 2"a2" is greater than one

infinitely many times, in which case the series to the right diverges, or 2pa2f is less

than one forp}^p0 in which case the two series are identical forp~^p0. This proves

the lemma.

Lemma 3.2. Let 2™=i fl? be a divergent, positive series, where aq^\. Then, for

every S>0, there exists an increasing sequence of positive numbers (qv)T, such that

(1 _S)9V + 1-9S g   aiv   ^ (i+S)«v + l-"v

a*, + i

and such that 25°= i ctQv diverges.

A proof of the lemma is given in Wik [7, p. 75].

Lemma 3.3. Let k be an odd, positive integer. Then

(3.1) S =

for all integers n.

k-l

2
r = 0

2 exp(27n(r« + r2)//c) = s/k

Proof. A straightforward calculation of \S\2.

In the following we shall often use a function Fm fc, defined by

Fm,fc(0) = 0,

dFmyk(x) = (m/k) exp (i6r) dx on r/kSx^r/k+l/m, r=0,..., k— 1,

dFm,k(x) = 0 elsewhere,

dFm<k{X+\) = dFmtk(x),

m>k are natural numbers, k is odd and 6r = 2-nr2jk.

The absolutely continuous function Fm>jc has the following property.



6 INGEMAR WIK [January

(3.2) The total variation of Fm>k on [0, 1] is 1. The modulus of continuity of

Fm>k satisfies

«»(F».*, 1/«) £ 2/«, n < k,

(3.3) = \\k, k ^ n ^ m,

= m/(nk), n > m;

"2(Fm,k, l/n) £ 2/n, n < k,

(3.4) ^ VWW, k ^ n ^ m,

g \/(2m)/n\/k, n > m;

wp(Fm,k> 1/") == 2/«, « < fc,

(3.5) ^ (2Ä;1-pn-1)1,p, k ^ n ^ m,

g 21/p/n1-1,pA;1'p-:t«-1,     « > w.

We note that with the variation of F, KF, KF(x) = Jo |rfF(x)|, we also have the

properties (3.2)-(3.5), Fm_k being replaced by VFm-k.

The Fourier-Stieltjes coefficients of Fm-k, for convenience written as F, satisfy

|c„| =      exp (2irinx) dF(x)
Jo

= (w/A:)|exp (/0o) + exp (Wj) exp (2irin/k)-r ■ ■ ■ exp (iQk-i) exp (2Trin(k— l)/k)\

film

i
exp (27T/nx) Jx

o

From Lemma 3.3 it follows that

m      I f1/m
|cn| =    \/k J     exp (27rinx) dx

Now it is easily seen that

lW*) ^ \cn\ ̂  l/Vk, O^nS m/2,
(3.6)

0 ^ |cn| ^ m/(n^k), n > m/2.

We observe that when « is approximately equal to m the three expressions

\/(oj(F, n-1)/«), w2(F,n~1)l^'n and |c„[/« have roughly the same size, namely

l/OV*).
This is the reason why the function Fm>fc turns out to be so useful in the construc-

tions we are going to make.

4. A counterexample.

Theorem 4.1. Let g be a nonincreasing function on (I, oo), such that 2'g(2l)) is

nondecreasing, 2q!2g(2q) is nonincreasing and

(4.1) 2 2"2g(2<) = oo.
9= 1
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Then there exists a function f absolutely continuous and with period 1, such that

<■>*(/> h)£Cg(l/h) and yet/M-

Proof. (Compare also the remark after Theorem 9.1.) We put g^t)

= min(g(f), l/VlogO- It 1S easy to verify that the function g has the same

monotonic properties as g and it follows from Lemma 3.1 that the series

co co / 1 \

2 2"'2gl(2")= 2 min 2^(2*), i log 2
q=l q=l \ HI

is divergent. Thus we may, without loss of generality, assume that g(2")^2~'"2q~1.

By hypothesis the terms of the series (4.1) form a nonincreasing sequence and

therefore (4.1) diverges if and only if 25° «5 = oo, where «„ = 5'I(25')1,2g(25,,).

By Lemma 3.2 there exists for every 8>0 a sequence (qv)i of natural numbers

such that

(4.2) (l-S)«»+i-«» ^    + 1 ^ (l + S)"v+i-"v
a<7v

and such that

(4.3) 2 "«» = GO-
v = l

We put wv = 25'» and choose 8 = £. Then by (4.2)

(4.4) 6*v-w ^ VK^^g^y^i) ^ 4,v-9v + 1
V(mv)g(mv)

and (4.3) is equivalent to

GO

(4.5) 2 V(mv)g(m,) log mv = co.
v = l

We also note that

(4.6) mv+1g(mv + 1)/mvg(mv) 5 (m^i/m,)1'8 ^*!-«. ä 4.

We shall now use the function F„wk from §3. For short we put jF». We

examine the absolutely continuous function

(4.7) F = J avFv,

where av~l/v2 and ^(kv) = av/(mll2g(mv)).

Since, by (4.4), v/(wv)g(wv) is decreasing rapidly, we can choose rVv as an odd

integer and 1 j{v +1 )2 <; av ̂  1 /i>2.

77je modulus of continuity a>2(F, n'1). Since the modulus of continuity is sub-

additive, (2.2), and since the series (4.7) converges uniformly, we obtain

oo

a>2(F, n'1) ^ 2 avw2(Fv, n"1).
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Using the estimation (3.4), we find formv_i^K^mv

(4.8) s 'f 2 ^7tti+ 2 ^ = i+n+iii.

Now all\/(mu)/\/(ku) = mllg(mll) is a sequence which by (4.6) is increasing ex-

ponentially, at least as 4". Furthermore au/\/{ku) = \/{mu)g{mß) and this sequence

is decreasing by (4.4) exponentially, at most as 4~\ The terms of the series I and II

are thus dominated by their last and first terms respectively. The series III is

obviously dominated by I for v^v0 and we obtain

(4.9) co2{F, n"1) $ (3mv.1g(mv.1))ln + (3V(mv)g(mv))IVn.

By assumption 2qg{2q) is a nondecreasing sequence. Therefore, if n = 2", mv-1^2q

^mv, mv.1g{mv.1)^2qg{2q). The fact that 2ql2g{2q) is a nonincreasing sequence

gives ^{m,)g{mv)^2ql2g{2q). (4.9) thus yields m2{F, 2^q)<i6g{2q), for 2q^mVo.

For an arbitrary h>0 we choose q such that 2~q~1 ^h^2~". Then

a>2(F,A) g <oa(F,2-*) g 6g(2*) ^ 12g(2" + 1) S 12g(A_1),

for h^ l//*n„0. We have proved

(4.10) wAF.-h) * tigfk-1).

The Fourier-Stieltjes coefficients of F. We use the estimations (3.6) and the

triangle inequality. For n in the interval mv^1/2^n^mv/2 we get

\d\ = \C e2ninxdF(x)  > —_fy   m"au + f    a" \-

Using the same properties of a^, ku and m„ as above, we find

Kl == iv/("Jv)g(wv)-2(wv_1)3/2g(wv_1)/K.

Estimating with an integral, we obtain

Since 2°=i VWo'W converges as a geometric series and log(mv/wv_!)

^Clogmv for some positive constant C, we deduce that the series 2n°=i i\dn\/n)

converges and diverges as 2v°°=i Vimv)g{mv) log mv. This series is, however, di-

vergent by (4.5) and thus

(4.H) 2 =
n = i n

Construction of f. The function F is absolutely continuous and satisfies the

conditions of the theorem except that it is not periodic. We consider the function/,

defined by

(4.12) f(x) = F{x)~ Ax,
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where A is a constant, chosen such that/(0)=/(l). Then/has period 1 and

\d'n\ =  ^ e2xinxf(x)dx  =^ J1 e2*inx df(x)

e2mnx= — IP
2tt« I J0 2nn

Thus by (4.11) the series 2f \d'n\ diverges and f $ A.

Moreover, by (2.2) and (4.10)

w2(fh) S co2(F,h) + a>2(Ax,h) = w2(F,h) + Ah ^ \2g(h) + Ah ^ 13g(A),

for h<h0. The function / thus has the required properties and the theorem is

proved.

Remark. The estimations for co2(F, h) and co2(f, h) are valid also for their total

variations VF and Vf respectively. Thus what we have constructed is in fact a

function f $ A, such that

(4.13) a>2(f h)    »3( Vf, h)    Cg(h -l).

5. Conditions on w2. In this section we will state a few consequences of the

construction in the previous section.

Theorem 5.1. Jfuisa function of bounded variation, such that 2™= i <°2( Vu, n ~ *)/\/«

diverges, then there exists a periodic function f absolutely continuous, and such that

co2(Vfh) ^ C<o2(Vu,h)

and yet f <fc A.

Proof. The divergence of 2"= i <"2(Vu, n~x)ly/n is equivalent to

2 2ql2w2(Vu, 2-") = oo.

Furthermore, Vu is a monotonous function and we know by (2.3.a) and (2.4.a)

that 2qw2{Vu, 2~q) and 2ql2w2{Vu, 2~q) are nondecreasing and nonincreasing

respectively. The theorem now follows from Theorem 4.1 if we put g(/z_1)

= cn2{Vu, h). Since

co oo

2 o>Ayf,rrx)ly/n < co => 2 ^(fn-^/Vn < co =>fe A,
n=1 n = 1

Theorem 5.1 gives the best possible criterion in terms of a>2(Vf n'1). However,

there are absolutely continuous functions / satisfying 2f w2(f, n~1)Vn<co ar>d

2f 0}2(Vf, n~1)\/n = co and thus functions u belonging to A by Theorem III and yet

satisfying the conditions of Theorem 5.1. Such a function can be constructed in the

following way. Let the graph consist of kp adjacent triangles with height ap/kp and

base \jmp, followed by another sequence of kp + 1 triangles, with height ap + 1/kp + 1

and base l/mp + 1, at a distance of kpjmp from the preceding triangles, p= 1, 2,....
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Then some computation shows that if we choose kp^co and kp = \og mp, the series

2 «j2(«, n~1)/-\/n converges as 2™ ap and the series 2 w2(Vu, n'^/s/n diverges as

2i° ctpkp. Compare also Theorems 9.1 and 9.2.

In proving Theorem 4.1 we needed the properties:

(5.1) 2"g(2q) is a nondecreasing sequence,

(5.2) 2ql2g{2") is a nonincreasing sequence.

The property (5.1) is by (2.3.a) satisfied by all the moduli of continuity op(f, 2~").

It is, however, an open question whether (5.2) is true for g{2") = oj2(/, 2~") if /is

absolutely continuous and q sufficiently great.

We introduce a modified modulus of continuity by defining

<4(f, h) = y/h sup w2(f t)/Vt.
tgfl

We establish a few properties of cuf. Obviously <o2(f h)j\/h is nondecreasing,

which implies that

(5.3) 2ql2a>%(fi 2'") is nonincreasing.

Moreover, by (2.3) co2(f 2h) ^ 2cu2(/ h) and thus

2q<o*(f,2-q) = 2q'2 sup m2(f,tWt

g 2-2*'2 sup u2(f,t/2)/Vt = 2q + 1a>*(f,2-q-i).

Therefore,

(5.4) 2qw*(f 2~") is nondecreasing.

It is an immediate consequence of the definition of cd* that oj2(f h)^u)%(f h).

We shall see that there is a large class of absolutely continuous functions satisfying

(5.5) u>t(f, h) S Cw2(f, h)

for some constant C, depending on /only.

Lemma 5.2. If f is a monotonous function, then (5.5) holds.

Proof. Choose q, such that 2 "q ~1 < h S 2 ~". Then

(5.6) a>*(f h) S <A(f, 2"*).

If 2-"-1<t^2-p we have

"2(f,t)IVt ^ V^2(f,2'p)-2pl2.

Thus

w*(f,2-q) = 2'q'2 sup oj2(ft)/Vt
(5.7) <=2-«

^ 2-2-«,2suptU2(/ 2~p)-2pl2.

By (2.4.a) the right-hand side of (5.7) is equal to \/2co2(fi 2~"). Combining (5.6)

and (5.7) and using the fact that 2q<x>2(f 2~") is nondecreasing, we obtain

<4(f,h) ^ V2a>2(f,2-q) ̂  2^2w2(f,2-q-^ ^ 2\/2u)2(f, h)

which concludes the proof.
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Lemma 5.3. If

lim o>2(fi h)/w2(Vf h) = d > 0,

then (5.5) holds.

Proof. The hypothesis implies that for some constant C2 we have

«a(>7, h) ^ C2oj2{f h),      0 ^ h ^ h0.

Thus for 0 ̂  h < hQ we have

*(fh) ^ <o*(Vfh) ̂  Co2{Vfh) g C C^ifh).

The first inequality follows from the fact that ai2(f t)^cu2(Vf, t) and the second

from Lemma 5.2. The lemma is thus proved.

Lemma 5.3 obviously includes Lemma 5.2 since for monotonous functions

w2(f, h) = a>2( Vfi h). It is easy to see that if /is piecewise monotonous and at no

point Df= — Df= co or if Re (/) and Im (/) have that property, then

Another case when a>2 and to* are equivalent is the following.

Lemma 5.4. If g(x) =f(x) + Ax is monotonous for some finite number A, then (5.5)

holds.

Proof. Since a>2 is subadditive, it follows that w* also is subadditive. Hence

<"*(/, h)^w*(g, h) + w^(Ax, h) = (x)%(g, h) + Ah. By Lemma 5.2 and since a>2(g, h)

^ C3h, we obtain w*{f, h) ̂  C>2(g, h) £ 6>2(/, h).

As a consequence of Theorems III and 4.1 we state the following theorem.

Theorem 5.6. If f is a periodic function satisfying 2™ w*(f « 1)/v/«<00> 'hen

f e A. Conversely, if u is such that 25° <«*(w, ljn)/\/n = cx>, there exists an absolutely

continuous function f £ A satisfying to2(f h) ^ Ccof (w, h).

Proof. The first part of the theorem follows from the fact that o}2^co*. The

second part follows from Theorem 4.1 since by (5.3) and (5.4), w*(u, h) has the

properties required by the function g of that theorem.

Remark. By Lemmas 5.4 and 5.5 the theorem is true, with u>% replaced by a>2

if the function u is such that either lim,1_0 + co2(u, h)/aj2(Vu, h)>0 or u(x) + Ax is

monotonous for some finite A.

6. The condition J0 \ f'\ log+ |/'| dx<co. In this section we prove that Theorem

II imposes stronger conditions on/ than does Theorem 5.6. For the proof we need

the following lemma.

Lemma 6.1. Let f be an absolutely continuous function on [0, 1],

lim w2(f h)/w2(Vf h) = 1.

En = {x; 0 ^ x ^ 1 and \ f'(x)\ > «} and
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Then for any a>\

CO

\f'\ log+ \f'\ dx < co o 2 Va, <co.
JO Q=l

Proof. We observe that £„2£n + 1, n=l,2,and put Sq = Ea<i\Ea« + i. Then

fl co I*

\f'\ log+ I/'] dx = 2      l/'l l°g+ l/'l
JO Q = 0 JSq

This series converges and diverges as

2 q f   |/'|^= f?(f    l/'l^-f l/'l«&V
« = 1       JS, 9=1     \Je0<i j£a«+l /

We use Abelian transformation on this series and deduce that it converges exactly

when 2™=i Ie « l/'l dx, or in our notation, 2™=i ^a*1S convergent.

Theorem 6.2. 7/"/ is an absolutely continuous function with period I, then

/"I CO

|/'| log+ l/'l c?x < co => 2 <»*(/, n'^IV" < «>•
JO n=l

Furthermore, there are functions f such that the series converges and the integral

diverges.

Remark. Since a>f Si a>2 the theorem remains true if w* is replaced by oj2. This

proves that Theorem II is weaker than Theorem III.

Proof. We suppose that J0 |/'| log+ |/'| dx converges and normalize / such

that Vf=\. Using the notations from Lemma 6.1 we put

fix) = gN(x) + hN(x)   where hN(x) = f        /'(?) dt
jENn[0,x]

and

Vf= VgN+ VhN   where VhN = f \f'(x)\ dx.
J ENn[0,x]

By (2.2)

(6.1) co2( Vfi n-l) g oj2( Vgf/, n~l) + »a(VhN, n-1).

The definition of VgN yields

Kgw(x+l/«)- VgN(x) = JJ'1"1 |/'(0| A ̂  f •

Using the fact that the total variation of gN is less than that of / we obtain

N
£ I vgN(x+^ - vgN(x)3 dx s £ £ I Kgw(x+^ - ^wW
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Hence

(6.2) oj.iVg^n-1) ;S VN/n.

The same estimation applied to VhN yields

(6.3) u>l(VhN, «-1) ^ m{VhN, n-1)- VJn,

where Vhfl is the total variation on [0, 1] of hN, i.e. VN. Obviously w(VhN, n-1)^ VN

and thus

(6.4) ^{Vh^n-1) ^ VN/Vn.

Combining (6.1), (6.2) and (6.4), we obtain w2(Vf, n-1)^WNjn+ VN\y/ri) for

every positive value of N. In particular,

(6.5) 2«l2w2(Vf, 2-«) S 2-"l2Nll2+ VN.

Fix a number a in the interval 1 < a < 2 and for each value of q in (6.5) we choose

N( = NQ) — 2"/q3. Then Nq>a" for q^q0 and thus VNq^Va*. We obtain from (6.5)

2*3a»a(F/, 2"«) ^ £?-3'2+F>.

By Lemma 6.1 then 2™=1 2.ql2w2(Vf, 2-")<oo, which is equivalent to

S «a(F/,fl-W» < *
n= 1

Since co^/, A) ̂  ü)f( P/, />) ̂  Ctu2( Vf, h), we have proved the first part of the theorem.

To find an example, where the integral diverges and the series converges, we

consider the function F of §4, (4.7).

By (4.8) we obtain, if avm\l2k^1/2 increases exponentially and avky112 decreases

exponentially, that

2   «o2(VF, n~x)\yjn ^ C(av_^l12 + avk~1/2 log mv).
Tl — Ttly — 1

An easy computation shows that our integral converges and diverges as the series

2v°=ißvlogWv Thus for example kv = 5v, mv = 22" and av = v~2 will generate a

function/as in (4.12) such that     w*(f, «-1)/v/«<co, but JJ |/'| log+ |/'| dx = ao.

7. Conditions on w. In this section we shall in some detail study conditions

involving w(f, n'1), that imply f e A. The existing theorem here is Theorem I by

Zygmund. Since by (2.7)

co2(f,n-i)/Vn ^ (co(f,n-i)Vfy2ln

it follows that Theorem I is weaker than Theorem III. The two theorems are not

equivalent, not even for absolutely continuous functions as we see in the following

theorem.
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Theorem 7.1. There is a periodic function f absolutely continuous and such that

(a) 2i° <°*W, k"1)/\/«<co and

(b) S0-i(c(/>ii-1))l'a/«=o0.

Proof. We construct a function Fof the form (4.7) by choosing av = v~2, kv = 32v,

mv = 23\ Then, by (4.8)

my

2   <*>2(YF, n'^lx/n ^ C(av_ 1k;}'x2 + a,k;1,2 log wv) = 0(av).

Thus 2? <"2( KF, n-1)/v/"<°o-

We construct /from F as in (4.12) and obtain (a).

By (3.3) and the fact that oo(f+g, h)^w(f h) — co(g, h) we have, for mv_1^n

<mv,

KV     « = 1 il = V + l/t«      v + 1 "

An estimation gives cu(F, «_1)^av/(2A:v) for «>20mv_i. Thus

2   KF,«"1))1'2/« ^ CfaA-TMogWv = CVflv
20mv-i

and therefore the series 2? (<"(F, «-1))1/2/« diverges as 2? Vfav)-

It is an easy task now to see that the series (b) diverges.

It is not known whether Zygmund's Theorem I is the best possible in the sense

that there exists an/^^4 and of bounded variation, satisfying w(f h)^w(g, h),

as soon as 2? (&>(g, " ~1)1'2/" =00• Salem [5] has shown that there exists such a

function/, if 2"=i °>(g, n~1)a + sV2jn = co. It might, however, very well be possible

that

(7.1) 2 a,(/'"'1)1°gW < oo
n= 1 n

is a sufficient condition for a periodic function / of bounded variation to belong to

A. The condition (7.1) is weaker than 2n°=i n~1))ll2/n<co as is seen by the

following implications:

2 ^(n-1)1'2/« < oo o 2 M2"p))1/2 < oo
i l

of 29(^(2_25))1/2 < oo => f 22V2-23) < oo
i i

£    .„ n. ^(n-^log«
o > />co(2-p) < oo o 2 —-^—— < oo.

The equivalences follow from the inequality

2^+1)a2»+i ^2°2 Pkap ^ 2c«+1Xfc+1)aa«
2?

which is valid if (ap)i is a nonincreasing sequence.
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The following example shows that we cannot have a weaker condition on a

function of bounded variation than (7.1) to be sure that f e A.

Theorem 7.2. Let u>(h) be a nondecreasing function such that (2pcu(2~p))5° is a

nondecreasing sequence and

(7.2) I Ä = oo.

Then there exists an absolutely continuous function f $ A such that w(f h) £ u>(h)

Proof. Condition (7.2) is equivalent to 2?=i 4"oj(2"2'!) = oo. We may, without

loss of generality, assume that the terms of this series are uniformly bounded. Using

Lemma 3.2 we obtain, for each 3>0, a sequence (qv)i, such that

f 4m2_2,v) = 2 «v = oo
v=l 1

and

(7.3) (l-8)«» + i-«» S — ^ (l + S)"v + i-v

We fix a S<£. It is easy to see that there exists a nonincreasing sequence (£>„)"

such that 2v°=i av\/bv = oo and 2v°=i avbv<co and bv + 1/bv —* 1 as v -> oo.

Now we construct a function Fo( the form (4.7) by choosing mv = 22,,) kv = 4"*bv

and £7v=A:vcfj(OTv_1) (we can always adjust bv such that kv becomes odd). Then

2 «v = 2 4"»c/j(mv 1)AV = 2 aA < °o-
v=l v=l 1

Thus F is absolutely continuous.

The Fourier-Stieltjes coefficients of F satisfy

v-l
\A I >     flv V   m"a" V

2\/kv    fyx n\/kß    „.v+i V7*«

for mv_1^n^mv. Condition (7.3) enables us to make the same estimations as in

§4 and it follows that 2? \dn\ln diverges as 2? (#v log ntv)/\/kv, i.e. as

00 CO

2 4,»to(w1r 1)v/6v = 2 «vW
1 i

The modulus of continuity of F satisfies the following inequality in mv^1=^n^mv,

obtained from (3.3):

-cf.os 2^+2?+ 2
<t=l     lin-u U = vn-U       11 = 1 + 1 «

Using the fact from (7.3) that miiajc^'i is increasing exponentially, and a^k^1 is

decreasing exponentially we get

(7.4)      oi(F, n"1) ^ c(g + ^g^i) = c(oJ(m-1) + ^ a>(w-_\)).
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Let p be the natural number, such that 2p<n^2p + 1. Then we have, since

2pa>(2~p) is nondecreasing,

(nV-i/»M»r-i) ^ 2p+1w(2-p-1)/n S 2w(2"p-1) ^ 2a>(«"1).

This inequality and the fact that a)(niv1)=^<n(n~1) and (7.4) yields w'F, «_1)

£ Cyo){n ~x). The function/, constructed as (4.12) is now a solution to our problem.

Corollary 7.3. If e>0 and u>(h) is a nondecreasing function such that 2pcu(2"p)

is nondecreasing and

(7.5) f Kn-^^/nOoglogn)'^^2 = oo
n=l

then there exists an absolutely continuous periodic function f $ A such that w(f h)

%io»(h).

Proof. Cauchy's inequality implies that ~2i (co(n~1)logn)/n = oo and the

existence of / follows from Theorem 7.2. Since we may assume that u>(n_1)

^(log n)~2, we can weaken the corollary by replacing (7.5) with

2 K«-1))1'7"log(a)(«-1))(1 + £)/2 = oo.
n=l

This constitutes an improvement of Salem's theorem.

Whether an absolutely continuous function / belongs to A or not obviously

depends on its modulus of continuity, co(f n'1). However, roughly speaking it also

depends on how many times |/(x + rt_1)—f(x)\ is of the same order as cj(f n"1).

One way of measuring this is to study oi2(fn~1), which leads to Theorem III.

Another way is to study the total variation of /. We choose the latter and prove

below a theorem that is stronger than Theorem I for absolutely continuous func-

tions /.

Theorem 7.4. Let f be an absolutely continuous periodic function and Vn = Vn(f)

=Ss, Lftol dx, where En = {x;0^x^l and\f'(x)\ > n}. IfZ? \/(VMf, «_1))/«
<co then fe A. Conversely, if g(n) is a nonincreasing function such that \/ng(n) is

nondecreasing and 2f g(n)/n = °°; there exists an absolutely continuous periodic

function f $ A such that \/{Vn{f)w(f h-1)) <;#(«).

Proof. As in §6 we write

f=gN + hN  where hN = \ f'(t)dt.
JENn[0,xl

We normalize/to have the total variation 1 on [0, 1] and obtain from (6.2) and (6.3)

(7.6) co2(fi n-1)^ y/N/n + V(VM>iN, n'*))/y/n.

Choose N=nj\ogi n. Then

Kä^b-^-oK/,»-1)! s "(g*,*-1) ^ (l0g«)"4.
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We see that

WiVMh^n-^-ViVMfin-1))] £ (log«)"2.

Combining this inequality with (7.6) and Theorem III we deduce that f e A if

(7.7) f ViYMf, I"1))/" < co,      ft == «/log4«.
n= 1

We want to prove that VN in this formula can be replaced by Vn. First we show

that condition (7.7) implies

(7.8) i vW,»-'» < w<
T     « log «

This follows from (7.7) if we observe that a>(f, «_1)s= VN + (log «)"*. Then

y VW,*'1)) < y V(^"-'))   y V(Kw + (log «)-*)
„-4i    n log«        ^ « ^        «log n

where the first summation is carried out for those n satisfying P"v>(log n)'2. Now

(7.8) follows from (7.7). (7.7) is equivalent to

CO /»CO

2 V(V2pipiu>(f, 2~p)) < oo   or      p(x-4 2log x)q(x) dx < oo
n = l J 1

where \/(Vz*)=p{x) and \/{oj(f, 2~x))=q{x). The convergence of the integral is

equivalent to

< CO.(7.9) J " p{x)q(x + 4 2log x) dx

But

I fN ,-N
0= IJ p{x)q(x) dx—J p(x)q(x + 42\og x) dx

q(x)dx-j q(x)dx+lOj * d*

1 10 [<^dt.

The integral to the right, however, converges as 2? v/(a,(2""))/« or

2™=1 VM»"'))/(" log n). By (7.9) and (7.8) it follows that $™ p(x)q(x) dx<cc,

which is equivalent to 2? VC^n^CA «_1))/«<co. This proves the first part of the

theorem.

To prove the second part, we make the construction (4.7) of a function F. The

assumption of the theorem gives 2? 5"g(25') = oo. By Lemma 3.3 we can choose a

sequence qv such that the sequence g(25,v) decreases exponentially with a quotient

between 6«»-»v + i and 4"v-«v + i and such that 2? 5"vg(25,!v) = co.
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We choose av = 3~\ mv = 25,v and A:v = (3vg(mv))~2. As before, we estimate the

Föurier-Stieltjes coefficients of F, dn, and get

t If* > C i ^ = i W = oo.
71=1    " v=l       V^v v=i

For mv.1^ngffl,we have Fn(F)<2"=« au = Cxav and

u=l   rlH.ß      « = v/t«     « = v + l "

These three series are dominated by their first, last and first term, respectively, and

we obtain

Fn(F)• w(F, n'1) S Catä/kv+mv^at-Jnkv-J.

Thus

V(Vn(FMF,n-')) ^ VC2(sWt^,.,W#,-i)).

The assumption that \/ng(n) is nondecreasing gives

(7-10) V(Fno>(F,«-1)) S C3g(n).

It is obvious that the function/constructed as in (4.12) also has the property (7.10)

and does not belong to A. This completes the proof of Theorem 7.4.

8. Conditions on u>p, p > 1. In this section we shall give two theorems, with

conditions on cop,p> 1. Forp = 2 they coincide with Theorem III.

Theorem 8.1. (p^2). Let f be a periodic function, absolutely continuous and

satisfying

2 (ojp(f, n~ 1))p/2(p"uK<p"2)/2(p"»«"<2p-3),2(p"X) < oo.
71= 1

Then f e A. Conversely, if g is a nondecreasing function, satisfying

(a) (2"g(2q))i is a nondecreasing sequence,

(b) (2p(g(2p))2<p " 1))f is a nonincreasing sequence,

(c) 2?£?(«)-""<2p"3),2(,'"1,<oo,

then there exists an absolutely continuous periodic function f $ A such that

oJp(/,«-1)p'2<p-1>(KnCf))<p-2>'2<p-1> <, g{n).

Proof. For the first part of the theorem we apply Holder's inequality to the

integral

f \f(x + t)-f(x)\2 dx = f \f{x + t)-f(x)\^-»\f(x + t)-f(x)\*-™-» dx.
Jo Jo

Then we obtain

°4(f, n-1)^ K(/; n- 1))p«p-n~7''2>«p"»
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Using the fact (2.5) that cu^fi tr^iVrfH, we find

(8.1) to2(f,n-r)/\/n £ »,(/,M'-iytfto-i)^-»/«»-i^-(»ii-3wa(p-i)j

The same method as in Theorem 7.4 now makes it possible to replace V, by Vn{f).

The theorem now follows from Theorem III.

The second part is proved by constructing a function F as in the second part of

Theorem 7.4. We put mv = 25"\ av = 3"v and av/\/kv = mll2ip-1\g(mv)yl2ip-1) and

the estimations (3.5) will give us the desired result.

Remark I. We observe that the estimation (8.1) has the consequence that

2   M/, «-l))p'2<p-l)«-<2p-3)/2(p-l) < go
n = l

implies that f e A if/is continuous, periodic and of bounded variation.

Remark II. Theorem 8.1 is true even for p = co. It is then Theorem 7.4.

For 1 ̂ p=\2 we have the following theorem.

Theorem 8.2. Let fbe a periodic function, absolutely continuous and such that

J KWrTM/,«-1)1""2^« < oo.
n= 1

Then f e A. Conversely, if g is a nonincreasing function, satisfying

(a) (2pg(2"))i is a nondecreasing sequence,

(b) (2pl2g(2p))i is a nonincreasing sequence,

(c) 2cT(«)/v/« = °o,

then there exists an absolutely continuous, periodic function f $ A, such that

">p(/,«"1)p/M/«"1)1"!"2 =^ g(n).

Proof. The first part follows from Theorem III and the second part is proved

similarly to Theorem 4.1.

Remark. The positive part of Theorem 8.2 is a special case of a theorem of M.

and S. Izumi [2].

9. Necessary and sufficient conditions.

Theorem 9.1. Let f be a realvalued absolutely continuous function, with period 1

and

En = {x; 0 g x ^ 1 and\f'(x)\ > n}.

Suppose that

(a) f'{x) is uniformly bounded below {above),

(b) the diameter of En, d{En), is 0(1/«).

Then a necessary and sufficient condition that f e A is

^ \f'\ log+ |/'| dx < co.fJo
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Proof. Without loss of generality, we may assume that the total variation of /,

V„ is 1 and /(0) = 0. We also assume that c*YFn) ^ 1/4«. Put f(x)=gN(x) + hN(x),

where

hN(x) = f'{t) dt + ANx = h*(x) + A„x,
JEf,n[0,x]

and AN is a constant chosen such that hN is periodic.

Obviously

AN £ {   \f'(x)\ dx = VN -> 0   as N-+ co.

Then

gN(x) = /'(?) dt-ANx = gt-ANx.
JC(.Es)ri[0,xl

The Fourier coefficients of / gN and hN are denoted by an, an(gN) and an(hN)

respectively. Then by (1.4)

2"

2    \an(gN)\ tk 2^^, 2""-^

But

wa(g*, 2-*"1) ^ W2(^,2-"-1) + cU2(^x,2-p-1) ^ V^^ + ^nA^1

for any N>0. We choose N=2p/pi and obtain

„ jL KigN)l - 2^ + 2^'

Hence,

(9.1) 2 ^ i for/?

The Fourier coefficients of hN satisfy

«»(«*) = -yV f^Me2^* = C h*Xx)e2"inx dx
imn J o Jo

(9.2)

Since En=>En + 1, «=1,2,..., we have

(9.3)     f      /'(x)e2,linx c/x = f   /'(x)e2*in*c£c+f f'{x)e2ninx dx.
jE2Plpi JE2p jE2Plpi\E2p

From assumption (a) it follows, for sufficiently large values of p, that the in-

equality/'^) > 2" >0 holds on E2p. Since </(£>)^2"(p + 2), we find, for «^2P,

(9.4) f   /'(*)ea*"~ </x  ä -L f   /'(*)     = V2p/V2.
JE2P V ^ JB2P
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As before, we use the notation

Vn = f   \f'(x)\ dx.

We note that

(9.5) I f f'<x)e2ninx dx
I je2Plp4\e2P

Combining (9.l)-(9.5) we find

2" 2" 2"

2 kl ^ 2 MM- 2
2p-i 2P-1 2p_1

/    2P       1    \ 1

for sufficiently large values of />. It follows that

(9.6) 2 H = 00   if 2 (0 + l/V2)IV-IW) = co.
n=l p = l

The function v(x) = K2* is nonincreasing and positive. Thus

P rP

2 ^"/p4 =s     v(x - 4 2log x) dx + vipx)
(9.7) Pl Jpi

=i v(t)dt + ± v{t)dt,
ZJP1-421ogp1 JPl

if/>i>20. Also

(9.8) (P v(t)dt zfv(p) = f V2p

(9.7) and (9.8) yield

p 11       i \ \      i 1T\P

2((1 + V2)^-M * (1+V2-2)l^-C(/,l)-

From (9.6) we now deduce that 2? diverges if XT F2p diverges. By Lemma 6.1

this happens if and only if

r\f'\ log+ \f'\ dx = co.

This proves the necessity part of the theorem.

The sufficiency follows from Theorem II but can also easily be deduced from the

estimation XIp-1 \an(hN)\ ̂  V2p,pi combined with (9.7) and (9.8).

In the proof of the theorem, we have for convenience used the assumption that

the diameter d(En)S 1/4«. To prove the theorem with 1/4« replaced by 0(1/«) we

replace the summations Xv--1 \an\ by Wn\ f°r a suitable fixed number k.
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Remark 1. The condition that /is realvalued can be removed if we change

condition (a) to

(a') (Re (/))' and (Im (/))' are bounded from below or above.

Remark 2. If/has the properties (a) and (b) of Theorem 9.1 in a neighborhood

of a finite number of points in (0.2) and belongs locally to A elsewhere, the con-

dition

f l/'l log+ |/'| dx
Jo

is still necessary and sufficient. This is seen if we isolate the critical points by multi-

plying/ with a suitable function in A, which is = 1 in a neighborhood of a critical

point and 0 outside another neighborhood and has bounded derivatives.

Remark 3. The Condition that/' is bounded below (above) can also be weakened.

The property we use is

f f>e2ninx dx\l [   \f'{x)\ dx 5 C > 0   for n > n0.
I JEn I / Je„

See also Theorem 9.2 below.

Remark 4. To see that Theorem IV of Zygmund is a special case of Theorem 9.1

we simply observe that for any function/ such that/' is nonincreasing in 0<x< 8

and/(0) = 0, we have f(x) =f{x)-/(0)^xf'(x). Thus f'{l/n)^n, for n>n0. It

follows that the conditions of Theorem 9.1 are satisfied in a neighborhood of 0

if/is odd,/' is nonincreasing in (0, 8) and bounded in [8, 1 — 8].

Corollary. Under the assumptions of Theorem 9.1, a necessary and sufficient

condition that fe A is

{9.9) f Wat/,h-W« < oo.
n= 1

Proof. The sufficiency follows from Theorem III and the necessity from the

fact, proved in §6, that (9.9) is implied by the condition

f1 i rt\ i     4. 1 rn jf log+ /' dx < co.
Jo

In fact we may, if we wish, change w2 to to* (§5) in (9.9).

Remark. It is possible to use a simple construction, based on Theorem 9.1, to

prove Theorem 4.1 with somewhat stronger assumptions. However, we need the

function constructed in §4 on several other occasions, particularly in §7. We have

therefore preferred to use mainly the same type of counterexamples throughout

the paper.

In the case where/' is not bounded below (above), for example if/is even, we use

a similar method to prove the following theorem.



1972] ABSOLUTE CONVERGENCE OF FOURIER SERIES 23

< oo,

Theorem 9.2. Iff has period \ , f is bounded in (8, 1 — 8) for every 8>0, d(En)

= 0(1/«) and

(9.10) log+ log+ I/'I dx

then f 'e A if and only if

(9.11) I I f f'(x)
p=i I j£2''

< co.

Remark. For even functions/the terms of the series (9.11) are all zero, whence

(9.10) in this case is a sufficient condition that/e A.

Proof of Theorem 9.2. We consider only positive values of «; the negative

integers are treated similarly. For the sake of convenience we may as before suppose

that d(En)^ 1/4«. Using (9.2) and the fact that \eu- 1| <2S, if S<2, we find, for

N=2"lpi and 2p~1=in^2p,

1

277i'«

«A)+^; jg f'(x)e*«»*dx

f  f'(x)e™™ dx-^-r f ^2f   |x| |/'(*)|
JE," JeqP JE2pJE2p jctrui Je2v

The theorem thus is proved if we can show that

2 (*W-*V) < °o

< 00.

(9.12)

and

(9.13) I 2" f    |*| |/'(*)| dx
p=l */E2p

We put V2* = v(x) and find

2 *V,P4 i €i+ f y(^-42logx)dx ^ C2+ f
10 JlO J]

p »(/) A

Thus

f (v(x-42logx)-v(x))dx ^ C3+40 P (u(0/0
JlO JlO

The last inequality follows from the fact that

j* I/'I log+ log+ \f I <fc

a/ < oo.

< co o y —— < oo.

(Compare Lemma 6.1.) This proves (9.12).

To prove (9.13) we observe that

r2-f

to 1-8//

2pf    |*| |/'(*)| <fr £ 2* f    |x||/'WI^ + 2pf Wl/T<*)i'ie.
j£2p ^0 J-2-p

two integrals are treated similarly; we pick the first.

2P f ' |jc| \f'(x)\ dx^2pf 2-« f '   \f'(x)\ dx.
JO <j=p J2-«-1
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We reverse the order of summation and find

I 2p f P |x| |/'(*)| dx ̂  I 2"« f '   |/'(x)| dx 2 2P
1 JO (1=1 J2-1-1 p=l

^ 2 11 |/'(x)| </x < oo.
Jo

This concludes the proof of the theorem.

If / is subject to more restrictive conditions than in Theorem 9.2, a stronger,

sufficient condition can be obtained. It has been pointed out by Zygmund in [8]

and generalized by Sz.-Nagy in [4].

Theorem 9.3 (Zygmund). Let f have period 1 and be even. If, for some S>0,

/is convex in (0, 8) and f is bounded in (8, 1 — 8), then f e A.

Corollary. Let w(h), h>0, be any positive function tending to zero with h. Then

there exists an absolutely continuous function f's A such that a>(f, h) 2; w(h), h S 8.

Proof. Choose / as a convex majorant of tu(«) in (0, S),/(0) = 0, make it even in

[-8, 8] and define it linearly in [8, 1 —8]. Then we have a function satisfying the

conditions of Theorem 9.3 and obviously a>(f, «)=/(«) ä co(«).

Compare [1, p. 178].

Remark. Using Theorems 9.1 and 9.2 or 9.3 it is easy to find examples of even

functions belonging to A such that the corresponding odd function does not belong

to A. Kahane has in [3] proved that there exists odd functions (not of bounded

variation) belonging to A such that the corresponding even function does not

belong to A.
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