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CRITERIA FOR ABSOLUTE CONVERGENCE OF FOURIER
SERIES OF FUNCTIONS OF BOUNDED VARIATION

BY
INGEMAR WIK()

Abstract. The usual criteria for establishing that a function of bounded variation
or an absolutely continuous function has an absolutely convergent Fourier series are
given in terms of the modulus of continuity, the integrated modulus of continuity or
conditions on the derivative. The relations between these criteria are investigated. A
class of functions is constructed to provide counterexamples which show to what
extent the existing theorems are best possible. In the case of absolutely continuous
functions a few new criteria are given involving the variation of the given function.
A couple of necessary and sufficient conditions are given for a class of absolutely
continuous functions to have absolutely convergent Fourier series.

1. Introduction. We study functions, f, with period 1 and their Fourier co-
efficients

1
o = J €25 ((x) dx.
V]

A is the class of functions f'such that 32, |«,| <co. The modulus of continuity of £,
w(f, h), is defined by

wlfil) = sup_ /(%) =f(xs)l

and the integrated modulus of continuity w,(f, A) is

antrih) = sup ([ 140 -rr)

We state here three basic criteria for a function f, of bounded variation (or
absolutely continuous), to belong to the class 4. Theorems I and II are Zygmund’s
[9, pp. 241-242], while Theorem III originates from Szasz [6]. The last theorem
applies to any function of L,.
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THEOREM 1. Let f be a continuous periodic function of bounded variation, satisfying

(.1 nz Vo, n=Y))jn < .
Then f€ A.

THEOREM II. Let f be an absolutely continuous function with period 1, satisfying

1
(1.2) f If'| log* |f'] dx < co.
0
Then f€ A.

THEOREM I11. Let f be a continuous periodic function, satisfying

.3) il walfy n-Y)v/n < .
Then f€ A.

That Theorem I is weaker than Theorem III is an immediate consequence of
some properties of moduli of continuity. We shall prove in §6 that also Theorem II
is weaker than Theorem III. To make the paper self-contained and for references
we give the proof of Theorem III.

Proof of Theorem III. Let ¢, be the Fourier coefficients of . We apply Parseval’s
relation and get

42 lea|? sin? ntm =L1 fGe+1)—f()2 dx.

Hence

NMs

[en|? sin? nhm < wi(f, h).

8

Choosing h=2"?-1 we obtain
op

9 .:g N
3 leltsint 5

A

wi(f, 27777

and thus

2r

D eal? £ 203(f,2777Y).

n=2°r-1
By Cauchy’s inequality
2 2° 12
(1.9 Z lea| £ (z |¢'n|3'2"_1) < 272y(f, 277 1),
n=2r-1 2r-1

If 321 wa(f, n™Y)/v/n< oo, then 3§ 272wy(f, 277) <00 and thus >, |c,| <oo.
The same estimations are valid for negative values of n and hence fe€ 4. This
completes the proof.
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We want to examine to what extent the three theorems above are the best pos-
sible. §2 is used for developing some properties of the moduli of continuity and in
§3 we state a few lemmas.

In order to give some counterexamples we construct in §4 a function, which we
will use in the following sections.

Szasz has shown in [6], that condition (1.3) is best possible in the sense that if
Sho1 wak ) =0(mwy(n~1)) and 37 we(n~1)/4/n=0c0, then there exists a function
feL,, f¢ A such that wy(f, h) < wy(h).

We show in §5 that a modified condition (1.3) is the best possible even for
absolutely continuous functions.

In §6 we show that condition (1.2) implies condition (1.3). We also give an ex-
ample of an absolutely continuous function, satisfying (1.3) but not (1.2).

- It is doubtful that the condition (1.1) is best possible. Salem has in [5] shown that
the exponent 4 of w(n~') cannot be replaced by a greater one. We prove in §7 a
theorem that contains Salem’s theorem as a corollary. For absolutely continuous
functions we establish a stronger theorem than Theorem 1.

In §8 we prove criteria when conditions are posed on w,(f, ), p> 1. For further
theorems in this case see M. and S. Izumi [2].

There are two functions with the same modulus of continuity and yet one of the
functions belongs to 4 and the other does not. Thus there are no necessary and
sufficient conditions that f€ A4 if we pose conditions on the modulus of continuity
only. The only necessary and sufficient condition that applies to a given individual
function is given by Zygmund [8]. See also Bari [1, pp. 181-183]. It reads,

THEOREM 1V. If the function f(t) satisfies the following conditions
(a) f belongs locally to A for every t+#0,
(b) fis odd in a neighborhood of zero, f(0)=0,
(c) f' is nonincreasing in a right neighborhood of zero,
then f € A if and only if

1
f () log L dx < co.
0 X

We prove in §9 that the conditions (1.2) and (1.3) are necessary and sufficient for
f to belong to 4, under considerably weaker conditions on £, than those of Theorem
Iv.

2. Moduli of continuity. We will need a few properties of w(f, h) and w,(f, h),
pzl

(2.1) w,(Cf, h)=|Clw,(f;, h); C is a constant.

22) w,(f+8 B Sw,(f, B +wyg, h).

The latter inequality follows from Minkowski’s inequality and the definition of
w, as a supremum,
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We now restrict ourselves to functions satisfying f(x+1)—f(x)=C. Then we
have, again using Minkowski’s inequality,

1/p

([ v+ 20—sro+sern-r@pP ax) s 2] o0 -1 &)

This implies

2.3) wy(f; 2h) £ 2w,(f, h).
Choosing A=2-9"1 we obtain

(2.3.a) 2%,(f, 279 S 29w, (f, 27971,

If f is real, satisfies f(x+1)—f(x)=C and is monotone, then a=f(x+2h)
—f(x+h) and b=f(x+h)—f(x) have the same sign. Using the inequality (a+ b)”
za’+ b? we get

1/p

(J: |f(x+2t)—f(x+t)+f(x+t)—f(x)]”dx)llp > (2J:|f(x+t)—f(x)|”dx)

This implies

24 wilf, 20) Z 27w, (f; B),
which for h=2-2"1 gives
(242) 23,279 2 27, 2707,

In particular for p=2 this means that (292wy(f, 279))7 is a nonincreasing sequence.
If fis of bounded variation, we denote by Vf(x) the total variation of fin the
interval [0, x]. Then Vf is nondecreasing and satisfies (2.3) and (2.4), f being
replaced by Vf.
We denote by V; the total variation of fon [0, 1], ¥f(1). Then
1
[ rern-rwlax s w,
]
which implies
2.5) wy(f, h) £ hV,.

Moreover, for 1<p=<2,

[ U n=reol dx s w07 [ LG+ =001 .

Thus

(2.6) wy(f, ) £ (o(f; W) ~*%(w,(f, B2
In particular, for p=1, this yields, using (2.5)

2.7 wg(fs B) = (w(f, B3RV V2.
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3. Some lemmas and a useful function.

LemMMA 3.1. Let 37 a, be a divergent positive series with nonincreasing terms.
Then 3¢ min (a,, 1/n) diverges.

Proof. For any positive series with nonincreasing terms b, we use

op+1
2Phgre1 < Z b, < 27.bye
n=297
to find that
Dby =00 > 2%hp = o.
1 p>1
Thus

0 0 @ 0
> a,=00= Y 2%ap = = > min(2ay, 1) = 00 = > min (a,, 1/n) = .
n=1 p=1 r=1 1

The second implication follows from the fact that either 27a,» is greater than one
infinitely many times, in which case the series to the right diverges, or 2”a.» is less
than one for p = p, in which case the two series are identical for p = p,. This proves
the lemma.

LeMMA 3.2. Let 3., a, be a divergent, positive series, where a,<1. Then, for
every 8>0, there exists an increasing sequence of positive numbers (q,)7, such that

(1=8)nr-% < 22 < (14800175

Ay +1

and such that 33, a,, diverges.
A proof of the lemma is given in Wik [7, p. 75].

LeMMA 3.3. Let k be an odd, positive integer. Then

k-1

(3.1) S=| 3 expQui(rn+r2k) | = vk

r=0

Jor all integers n.

Proof. A straightforward calculation of |S|2.
In the foilowing we shall often use a function F,, ;, defined by
Fm,k(o) =0,
dF, (x)=(m[k) exp (i6)dx on r[k<x=rlk+1/m,r=0,..., k-1,
dF, x(x)=0 elsewhere,
dFy i (x+ 1) =dFy (x),
m> k are natural numbers, k is odd and 6,=2nr?/k.
The absolutely continuous function F, ; has the following property.
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(3.2) The total variation of Fy,, on [0, 1] is 1. The modulus of continuity of
F, ;. satisfies

w(Fp,p, 1/0) £ 2/n, n<k,
(3.3) = 1/k, k<nszm,
= m/(nk), n>m;
wo(Fp s 1/0) £ 2/n, n <k,
(3.4) S V2 (mk), k=nz=m,
= vVC2m)inv/k, n > m;
@p(Fp i, 1/0) < 2/, n<k,
3.5) < (2kt-Pn—Y)lr, k<nzsm,

< Wl -Upklp-1p-1 g 5o

We note that with the variation of F, VF, VF(x)= 3 |dF(x)|, we also have the
properties (3.2)—(3.5), F, i being replaced by VF, ,.
The Fourier-Stieltjes coefficients of F, ;, for convenience written as F, satisfy

lea| = Ul exp (2winx) dF(x)
= (mjfk)|exp (i6,) +exp (i6,) exp (2min/k)+ - - - exp (i0,,) exp (Rmin(k —1)/k)|

1/m
j exp (2winx) dx
o .

.

From Lemma 3.3 it follows that

lea| = % \/k“:lm exp (2minx) dx |
Now it is easily seen that
1@Vk) < leal S 1K, 05nsmp
0 < || € m/(nvk), n>m|2.
We observe that when n is approximately equal to m the three expressions

V/(w(F, n~Y)n), wy(F,n"*)[+/n and |c,|/n have roughly the same size, namely
1/(n\/k).

This is the reason why the function F, ; turns out to be so useful in the construc-
tions we are going to make.

(3.6)

4. A counterexample.

THEOREM 4.1. Let g be a nonincreasing function on (1, ©), such that 2%g(2%) is
nondecreasing, 292g(2%) is nonincreasing and

4.1 2 292g(29) = 0.
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Then there exists a function f, absolutely continuous and with period 1, such that
wy(fy h) £ Cg(1/h) and yet ¢ A.

Proof. (Compare also the remark after Theorem 9.1.) We put gy(¢)
=min (g(¢), 1/4/tlog t). It is easy to verify that the function g has the same
monotonic properties as g and it follows from Lemma 3.1 that the series

D, 29%,(2) = > min (2“’2g(2“), Liog 2)
q=1 q=1 q

is divergent. Thus we may, without loss of generality, assume that g(29) <2-92g-1,
By hypothesis the terms of the series (4.1) form a nonincreasing sequence and
therefore (4.1) diverges if and only if >3 «, =00, where «,=5%(25%)}/2g(25%).
By Lemma 3.2 there exists for every >0 a sequence (g,) of natural numbers
such that

4.2) (1=8)w+1=% < T41 < (1 4 §)B41-9

%g,

and such that

4.3) D o, = .
v=1

We put m,=2°%% and choose §=3%. Then by (4.2)

4y =y 41 \/(mv+1)g(mv+1) 4,- 4y,
@9 6t S T gmy = 4

and (4.3) is equivalent to

(45) Zl \/(mv)g(mv) log m, = oo.
v=

We also note that

(4.6) My 418(my 1)myg(my) Z (my,ifm,)V2-(F)H+17% 2 4,

We shall now use the function F,, , from §3. For short we put F, , =F, We
examine the absolutely continuous function

@7 F=73 aF,
v=1

where a,~1/v? and +/(k,)=a,/(m}?g(m,)).

Since, by (4.4), v/(m,)g(m,) is decreasing rapidly, we can choose k, as an odd
integer and 1/(v+1)2<q, 12

The modulus of continuity w,(F, n=*). Since the modulus of continuity is sub-
additive, (2.2), and since the series (4.7) converges uniformly, we obtain

wz(F, n'l) = z avwz(Fv:n_l)'
v=1




8 INGEMAR WIK [January

Using the estimation (3.4), we find for m,_, <n=<m,

(4.8)  wy(F,n"Y) gug "‘;1‘\//(5(’:’)“) 2 ‘/82‘3 2 % = I+II+1IL

Now a,v/(m,)/+/(k,)=m,g(m,) is a sequence which by (4.6) is increasing ex-
ponentially, at least as 4*. Furthermore a,/+/(k,)=+/(m,)g(m,) and this sequence
is decreasing by (4.4) exponentially, at most as 4. The terms of the series I and II
are thus dominated by their last and first terms respectively. The series III is
obviously dominated by I for »=v, and we obtain

4.9) wy(F, n™%) = (3my_18(m,_1))/n+(B+/(m,)g(m,)/v/n.

By assumption 29%(29) is a nondecreasing sequence. Therefore, if n=2% m,_, <29
<m,, m,_1g(m,_,)<£2%(2%. The fact that 292g(29) is a nonincreasing sequence
gives 4/(m,)g(m,) =2%2g(2%. (4.9) thus yields wy(F, 279) = 6g(2%), for 2¢zm,,.

For an arbitrary >0 we choose g such that 279" <4 <2-% Then

wy(F, h) S wy(F,279) £ 6g(27) = 12g(27*7) = 12g(h7Y),
for h<1/m,,. We have proved
(4.10) wo(F, h) < 12g(h~Y).
The Fourier-Stieltjes coefficients of F. We use the estimations (3.6) and the

triangle inequality. For #n in the interval m,_,/2<n<m,[2 we get

v-1 ©
sy (2 it 2 Vi)
Using the same properties of a,, k, and m, as above, we find

|dal 2 3v/(my)g(my)—2(m, _1)%%g(m, _1)/n.

Estimating with an integral, we obtain

my/2 dn |

n=my_y2 N

Id | ‘f eZninx dF(X)

V(m,)g(m,) log z(mv 1)3 *g(m, 1)

>
= - -1

W —

Since >, v/(m,)g(m,) converges as a geometric series and log (m,/m,_;)
2= C log m, for some positive constant C, we deduce that the series >~ (|d,|/n)
converges and diverges as >,%; v/(m,)g(m,) log m,. This series is, however, di-
vergent by (4.5) and thus

(4.11) > dal _
n=1 N

Construction of f. The function F is absolutely continuous and satisfies the
conditions of the theorem except that it is not periodic. We consider the function f,
defined by

4.12) f(x) = F(x)—Ax,
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where A4 is a constant, chosen such that f(0)=/(1). Then f has period 1 and

1

i = | " emnspo a
0

1

2mn

1 Lo
— iﬂ—n \f e2mnx df(X)

]

_ ldul.
27n

1
f ezninx dF(x)
/]

Thus by (4.11) the series X7 |d,| diverges and f¢ A.
Moreover, by (2.2) and (4.10)

ws(f, h) £ wy(F, h)+wa(Ax, h) = wy(F, h)+Ah < 12g(h)+ Ah = 13g(h),

for h<h, The function f thus has the required properties and the theorem is
proved.

REMARK. The estimations for w,(F, 4) and wy(f, ) are valid also for their total
variations VF and Vf respectively. Thus what we have constructed is in fact a
function f¢ A, such that

(4.13) wa(f, h) £ wo(Vfo h) = Cg(h™?).

S. Conditions on w,. In this section we will state a few consequences of the
construction in the previous section.

THEOREM 5.1. Ifuisa functionof boundedvariation,suchthat 3 7. wy(Vu,n=1)/4/n
diverges, then there exists a periodic function f, absolutely continuous, and such that

wo(Vf, h) £ Cwy(Vu, h)
and yet f¢ A.
Proof. The divergence of >, wy(Vu, n=1)/4/n is equivalent to
> 292uy(Vu, 279 = co.

Furthermore, Vu is a monotonous function and we know by (2.3.a) and (2.4.a)
that 2%,(Vu, 279 and 2%2wy(Vu, 279 are nondecreasing and nonincreasing
respectively. The theorem now follows from Theorem 4.1 if we put g(h~?)
=wy(Vu, h). Since

’2:1 wy(Vf, n™Y)/4/n < :>n21 wy(f, n"Y)//n < 0 = fe A,

Theorem 5.1 gives the best possible criterion in terms of wq(Vf, n~1). However,
there are absolutely continuous functions f; satisfying > w,(f, n~*)4/n< o0 and
21 wo(Vf, n™1)4/n=o00 and thus functions « belonging to 4 by Theorem III and yet
satisfying the conditions of Theorem 5.1. Such a function can be constructed in the
following way. Let the graph consist of k, adjacent triangles with height a,/k, and
base 1/m,, followed by another sequence of k,,, triangles, with height a, , ,/k, 1
and base 1/m,, ,, at a distance of k,/m, from the preceding triangles, p=1, 2, .. ..
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Then some computation shows that if we choose k,, — o and &, =log m,, the series
> wy(u, n1)/4/n converges as >3 a, and the series > wy(Vu, n~1)/+/n diverges as
2% ayk,. Compare also Theorems 9.1 and 9.2.

In proving Theorem 4.1 we needed the properties:

(5.1) 2%(2%) is a nondecreasing sequence,

(5.2) 292¢(2% is a nonincreasing sequence.

The property (5.1) is by (2.3.a) satisfied by all the moduli of continuity w,(f; 279).
It is, however, an open question whether (5.2) is true for g(29)=wy(f, 279 if fis
absolutely continuous and ¢ sufficiently great.

We introduce a modified modulus of continuity by defining

W3(f, 1) = Vhsup walf, DIVt

We establish a few properties of w¥. Obviously wi(f, h)/v/h is nondecreasing,
which implies that

(5.3) 292w¥(f, 279 is nonincreasing.

Moreover, by (2.3) wy(f, 2h) = 2wy(f, h) and thus

2%w3(f, 279 = 292 sup wy(f, 1)/t
t<2-a
< 2:292 sup wo(f; 1/2)/v/t = 27+ wi(f,2797Y).
ts2-9

Therefore,

(5.4) 29%%(f, 279) is nondecreasing.

It is an immediate consequence of the definition of wi that wy(f, k) £ wi(f, A).
We shall see that there is a large class of absolutely continuous functions satisfying

(5.5) w3(f, h) = Cawy(f, h)
for some constant C, depending on f only.

LeMMA 5.2. If fis a monotonous function, then (5.5) holds.

Proof. Choose g, such that 27771 <A <279 Then
(5.6) w3(f, h) £ 03(£,279).
If2-7-1<¢<2-? we have

ws(fs DIV S V2wy(f,277)- 272,

Thus
W27 = 2792 sup wa(f; )/t

< 2-279% sup wy(f, 277)- 272,

p2q
By (2.4.a) the right-hand side of (5.7) is equal to 4/2wy(f, 2~%). Combining (5.6)
and (5.7) and using the fact that 2%w,(f, 279 is nondecreasing, we obtain

wi(, 1) £ V20q(f,279) = 2v2wy(f, 2797Y) £ 24/ 204(f, B)

(5.7)

which concludes the proof.
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LemmaA 5.3. If
Jimwy(f, Bfws(Vf, ) = €, > 0,
then (5.5) holds.
Proof. The hypothesis implies that for some constant C, we have
wa (Vi ) £ Cowo(fLh), 0 = h = h,.
Thus for 0 h<h, we have
wi(f, h) £ WF(Vf, h) S Coy(Vf, h) £ C-Cowy(f, h).

The first inequality follows from the fact that w,(f, t) S w,(Vf, t) and the second
from Lemma 5.2. The lemma is thus proved.

Lemma 5.3 obviously includes Lemma 5.2 since for monotonous functions
wo(f, h)y=wy(Vf, h). It is easy to see that if fis piecewise monotonous and at no
point Df= — Df=o0 or if Re (f) and Im (f) have that property, then

Jim - wy(f, B)fes(VS, h) = 1.

Another case when w, and w¥ are equivalent is the following.

LEMMA 5.4. If g(x)=f(x)+ Ax is monotonous for some finite number A, then (5.5)
holds.

Proof. Since w, is subadditive, it follows that w¥ also is subadditive. Hence

wi(f, ) S wi(g, h)+wi(Ax, h)=w¥(g, h)+ Ah. By Lemma 5.2 and since wy(g, /)
2 Cgh, we Obtain w;‘(f, h) é C4w2(g, h) é C5w2(f, h).
As a consequence of Theorems III and 4.1 we state the following theorem.

THEOREM 5.6. If f is a periodic function satisfying > wi(f, n=Y)/v/n<oo, then
fe A. Conversely, if u is such that 57 wi(u, 1/n)/r/n=c0, there exists an absolutely
continuous function f ¢ A satisfying w¥(f, h) £ Cwi(u, h).

Proof. The first part of the theorem follows from the fact that w,<wi. The
second part follows from Theorem 4.1 since by (5.3) and (5.4), w¥(u, &) has the
properties required by the function g of that theorem.

REMARK. By Lemmas 5.4 and 5.5 the theorem is true, with ¥ replaced by w,
if the function u is such that either lim, .o, wq(u, h)/w(Vu, B)>0 or u(x)+ Ax is
monotonous for some finite 4.

6. The condition [ |f’| log* |f’| dx<co. In this section we prove that Theorem
II imposes stronger conditions on £, than does Theorem 5.6. For the proof we need
the following lemma.

LEMMA 6.1. Let f be an absolutely continuous function on [0, 1],

E,={x;0<x=<1and|f'(x)| >n} and V,,=J‘ |f7] dx.
By,
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Then for any a>1
1 ©
J 1 log* |f] dx < 00 < S Ve < oo,
o q=1

Proof. We observe that E,2F, ., n=1,2,..., and put S,=FE,e\E,e+1. Then

1 )
[Cirtogr ir1ax = 3 [ 171108* 11 a
o 4=0 Js,

This series converges and diverges as

2l s (], e 1r1e)

We use Abelian transformation on this series and deduce that it converges exactly
when 32, [ . |f'] dx, or in our notation, 3¢, Ve is convergent.

THEOREM 6.2. If f is an absolutely continuous function with period 1, then

f If'| log* |f| dx < oo :él Wi, Y A/n < .

Furthermore, there are functions f such that the series converges and the integral
diverges.

REMARK. Since wj 2w, the theorem remains true if w¥ is replaced by w,. This
proves that Theorem II is weaker than Theorem III.

Proof. We suppose that [j |f’|log* |f’| dx converges and normalize f, such
that V,=1. Using the notations from Lemma 6.1 we put

F(%) = gu(x) +hy(x) where hy(x) =j £1@) dt

ENn[0,x]
and
Vf = Vegu+Vhy where Vhy = j /()| dx.
ENNn[0,Xx]
By (2.2)
(6.1 wy(Vfin™1) S wy(Vgw, n™Y) +wo(Vhy, n71).

The definition of Vgy yields
x+1/n , N
VeaCr+ Un)—Veu() = [ 1f0)lde s 3

x
If'I<N

Using the fact that the total variation of gy is less than that of f, we obtain

[

2 1
dxéyf
n Jo

dxé-’]llg

Ven (x+%) — Vegn(x) Ven (x+%) — Vegn(x)
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Hence

(6.2) wy(Vgn,n™) = +/Nin.

The same estimation applied to Vhy yields

(6.3) wi(Vhy, n™Y) £ o(Vhy, n71) Vay/n,

where V,,,, is the total variation on [0, 1] of Ay, i.e. V. Obviously w(Vhy, n"1) = Vy
and thus

(6.4) wy(Vhy, n™1) £ Vy/[+/n.

Combining (6.1), (6.2) and (6.4), we obtain wy(Vf,n )<(\/N/n+ Vy/+/n) for
every positive value of N. In particular,

(6.5) 2902, (Vf, 279) £ 2-9U2N24 Py,

Fix a number a in the interval 1 <a <2 and for each value of g in (6.5) we choose
N (=N,)=2%q®. Then N,>a® for gZq, and thus Vy, < V,e. We obtain from (6.5)

20%0,(V, 2°) S ¢+ Vs

By Lemma 6.1 then > ; 292wy(Vf, 279) < oo, which is equivalent to

2 wa(Vf, n-Y)4/n < o0

Since w3(f, h) S wi(VF, h) £ Cwy(VF, h), we have proved the first part of the theorem.
To find an example, where the integral diverges and the series converges, we
consider the function F of §4, (4.7).
By (4.8) we obtain, if a,mi’2k; /2 increases exponentially and a,k; *'2 decreases
exponentially, that

my
> wy(VF,n~Y/a/n £ C(a,- k22 +a,ky 2 log m,).
n=my-3
An easy computation shows that our integral converges and diverges as the series
>, a,log m,. Thus for example k,=5", m,=2%" and a,=v~? will generate a
function fas in (4.12) such that 3¢ w}(f, n~Y)/y/n<0, but [ || log* |f’| dx=co.

7. Conditions on . In this section we shall in some detail study conditions
involving w(f, n~1), that imply f€ 4. The existing theorem here is Theorem I by
Zygmund. Since by (2.7)

wg(fs n™)[v/n = (o(f, n~)Vf) % In

it follows that Theorem I is weaker than Theorem III. The two theorems are not
equivalent, not even for absolutely continuous functions as we see in the following
theorem.
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THEOREM 7.1. There is a periodic function f, absolutely continuous and such that

@) 3P w¥(f,n"Y)/r/n<oo and

(b) Za=1 (w(f; n™1))2n=0o0.

Proof. We construct a function F of the form (4.7) by choosing a,=v~2, k, =32,
m,=2%. Then, by (4.8)

> wy(VF,n"Y)y/n £ C(a,_1k; 22 +ak; 2 log m,) = O(a,).

n=my—3
Thus >¢ wy(VF, n~)/4/n<oo.
We construct f from F as in (4.12) and obtain (a).
By (3.3) and the fact that w(f+g, h) = »(f, h)— (g, h) we have, for m,_,=n
<my,

a, ‘tam S a 2a,
Fnl>%_ uly G N L,
wlF,n™) 2 k, ,‘Zl nk, n

An estimation gives w(F, n~ )2 a,/(2k,) for n>20m, _,. Thus

u=v+1ku v+1

Z (w(F,n"1)2[n 2 C(aky1)*2-logm, = Cv/a,

20my -1

and therefore the series > ¢ (w(F, n~1))2/n diverges as > 1/(a,).

It is an easy task now to see that the series (b) diverges.

It is not known whether Zygmund’s Theorem I is the best possible in the sense
that there exists an f'¢ A and of bounded variation, satisfying «w(f, k) < w(g, h),
as soon as >3 (w(g, n~1)?/[n=00. Salem [5] has shown that there exists such a
function f; if >, w(g, n=1)2+92[p=00, It might, however, very well be possible
that

.1y i w(f,n ) logn

n=1 n

< ©

is a sufficient condition for a periodic function f of bounded variation to belong to
A. The condition (7.1) is weaker than >, (w(f, n=1))"%3/n<c0 as is seen by the
following implications:

Q

EMWW%<w¢2@@mW<w

¢Z%@@%W<w:2?%f%<w

-1
The equivalences follow from the mequahty

2¢+1
20k +Dgaqs1 < z pFa, < 2@ty q
29

which is valid if (a,)7° is a nonincreasing sequence.
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The following example shows that we cannot have a weaker condition on a
function of bounded variation than (7.1) to be sure that fe 4.

THEOREM 7.2. Let w(h) be a nondecreasing function such that (2°w(2°?))? is a
nondecreasing sequence and
S wn ) logn
(7.2) Z = =
Then there exists an absolutely continuous function f¢ A such that (f, h) £ w(h)
Proof. Condition (7.2) is equivalent to > ; 4%(2-%)=00. We may, without
loss of generality, assume that the terms of this series are uniformly bounded. Using
Lemma 3.2 we obtain, for each §>0, a sequence (g,)f, such that

NMs

470(272%) = z o, = 0
1

v=1

and
(7.3) (1=8)H+1~% < % S (1 +8)be1-0,

We fix a §<3. It is easy to see that there exists a nonincreasing sequence (b,)y
such that >, a,A/b,=00 and X%, «,b,<o0 and b, ,,/b, — 1 as v — co.

Now we construct a function F of the form (4.7) by choosing m,=22%, k,=4%b,
and a,=k,w(m; *) (we can always adjust b, such that k, becomes odd). Then

2 a, = 2 Aovo(my )b, = 2 b, < o.

Thus F is absolutely continuous.
The Fourier-Stieltjes coefficients of F satisfy

' mya k) a
d {3 “_ _ll
ol 2 50 3 S 2 TE

for m,_; =n<m,. Condition (7.3) enables us to make the same estimations as in
§4 and it follows that 37 |d,|/n diverges as > (a, log m,)/v/k,, i.e. as

S 4nw(my Wb, = 5 an/b,.
1 1

The modulus of continuity of F satisfies the following inequality in m,_, <n<m,,
obtained from (3.3):

a-m, < a 2 2a
F, n -1 < ll (] + —u + _ll.
o )= uzl nk, Z ku " =§v:+ 1 h

Using the fact from (7.3) that mya,k; ! is increasing exponentially, and a,k;? is
decreasing exponentially we get

(14)  wF n-Y) < c(@+’m) - (w(my D+ miy )

kv nkv-l
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Let p be the natural number, such that 2?<n<2?*!, Then we have, since
2°w(2~7) is nondecreasing,
(m,_1/mw(my2y) £ 27 w2777 )/n £ 20(27771) £ 2w(n™?).
This inequality and the fact that w(m;!)Sw(r~!) and (7.4) yields o(F,n"?)
=< Ciw(n™1). The function f, constructed as (4.12) is now a solution to our problem.

COROLLARY 7.3. If >0 and w(h) is a nondecreasing function such that 2°w(27)
is nondecreasing and

(7.5) > (w(n=*)*2/n(log log n)**+®'2 = oo

n=1
then there exists an absolutely continuous periodic function f ¢ A such that w(f, h)
Zw(h).

Proof. Cauchy’s inequality implies that X7 (w(n~!)logn)/n=c0 and the
existence of f follows from Theorem 7.2. Since we may assume that w(n~?!)
=(log n)~?, we can weaken the corollary by replacing (7.5) with

%L

(w(n - 1))1/2/n log (w(n - 1))(1 +&)2 0.

1

This constitutes an improvement of Salem’s theorem.

Whether an absolutely continuous function f belongs to 4 or not obviously
depends on its modulus of continuity, w(f, n~1). However, roughly speaking it also
depends on how many times |f(x+n~1)—f(x)| is of the same order as w(f, n=?).
One way of measuring this is to study wy(f, n~1), which leads to Theorem III.
Another way is to study the total variation of f. We choose the latter and prove
below a theorem that is stronger than Theorem I for absolutely continuous func-
tions f.

THEOREM 7.4. Let f be an absolutely continuous periodic function and V,=V,(f)
=g, |/'(x)| dx, where E,={x;0=x=<1 and |f'(x)] > n}. If 37 v/(Vaa(f, n™1))/n
<o then fe A. Conversely, if g(n) is a nonincreasing function such that \/ng(n) is
nondecreasing and 3 g(n)/n=c0, there exists an absolutely continuous periodic

Sunction f¢ A such that A/(V,(f)w(f, n=1)) < g(n).

Proof. As in §6 we write

f=gu+hy where hy = f (@) d.

ENN[0,x]

We normalize f'to have the total variation 1 on [0, 1] and obtain from (6.2) and (6.3)
(7.6) wo(f,n™?) = A/N/n++/(Vywlhy, n=1)/v/n.
Choose N=n/log* n. Then

lw(hy, i~ —w(f,n )| = w(gy,n™?) = (logm)~*.
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We see that

IV (Vyo(hy, n~ )=/ (Vyo(f, n~1)| = (logn)~2.
Combining this inequality with (7.6) and Theorem III we deduce that fe A4 if

7.7 > V(Vao(fin~Y))n < 0, N =nflog*n.
n=1
We want to prove that Vy in this formula can be replaced by V,. First we show
that condition (7.7) imiplies
(7.8) Z '\/(w(f n—l))

" nlogn
This follows from (7.7) if we observe that w(f, n™Y) < Vy+(log n)~*. Then
S V(finT) . < VI w(f, 5 VVut(ogn)” 9
S s 5 YUl n D) 5

nlogn nlogn

where the first summation is carried out for those n satisfying ¥V > (log n) ~2. Now
(7.8) follows from (7.7). (7.7) is equivalent to

3 Vppalf,277) <o or fl p(x—42log x)g(x) dx <

where 1/(Vg*)=p(x) and +/(w(f, 27*))=4g(x). The convergence of the integral is
equivalent to

(7.9) Jm p(x)g(x+4 2log x) dx < 0.

But

(=]

= uNP(x)‘I(X) dx-ij(x)q(x+4 2log x) dx
J‘ 4(x) dx— J-N+41 EN 400 dx+10 J~N+5logN q(;)

glof ) 4
Lt

The integral to the right, however, converges as 27 4/(w(27™)/n or
S V(e Y)/(nlog n). By (7.9) and (7.8) it follows that 7 p(x)g(x) dx <o,
which is equivalent to > +/(V,w(f, n~1))/n<oo. This proves the first part of the
theorem.

To prove the second part, we make the construction (4.7) of a function F. The
assumption of the theorem gives > 5%¢(25¥)=c0. By Lemma 3.3 we can choose a
sequence ¢, such that the sequence g(2°%) decreases exponentially with a quotient
between 6%~ %+1 and 4%~ %+1 and such that > 5%g(2%")=c0.
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We choose a,=3"", m,=25" and k,=(3"g(m,)) 2. As before, we estimate the
Fourier-Stieltjes coefficients of F, d,, and get

< ld,,l < avlogmv= < 5%0(25%) —
ng:l n > Cv=zl \/kv VZI g( ) -

For m,_, =n<m, we have V,(F)<>> ., a,=< Cia, and

_ A ma, 2 a
wF,n~Y) £ > At > et

> 2
u=1 nkll u=v u M"V"Fln

These three series are dominated by their first, last and first term, respectively, and
we obtain
Va(F)-w(F,n~*) < Cy(ailk,+m,_,ai_,[nk,_,).
Thus
V(Vi(F)w(F, n™Y) £ +/Ca(g(my) +4/(m, -1 /n)g(m, -1)).

The assumption that 4/ng(n) is nondecreasing gives
(7.10) V(Vaw(F, n™1)) £ Cag(n).

It is obvious that the function f constructed as in (4.12) also has the property (7.10)
and does not belong to 4. This completes the proof of Theorem 7.4.

8. Conditions on w,, p>1. In this section we shall give two theorems, with
conditions on w,, p> 1. For p=2 they coincide with Theorem III.

THEOREM 8.1. (p22). Let f be a periodic function, absolutely continuous and
satisfying

i (wy(f, n~Y))PI2P-DY P -2/26 -1y~ @p-302G -1 < op,
n=1

Then f € A. Conversely, if g is a nondecreasing function, satisfying
(a) (2%¢(29)7 is a nondecreasing sequence,
(b) (27(g(27))2®~VYP is a nonincreasing sequence,
(© S g(n)-n=@p-3420-1 < on
then there exists an absolutely continuous periodic function f ¢ A such that

wp(f’ n- l)pl2(p - 1)( Vn(f))(p -2)/2(p-1) < g(n).

Proof. For the first part of the theorem we apply Holder’s inequality to the
integral

[ Vs -rfz s = [ 1740700511+ D~ o200 d,

Then we obtain

w3(fin™?) = (wy(f, n~1))PIP =Dy (f, n= 1)@= Dip-D,
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Using the fact (2.5) that w,(f, n~ 1)< V;/n, we find
8.1) wo(f, n"Y)A/n £ wy(f, n~)PIRE DY@ - D20 -1y - @p-320 - D),

The same method as in Theorem 7.4 now makes it possible to replace V; by V,(f).
The theorem now follows from Theorem III.

The second part is proved by constructing a function F as in the second part of
Theorem 7.4. We put m,=25%, a,=3"" and a,/v/k,=m}2?-D(g(m,))?'?*- and
the estimations (3.5) will give us the desired resuit.

REeMARK I. We observe that the estimation (8.1) has the consequence that

i (w(f, n~1))PI2P =Dy -C@P-320-D < oo
n=1

implies that f'e A if fis continuous, periodic and of bounded variation.
REeMARK II. Theorem 8.1 is true even for p=co. It is then Theorem 7.4.
For 1 £p <2 we have the following theorem.

THEOREM 8.2. Let f be a periodic function, absolutely continuous and such that

Ns

(wp(fs n=1))Pe(f, 7)1 P2 [y/n < 0.

1

n

Then f € A. Conversely, if g is a nonincreasing function, satisfying
(a) (2°g(27))? is a nondecreasing sequence,
(b) (272g(27))7 is a nonincreasing sequence,
©) 2 gm//n=0o,

then there exists an absolutely continuous, periodic function f ¢ A, such that

wp(f, 1™ 2w(f, n= 1)1 P2 < g(n).

Proof. The first part follows from Theorem III and the second part is proved
similarly to Theorem 4.1.

ReMARK. The positive part of Theorem 8.2 is a special case of a theorem of M.
and S. Izumi [2].

9. Necessary and sufficient conditions.

THEOREM 9.1. Let f be a realvalued absolutely continuous function, with period 1
and

E,={x;0 = x £ 1and|f'(x)| > n}.

Suppose that

(@) f'(x) is uniformly bounded below (above),

(b) the diameter of E,, d(E,), is O(1/n).
Then a necessary and sufficient condition that f € A is

f: If'| log* |f| dx < oo.
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Proof. Without loss of generality, we may assume that the total variation of f,
V;, is 1 and f(0)=0. We also assume that d(E,)=<1/4n. Put f(x)=gn(x)+hy(x),
where

hy(x) = L O dt+ dux = B+ Ay,
N0,

and Ay is a constant chosen such that Ay is periodic.
Obviously

Ay éf |f'(x)|dx = Vy—>0 as N—oo.
En
Then

gn(x) = f'(t) dt—Ayx = gy —Ayx.

J‘C(EN)!‘I[O.x]
The Fourier coefficients of f, gy and Ay are denoted by a,, a,(gy) and a,(hy)
respectively. Then by (1.4)

ar

Z lan(gn)| < 272wy(gy, 27771).

n=2rp-1

But
w(8x> 27771) S wy(gh, 2777 +wa(dyx, 2777) S 4/NJ2P 14 4y[20 41

for any N>0. We choose N=27/p* and obtain

2 1 A
Z ) |aa(gn)| = 2p7+2752-

n=2°P-
Hence,
2r

©.1) S laen) S % forp 2 po

n=2p-1

The Fourier coefficients of Ay satisfy

1 1
’ 2ninx I %’ 2ninx
arlhy) =~ f M) dx = —5 1 L RE (x)e? > dx
9.2)
2ninx
21rmf f'(x)e dx.
Since E,DoE,,,,n=1,2,..., we have
9.3) f F/(x)erinx g = J F/(x)e2n dx + F/(x)e2mn= dx.
Egplpt Egp Egplpt\Egp

From assumption (a) it follows, for sufficiently large values of p, that the in-
equality f'(x)>27 >0 holds on E,». Since d(E,r) <2~ ®*2, we find, for n <27,

(9.4) l fw F/(x)ermins dx\ > \/lz L T dx = Va2
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As before, we use the notation

Vo= | Ireales
We note that

.5 S Vorpt— Ve,

f f"(x)e2:unx dx
Egp/pt\EgP

Combining (9.1)~(9.5) we find -

2r

5l 2 3 lanthl - 3 lau(en)

2P 1 l
2 (Ve + 1V~ Va) 2 5ma) =5
oP - 1

for sufficiently large values of p. It follows that

(9.6) S el =0 if tg (1 +1/4/2)Var—Vas) = o0

The function v(x)= V,= is nonincreasing and positive. Thus

P P
>Vt S J v(x—4 2log x) dx+v(p,)
p1

9.7 - 3 o
< o(p)+3 ot) di+3 f o(t) d,
2 Py —42]ogp; 2 1
if py>20. Also
P P P
©.8) j weydt < S o(p) = S V.
P1 P P1

(9.7) and (9.8) yield

2 (e a)ro-vom) 2 (14733 £ v

From (9.6) we now deduce that 37 |a,| diverges if > V,» diverges. By Lemma 6.1
this happens if and only if

1
[ 1711087 171 dx = 0

This proves the necessity part of the theorem.

The sufficiency follows from Theorem II but can also easily be deduced from the
estimation >3p-1 |a,(hy)| < Var)pt combined with (9.7) and (9.8).

In the proof of the theorem, we have for convenience used the assumption that
the diameter d(E,) < 1/4n. To prove the thcorem with 1/4n replaced by O(1/n) we
replace the summations 3% -1 |a,| by 535-%-1 |a,| for a suitable fixed number k.
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REMARK 1. The condition that f is realvalued can be removed if we change
condition (a) to

(@) (Re(f)) and (Im (f))’ are bounded from below or above.

ReMARK 2. If f'has the properties (a) and (b) of Theorem 9.1 in a neighborhood
of a finite number of points in (0.2) and belongs locally to 4 elsewhere, the con-
dition

1
[171108* 171 ax

is still necessary and sufficient. This is seen if we isolate the critical points by multi-
plying f with a suitable function in 4, which is =1 in a neighborhood of a critical
point and O outside another neighborhood and has bounded derivatives.

REMARK 3. The condition that f”is bounded below (above) can also be weakened.
The property we use is

frezmnx dx./f |f'(x)| dx 2 C >0 forn > n,
E, En

See also Theorem 9.2 below.

REMARK 4. To see that Theorem IV of Zygmund is a special case of Theorem 9.1
we simply observe that for any function f, such that f’ is nonincreasing in 0 <x < 8
and f(0)=0, we have f(x)=f(x)—f(0)=xf'(x). Thus f'(1/n)<n, for n>n, It
follows that the conditions of Theorem 9.1 are satisfied in a neighborhood of 0
if fis odd, f' is nonincreasing in (0, §) and bounded in [3, 1 —38].

COROLLARY. Under the assumptions of Theorem 9.1, a necessary and sufficient
condition that fe A is

(9.9) il walf, n-Yy/n < oo

Proof. The sufficiency follows from Theorem III and the necessity from the
fact, proved in §6, that (9.9) is implied by the condition

f: £ log* |f'] dx < oo.

In fact we may, if we wish, change w, to w¥ (§5) in (9.9).

REMARK. It is possible to use a simple construction, based on Theorem 9.1, to
prove Theorem 4.1 with somewhat stronger assumptions. However, we need the
function constructed in §4 on several other occasions, particularly in §7. We have
therefore preferred to use mainly the same type of counterexamples throughout
the paper.

In the case where f” is not bounded below (above), for example if fis even, we use
a similar method to prove the following theorem.
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THEOREM 9.2. If f has period 1, f' is bounded in (8, 1 —38) for every §>0, d(E,)
=0(1/n) and

1
9.10) f |f'| log* log* |f'| dx < oo,
V]
then f € A if and only if
9.11) f'(x) dxl < 0.
p=1 Eap

REMARK. For even functions fthe terms of the series (9.11) are all zero, whence
(9.10) in this case is a sufficient condition that fe 4.

Proof of Theorem 9.2. We consider only positive values of n; the negative
integers are treated similarly. For the sake of convenience we may as before suppose
that d(E,) <1/4n. Using (9.2) and the fact that |e’*—1| <28, if §<2, we find, for
N=2?/p*and 2?"1<n<2%,

L 4 2ninx 1 P, 4 — »

altn) o [ S x| £ o (V= Vo),

~I ’ 2ninx —_ 1 4 < f ’
s [, S v [ peyas| s2 [ el

The theorem thus is proved if we can show that

(9.12) 2 (Vz”lpi— Vz’) < 00
rp=1
and
(9.13) S 2 f x| 1f'(0)] dx < oo.
p=1 Egp

We put Vyx=v(x) and find

P P P

Z Voot < C1+J~ v(x—4%log x)dx £ C,+ o) dt,

i) 10 10 18/t

Thus
f (o(x—4 %log x)— o(x)) dx < c3+40f ((t)]t) dt < co.

The last inequality follows from the fact that
f |f| log* log* [f']| dx < oan—V;—' < oo.
1

(Compare Lemma 6.1.) This proves (9.12).
To prove (9.13) we observe that
2-P 0
2 [ fxllrelds s 2 [l Irelder2 [ Ir el
Eg V] —-2-p

These two integrals are treated similarly; we pick the first.

2-

# [ hrwlacs 2 3 o[

@l
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We reverse the order of summation and find

S irea

2-4

qg’l 2-«L_q_1 /()| dx 21 27

2 Jﬂ Lf'()| dx < co.

This concludes the proof of the theorem.

If f is subject to more restrictive conditions than in Theorem 9.2, a stronger,
sufficient condition can be obtained. It has been pointed out by Zygmund in [8]
and generalized by Sz.-Nagy in [4].

IIA

IA

THEOREM 9.3 (ZYGMUND). Let f have period 1 and be even. If, for some 6>0,
fis convex in (0, 8) and f' is bounded in (8, 1 —8), then fe A.

COROLLARY. Let w(h), h>0, be any positive function tending to zero with h. Then
there exists an absolutely continuous function f € A such that o(f, h)Z w(h), h<8.

Proof. Choose f as a convex majorant of w(h) in (0, 8), f(0)=0, make it even in
[—38, 8] and define it linearly in [8, 1 —8]. Then we have a function satisfying the
conditions of Theorem 9.3 and obviously w(f, h)=f(h) = w(h).

Compare [1, p. 178].

REMARK. Using Theorems 9.1 and 9.2 or 9.3 it is easy to find examples of even
functions belonging to A such that the corresponding odd function does not belong
to A. Kahane has in [3] proved that there exists odd functions (not of bounded
variation) belonging to 4 such that the corresponding even function does not
belong to 4.
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