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FACTORING FUNCTIONS ON CARTESIAN PRODUCTS

BY

N. NOBLE AND MILTON ULMER(-)

Abstract. A function on a product space is said to depend on countably many

coordinates if it can be written as a function defined on some countable subproduct

composed with the projection onto that subproduct. It is shown, for X a completely

regular Hausdorff space having uncountably many nontrivial factors, that each

continuous real-valued function on X depends on countably many coordinates if and

only if A" is pseudo-Xi-compact. It is also shown that a product space is pseudo-Ki-

compact if and only if each of its finite subproducts is. (This fact derives from a more

general theorem which also shows, for example, that a product satisfies the countable

chain condition if and only if each of its finite subproducts does.) All of these results

are generalized in various ways.

Introduction. A function/on a product space X=Y\aeA Xa is said to depend on

countably many coordinates if, for some countable subset C of A, and some

function g on Ylaec ^a>/is equal to g ° nc, where nc is the projection from A'to

Ylaec Xa. The problem of determining conditions on a product space A'and a range

space Y under which each continuous function from A" to Y will depend on count-

ably many coordinates has developed a considerable literature which is very nicely

summarized in [E], with one exception. That exception is the recent paper [V] by

Vidossich in which it is shown that any uniformly continuous function from a

subspace Z of a product space into a metric space can be factored as the com-

position of a projection onto some countable subproduct with a function uniformly

continuous on the projection of Z. As applied to real-valued functions, all of these

results, except that of Vidossich, are generalized by our main theorem, that if X is

pseudo-K1-compact, then each continuous real-valued function on X depends upon

countably many coordinates. If X is the product of uncountably many nontrivial

completely regular Hausdorff spaces, then the converse also holds. (For any infinite

cardinal X, a space is said to be pseudo-X-compact provided each locally finite

family of open subsets has cardinality less than X; pseudocompact spaces, Lindelöf
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spaces and separable spaces are all pseudo-X^compact.) This and some related

results are established in §2. In the first section we prove some product theorems for

the properties which we will be considering, showing in particular that a product

space is pseudo-Xi-compact or satisfies the countable chain condition if and only if

each of its finite subproducts does. We give generalizations of our results to higher

cardinals in the final section.

For any set S, we denote by card (S) the cardinality of £. Cardinal numbers are

taken to be the set of their ordinal predecessors, and if X is an infinite cardinal, we

denote by cof (X) the cofinality number of X.

We are grateful to W. W. Comfort on two counts: Firstly, his many suggestions

and criticisms have greatly improved both the form and content of this paper, and

secondly, he provides a constant source of inspiration to both authors.

1. Some product theorems. In this section we give product theorems concerning

some of the properties which will be used in the next section.

1.1. Lemma. Let F be a family of finite sets and suppose card (F) = n, where n

is uncountable.

(i) If n is regular, then there exist a finite set F and an n-fold subfamily F' of F~

such that, for any two members G and H of    , we have G r\ H=F.

(ii) If n is singular, then there exist a set B, with card (B)S cof (n), and an n-fold

subfamily F' of IF such that, for any two members G and H of iF', we have G n ZF<= B.

Proof. Suppose first that n is regular. Since n is uncountable, there must exist

an integer m and an n-fold subfamily Fm of F such that each member of Fm has

precisely m elements.

For each finite set K, let F(K)<^Fm be maximal with respect to the property that

for any two members G and H of F(K) we have G n H=K. Let F be maximal

with respect to the property that F is contained in each member of some n-fold

subfamily of Fm. It is easy to see that card (F(F)) = n. By setting F' =F(F), we

have proved part (i).

If n is singular, write n = supyem ny where r<y gives us n,<ny, and each ny is

regular. For each ordinal y e m, find a finite set Fy and an ny-fold subfamily Fy of

<^"as guaranteed by part (i). Set B = \Jyem Fy. Clearly card (B)^m. We will choose

the desired subfamily F' from Urem &y

We may assume ny > m for all y e m. We define

•^'r=^-U  U {HeFy : Hn G<tB}.

Since H n K<^B for H and K in Fy, and since G is finite, each family

{H e Fy : H n G * B)

is finite. Consequently, since card (Fz) = nr < ny and ny is regular, we see that

card (F'y) = ny. Thus, if we set ■F' = {Jyem F'y, we have the desired subfamily and

the lemma is proved.
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Lemma 1.1 (i) is not new; it has been proven by N. Sanin [S3] as well as by

S. Mazur [M3]. Other forms and proofs of it can be found in [D], [ER], and [M4].

The second part of the lemma seems to have been overlooked by these authors.

Let ^ be a statement about families of subsets (or subspaces) of a topological

space. We call such a statement saturated provided

(a) if m has <f> and then     has <f>;

(b) if {Ux V0 : Ue°U} has <f>, then % has <f>;

(c) if {Ur : y e F} has <f> and if, for each index y e V, Vy is a nonempty subset of

Xy, then the family {Uyx Vyx FLrer-<y> Xa : y e T} has <j>.

Recall that a family of sets is said to have the n-intersection property provided

each subfamily of cardinality at most n has nonempty intersection. A point is a

cluster point of a family of sets if each neighborhood of the point meets infinitely

many members of the family; it is an adherent point if it is in the closure of each

member of the family.

1.2. Examples. For any cardinal numbers m and m', each of the following

statements is saturated:

(i) The family <?/ contains an m-fold subfamily with the m'-intersection property.

(ii) The family % contains an m-fold subfamily each m'-fold subfamily of which

has an adherent point.

(iii) The family contains an m-fold subfamily each m'-fold subfamily of which

has a cluster point.

1.3. Theorem. Let <f> be a saturated statement, let n be an uncountable cardinal

number, and let P(<f>, n) be a topological property which can be formulated as: Each

n-fold family of nonempty basic open sets (repetitions allowed) satisfies <f>.

(i) If n is regular, then a product space has P(<f>, n) // and only if each finite

subproduct does.

(ii) If n is singular, and X = cof (n), then a product space has P((f>, n) if and only if

each subproduct of X factors does.

Proof. Suppose X=T\aeA Xa has P(<f>, n), and B is any nonempty subset of A.

Let be an n-fold family of nonempty basic open subsets of the subproduct

ELes X~a. Since {UxTJaeA_B Xa : U e is an n-fold family of nonempty basic

open subsets of X, this family must have <f>. But then, using (b), ffl must have <j>.

Thus the "only if" portions of both (i) and (ii) are established.

For the proof of the converses, we must introduce some notation. For each

nonempty basic open subset U of X, let R(U) denote the finite set of coordinates

on which the projection of U is not the entire factor.

Now, let °U be any n-fold family of nonempty basic open subsets of X. Under

the appropriate assumptions of (i) or (ii) on subproducts of X, we will show that

% satisfies <f>.

Applying Lemma 1.1 to the family {R(U) : U e we can choose a nonempty

set B^A and an n-fold subfamily W of % such that YlaeB X~a has P(<j>, n) and such
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that for any two sets U and Kin %' we have R(U) n R(V)<=-B. Since FLes has

P(<f>, n), we know that ns(^/') has <£. It follows by (c) that *' has <f>, and hence,

using (a), we see that the original family % has <f>.

Let <f> be as in part (i) of Example 1.2. For n = m = m', the property P(<j>, rt) is

called caliber n, and for m = X, and in'= 2, spaces with P(<f>, X,) are said to have

property (K). It was shown by Sanin in [S3] that, for n regular and uncountable,

caliber n is preserved by products, and by Marczewski in [Mx] that property (K)

is preserved by products. Theorem 1.3 yields the nontrivial part of the proofs of

these theorems. For m = m' = 2, spaces with P(<f>, n) are said to satisfy the n-chain

condition (for n = Xl5 they are said to satisfy the countable chain condition) and

for this case Theorem 1.3 yields some new results which we state below. For

further information concerning these properties, see [E].

1.4. Corollary, (i) If n is regular and uncountable, then a product space satisfies

the n-chain condition if and only if each finite subproduct does.

(ii) If n > X0 is singular, and X = cof (n), then a product space satisfies the n-chain

condition if and only if each subproduct o/X factors does.

This result for the countable chain condition is apparently not new. Franklin

Tall informs us that it has been known among Wisconsin set-theorists and

topologists for some time.

1.5. Corollary, (i) If n is regular and uncountable, then a product space is

pseudo-n-compact if and only if each finite subproduct is.

(ii) If x\ > X0 is singular, and X = cof (n), then a product space is pseudo-n-compact

if and only if each subproduct o/X factors is.

Proof. For <f> as in part (iii) of Example 1.2 and n = m = m', the property P(<f>, n)

is pseudo-n-compactness.

We will give examples below to show that various parts of Corollaries 1.4 and 1.5

(and hence various parts of Theorem 1.3) cannot be improved. For comparison,

recall that, by results in [G], [CJ, and [F], a product space is psuedocompact (i.e.

pseudo-X0-compact) if each of its countable subproducts is. However, for each

cardinal n with 2 = n g X0, there exists a space Ffor which Yn is not pseudocompact

even though each smaller product is. Our first example shows that "finite" in

part (i) of Corollary 1.5 cannot be improved.

1.6. Example. For each infinite cardinal X and each integer n there exists a

space Fsuch that Yn is pseudocompact but Yn + 1 is not pseudo-X-compact.

Proof. This is a straightforward adaptation of the methods used in [CJ and [F].

A similar example for the countable chain condition is impossible since it has

been shown that the question of whether the countable chain condition is preserved

by finite products is independent of Zermelo-Fraenkel set theory even with the

axiom of choice adjoined. For a discussion of this see [C2].
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Our final example will show that, in both corollaries, regularity in (i) cannot be

weakened, and as a statement about all singular uncountable cardinals (ii) cannot

be improved.

1.7. Example. For each singular cardinal X there exists a product space Fsuch

that Y fails to be pseudo-X-compact, while each subproduct of fewer than cof (X)

factors satisfies the X-chain condition.

Proof. Since X is singular there exist sets A and, for each a in A, Ya, each of

cardinality less than X, such that \JasA Ya has cardinality X. Giving each set the

discrete topology, we set Y=A x TJaeA Ya. Notice that each finite subproduct of Y

has cardinality less than X. Nevertheless, Y is not pseudo-X-compact since sets of

the form {ß}x{y}xTJa^s Ya for ß in A and y in YB form an X-fold family of

pairwise disjoint open sets which cover Y.

Let A be any set of cardinality less than cof (X). To see that Y~[aeB Ya has

the X-chain condition, notice that there must exist some regular cardinal X' < X

such that for each aeSwe have card (Ya) < X'. Thus each finite subproduct of

riaeB Ya has the X'-chain condition. Now apply Corollary 1.4(i) to obtain that

YlaeB Ya has the X'-chain condition and hence also the X-chain condition.

Let us note that Theorem 1.3 can be generalized in several ways. First of all, it

has obvious analogues for product sets topologized with the n-topology (where

n-fold products of open sets form a basis). The needed analogue of Lemma 1.1 is

provided, for example, in [D]. However, the results for these topologies are not as

precise as those above because cardinal arithmetic plays a larger role.

Secondly, the proof of Theorem 1.3 can be adapted to conclude that a subspace Z

of the product space has P(<f>, n), where P(<j>, n) now means: For each n-fold family

°>l of nonempty basic open subsets of the product, {U C\Z : U e has <f>. Of

course, the hypotheses on cf> must be modified: One needs to know that the traces

of the various families on Z will have <j>.

For a final generalization of Theorem 1.3, note that the only property of basic

open sets which is actually used is that they depend on finitely many coordinates,

So such a set U is completely known if nF({/) is known, where F=R(U) is finite.

Thus the property P((f>, n) in the statement of Theorem 1.3 can be replaced by

corresponding properties formulated in terms of other families of "finitely deter-

mined" subsets. Furthermore, the set "determined" by nF(C/) need not be

^f1(^f(U))—it could for example be TlF(U)x TlA_F(Z) for some fixed subspace

Z of riaeA Xa. Of course, (c) in the definition of saturated should, in that case, be

reworded to say that the family of subsets of Yx Flyer Xy "determined" by

{Uy x Vy : y 6 T} has <j> whenever {f7,c Yy : y eT} does.

As an example of some intrinsic interest, take as our finitely determined family

the points of a S0-subspace of a product. (Recall that a S0-subspace of a product is

a subspace consisting of all points which differ from a fixed point p on at most

finitely many coordinates; this subspace is denoted as 20(p)- Of course, if X is a

product of groups, the S0-subspace containing the identity is the direct sum of the
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factors.) Adapting Theorem 1.3 we see, for n regular, that 20-subspaces are n-n

compact (each n-fold open cover has a subcover of cardinality less than n) if and

only if each finite subproduct is (since a space is n-n compact if and only if each

subset of cardinality n has an accumulation point x each neighborhood of which

meets n of the points of the subset). The corresponding result for the Lindelöf

property follows; this was observed in [E] by essentially the same proof.

2. Functions which depend on countably many coordinates. Recall that a function

on a product space is said to depend on countably many coordinates if it can be

written as the composition of some function on a countable subproduct together

with the projection onto that subproduct. We consider the problem: Under what

conditions on a product space Zand a range space Z will each continuous function

from X to Z depend on countably many coordinates ? For a thorough history of

the study of this problem the reader is referred to [E]; here we will only describe

the current state of its solution. In the direction of greatest generality for Z,

Miscenko shows in [M5] that a product space X has the property that each con-

tinuous function from X to Z depends on countably many coordinates, for each

F2-space Z in which each point is a G6, if and only if A'has caliber X,. Strengthening

the hypotheses on Z slightly, Engelking shows in [E] that if each finite subproduct

of A'is Lindelöf and the F2-space Z has (^-diagonal (i.e., if the diagonal of ZxZ

is a G6) then each continuous function from X to Z depends on countably many

coordinates. Actually, Engelking proves the stronger result:

2.1. Proposition. Let Z be a T2-space with G6-diagonal. Let X=T~[aeA Xa, and

for each ae A let Ya be a dense subspace of Xa. If each product offinitely many Ya

has the property that each uncountable subset has an accumulation point, then each

continuous function from X to Z depends on countably many coordinates.

Proof. Engelking's proof of [E, Theorem 1] shows that each continuous function

from Y=YlaeA Ya to Z depends on countably many coordinates. Since Yis dense

in X, a function on X depends on countably many coordinates if and only if its

restriction to Y does, so the conclusion holds.

Notice that if each finite subproduct of X is separable, countably compact or

Lindelöf, then X satisfies the hypothesis of the proposition. Under the more

restrictive hypothesis on Z that it have a countable base, Ross and Stone show that

each continuous function from X to Z depends on countably many coordinates if

in X the closure of each open set depends on countably many coordinates. (A set

fc X is said to depend on countably many coordinates if for some countable set

of coordinates C, whenever y belongs to Fand x e Xis any point such that xa=ya

for all ae C, then x belongs to Y.) Ross and Stone show that the hypothesis on X

holds if X satisfies the countable chain condition (although they state a weaker

result); the converse holds:

2.2. Proposition. Suppose that, for uncountably many indices a e A, Xa contains

a nondense open subset Ua. Then the closure of each open subset of X=Y\asA %a
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depends on countably many coordinates if and only if X satisfies the countable chain

condition.

Proof. The "if" direction is shown by the proof of [RS, Theorem 3]. For the

other direction, suppose X does not satisfy the countable chain condition. Then,

by Corollary 1.4, we know some finite subproduct fails to satisfy the countable

chain condition, so we may suppose that X is YiaeKi Xa and that X± does not

satisfy the countable chain condition. Thus Xx contains a family {Ve : ß e Xx} of

nonempty disjoint open sets. Let U be the union of all sets of the form Ve x Ue

xTla*i.e Xa for ß e Xx — {1}. Clearly U is an open subset of X. To see that the

closure of U does not depend on countably many coordinates, let C be any count-

able subset of X,. Choose any index ß e X,— C and let Wß be a nonempty open

subset of Xe disjoint from Ue. Choose x e X to be any point such that e VB

and xe £ Uß, and choose y e X to be any point such that ya = xa for a^=ß and

ye e Wß. Now, x e Vßx Uex YTati.B ^c U, and ya = xa for all a e C. However,

the set VBxWBx YXa^i.e Xa is a neighborhood of y which is disjoint from U.

Modifying the proof of Ross and Stone it can be shown that each continuous

function from X to Z depends on countably many coordinates if Xx X satisfies

the countable chain condition and Z has Gf -diagonal. (The space Z is said to

have &Y-diagonal if the diagonal of ZxZ can be written as the intersection of

countably many of its closed neighborhoods.) Our main result, given below,

generalizes this fact.

2.3. Theorem. Let X be the product of uncountably many nontrivial spaces. Each

of the following conditions implies the next, and if X is completely regular, then all

are equivalent.

(i) X is pseudo-H^compact.

(ii) For each space Z with Gf -diagonal, each continuous function from X to Z

depends on countably many coordinates.

(hi) Each real-valued continuous function on X depends on countably many

coordinates.

Proof, (i) => (ii). Let / be a continuous function from X to Z, and let X' be a

S0-subspace of X, say A"=£0(/?). Since X' is dense in Xit suffices to show that the

restriction of / to X' depends on countably many coordinates. Suppose not. Let

B<=-A be maximal with respect to the property that for each index ßeB there

exist points xB and yB in X' with xBa=yBa for all «#j8, and f(xB)J=f(yB). Now B

must be uncountable. Since Z has Gä" -diagonal, it follows that for some uncountable

subset C of B and some closed neighborhood W of the diagonal of ZxZ, the point

(f(xB),f(yB)) is not in W for each ß in C. For each ß e C choose basic open neigh-

borhoods Ue of xB and Ve of yB such that \\a(UB) = Wa{yB) for all a=tß and

f(Uß)xf{Vß)nW=0.



336 N. NOBLE AND MILTON ULMER [January

Since the family {Ue : ß e C} is uncountable, it must have a cluster point p e X.

We will show that each basic open neighborhood of p must intersect both Ueo

and Vßo for some ß0 e C. However, since If is a neighborhood of (f(p),f(p)) and

/x/is continuous, this will give the desired contradiction.

Let O be any basic open neighborhood of p. Now O must intersect some infinite

subfamily {Ue : ß e C'} of {Ue : ß e C}. Since R(0) is finite we may suppose

R(0) nC' = 0. But then, for any ß0 e C, we have UR(O)(Ul,0) = nR(O)(Vß0). Thus

O intersects both UBo and VSo.

(ii) => (iii) is trivial, (iii) => (i) for X completely regular: Suppose X is not

pseudo-Xi-compact; then by Corollary 1.5 some finite subproduct of X is not

pseudo-Xi-compact. Thus we may suppose that X=Y~[a&t1 Xa and that Xx is not

pseudo-X^compact. That is, Xx contains a family {Ua : a e XJ of nonempty

disjoint open sets which has no cluster point. For each a let ga be a nonconstant

continuous real-valued function on X± which is zero on the complement of Ua

and let ha be a nonconstant continuous real-valued function on Xa. The function

defined by the rule/W = 2asn1 ga(xi)hc,(xa)1S continuous and does not depend on

countably many coordinates, so we have the desired contradiction.

Regarding the condition that Z have a Gf -diagonal, note that every submetrizable

space has this property. (A space is said to be submetrizable provided some con-

tinuous one-to-one image is metrizable.) The converse is true if Z is countably

compact (in this case Z is metrizable) [A,] or if Z is paracompact and has a G6-

diagonal [K]. Also, it is shown in [K] that each regular developable space has

Gf -diagonal. Of course, if ZxZ is normal, then Z has a GV -diagonal if and only if

it has a Gä-diagonal.

2.4. Corollary to proof. Let X be pseudo-^x-compact, let Y be a subspace of

X and suppose Z has G^-diagonal. If Y contains a lZ0-subspace of X, then each

continuous function from Y to Z depends on countably many coordinates.

Following Corson [C3], we call a subspace of a product space X=Y\aeA Xa a

S-subspace if it has the form {xe X : xa^=pa for at most countably many a e A}

for some point p e X. Note that if X' is a S-subspace of X and some continuous

function / on X' depends on countably many coordinates, then /has a continuous

extension to 'all of X. Thus we have the following corollary:

2.5. Corollary. If X is pseudo-^^-compact and Y contains a iZ-subspace of X,

then Y is C-embedded in X.

If A'is realcompact, it follows that X=vY, where vY denotes the Hewitt real-

compactification of Y. For some additional conditions under which S-subspaces

will be C-embedded, see [UJ.

It has been called to our attention that Comfort and Negrepontis [CN] have

been able to achieve the following result:
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2.6. Theorem. Let X be the product of completely regular Hausdorff spaces. If Y

is dense in X and is pseudo-^-compact, then each continuous real-valued function on

Y depends on countably many coordinates.

3. Analog for higher cardinals. Contrary to the heading, we begin by considering

the analog for lower cardinals. Recall that spaces which are otherwise quite reason-

able can have the property that each continuous real-valued function is constant

[H], [A2], and [Y].

3.1. Proposition. Each continuous real-valued function on a product space X

depends on finitely many coordinates if and only if all but finitely many of the factors

have the property that each real-valued continuous function is constant.

Proof. If for each integer n there exist an index an and a nonconstant continuous

function/: Xan-^In, for In = [0, l/2n], then the function/(x)==2«ew/*(*«») is a

continuous function which does not depend on finitely many coordinates. The

converse is obvious.

In adapting the proof of Theorem 2.3 to the case of higher cardinals the only

difficulty comes in showing that the set of coordinates B (where for each index

ß e B the points xß and yB have been chosen so that f(xB)^f(yB)) contains a subset

C with card (C) = card (B) such that, for some closed neighborhood W of the

diagonal, (f(xB),f(yB)) is not in W for each ß in C. Since the diagonal is the inter-

section of countably many closed neighborhoods, this can be done if the cardinality

of B is not the supremum of countably many smaller cardinals. Thus

3.2. Theorem. Let X be the product of at least X nontrivial spaces, and let Y be

a subspace which contains a 2Z0-subspace. IfH is not the supremum of countably many

smaller cardinals, then each of the following conditions implies the next, and if Y is

completely regular, then all are equivalent.

(i) The space Y is pseudo-it-compact.

(ii) For each space Z with Gi-diagonal, each continuous function from Y to Z

depends on fewer than X coordinates.

(iii) Each real-valued continuous function on Y depends on fewer than X coordinates.

Proof. This follows by a straightforward adaptation of the proof of Theorem 2.3.

Our next result gives conditions under which (i) of Theorem 3.2 will hold. For

this we generalize the notion of a S0-subspace. For an infinite cardinal Xy and a

point p in X, let lZv(p) = {x e X : card ({a : xa^pa}) < Xy}. We call such sets

S7-subspaces.

3.3. Proposition. Let it be a cardinal with cof (X) = X,>X0, and let X be a

product space. A subspace Y of X is pseudo-it-compact under either of the following

two conditions.

(i) X is regular, Y contains a lZ0-subspace, and each finite subproduct of X is

pseudo-H-compact.
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(ii) X is singular, Y contains a ~Ly + i-subspace, and each Hy-fold subproduct of X

is pseudo-it-compact.

Proof. Since a space which contains a dense pseudo-X-compact subspace is

itself pseudo-X-compact, we may suppose that Y is itself a 2,,-subspace, for 8 = 0

in case (i) and S = y+ 1 in case (ii). A straightforward generalization of the proof of

Theorem 1.3 shows that such subspaces are pseudo-K-compact.

Our final result shows that the requirement that X not be the supremum of a

countable set of smaller cardinals cannot be weakened.

3.4. Proposition. Let it be a cardinal which is the supremum of countably many

smaller cardinals, and let X be a completely regular product with at least X nontrivial

factors. If for each cardinal m less than X, X is not pseudo-m-compact, then there

exists a continuous real-valued function on X which does not depend on fewer than

X coordinates.

Proof. Suppose X = supneiV Xyn, where each XVn is chosen to be regular and

uncountable. By Theorem 3.2, there exists for each integer n a continuous real-

valued function/„ which depends on XVb coordinates. Furthermore, we can choose

these functions so that for each n the range of/„ is precisely [0, 1/2"]. The function

/M = ZnewFnM's continuous and depends on X coordinates.

As a final area of generalization, it is worth noting that if the diagonal in ZxZ

can be written as the intersection of rrt closed neighborhoods, then each continuous

function from X to Z depends on fewer than X coordinates provided X is pseudo-

X-compact and cof (X) < m. The proof of this is a straightforward adaptation of

the proof of Theorem 2.3.

References

[Ai], B. A. Anderson, Topologies comparable to metric topologies, Topology Conference,

Arizona State University, Tempe, Ariz., 1967, pp. 15-21.

[A2], S. Armentrout, A Moore space on which every real-valued continuous function is

constant, Proc. Amer. Math. Soc. 12 (1961), 106-109. MR 22 #11365.

[Ci]. W. W. Comfort, A nonpseudocompact product space whose finite subproducts are

pseudocompact, Math. Ann. 170 (1967), 41-44. MR 35 #965.

[C2]. -, Theory of cardinal invariants, General Topology and its Applications, Springer-

Verlag (to appear).

[C3]. H. H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959),

785-796. MR 21 #5947.

[CN]. W. W. Comfort and S. Negrepontis, Ultrafilters and the Stone-Cech compactification

(to appear).

[D] . R. O. Davies, An intersection theorem of Er dös and Rado, Proc. Cambridge Philos. Soc.

63 (1967), 995-996. MR 35 #6570.

[E] . R. Engelking, On functions defined on Cartesian products, Fund. Math. 59 (1966),

221-231. MR 34 #3546.

[ER]. P. Erdös and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc.

35 (1960), 85-90. MR 22 #2554.

[F] . Z. Frolik, On two problems of W. W. Comfort, Comment. Math. Univ. Carolinae 8

(1967), 139-144. MR 35 #966.



1972] FACTORING FUNCTIONS ON CARTESIAN PRODUCTS 339

[G] . I. Glicksberg, Stone-Cech compactifications of products, Trans. Amer. Math. Soc. 90

(1959), 369-382. MR 21 #4405.
[GJ]. L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher

Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994.

[H] . E. Hewitt, On two problems of Urysohn, Ann. of Math. (2) 47 (1946), 503-509. MR 8,

165.

[K]. D. Kullman, A note on developable spaces and p-spaces (to appear).

[Mi]. E. Marczewski, Separabilite et multiplication cartesienne des espaces topologiques,

Fund. Math. 34 (1947), 127-143. MR 9, 98.

[M2]. R. H. Marty, Mazur theorem and m-adic spaces, Doctoral Dissertation, Pennsylvania

State University, University Park, Pa., 1969.

[M3]. S. Mazur, On continuous mappings on Cartesian products, Fund. Math. 39 (1953),

229-238. MR 14, 1107.

[M4]. E. Michael, A note on intersections, Proc. Amer. Math. Soc. 13 (1962), 281-283.

MR 24 #A3070.

[M5]. A. Miscenko, Several theorems on products of topological spaces, Fund. Math. 58

(1966), 259-284. (Russian) MR 33 #4884a.

[RS]. K. A. Ross and A. H. Stone, Products of separable spaces, Amer. Math. Monthly 71

(1964), 398-403. MR 29 #1611.
[Si]. N. A. Sanin, A theorem from the general theory of sets, C. R. (Dokl.) Acad. Sei. URSS

53 (1946), 399-400. MR 8, 333.

[S2]. -, On intersection of open subsets in the product of topological spaces, C. R. (Dokl.)

Acad. Sei. URSS 53 (1946), 499-501. MR 8, 334.

[S3]. -, On the product of topological spaces, Trudy Mat. Inst. Steklov. 24 (1948),

112 pp. (Russian) MR 10, 287.

[UJ. M. Ulmer, C-embedded ll-spaces, Notices Amer. Math. Soc. 16 (1969), 849. Abstract

#69T-G105.
[U2]. -, Continuous functions on product spaces, Doctoral Dissertation, Wesleyan

University, Middletown, Conn., 1970.

[U3]. -, Functions on product spaces, Notices Amer. Math. Soc. 16 (1969), 986-987.

Abstract #69T-G134.

[U4]. -, The countable chain condition, Notices Amer. Math. Soc. 17 (1970), 462-463.

Abstract #70T-G24.

[V]. G. Vidossich, Two remarks on A. Gleason's factorization theorem, Bull. Amer. Math.

Soc. 76 (1970), 370-371. MR 41 #1021.

[Y]. J. N. Younglove, A locally connected, complete Moore space on which every real-valued

continuous function is constant, Proc. Amer. Math. Soc. 20 (1969), 527-530. MR 40 #1992.

Canary Road, Westlake, Oregon 97493

Department of Mathematics, Macalester College, Saint Paul, Minnesota 55101


