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MEASURE ALGEBRAS AND FUNCTIONS OF BOUNDED

VARIATION ON IDEMPOTENT SEMIGROUPSO

Abstract. Our main result establishes an isomorphism between all functions on an

idempotent semigroup S with identity, under the usual addition and multiplication,

and all finitely additive measures on a certain Boolean algebra of subsets of S, under

the usual addition and a convolution type multiplication. Notions of a function of

bounded variation on 5 and its variation norm are defined in such a way that the

above isomorphism, restricted to the functions of bounded variation, is an isometry

onto the set of all bounded measures. Our notion of a function of bounded variation

is equivalent to the classical notion in case S is the unit interval and the "product"

of two numbers in S is their maximum.

1. Introduction. This paper is motivated by the pair of closely related Banach

algebras described below. The interval [0, 1] is an idempotent semigroup when

endowed with the operation of maximum multiplication (.vj = max (x, y) for all

x, y in [0, 1]). We let A denote the Boolean algebra (or set algebra) consisting of all

finite unions of left-open, right-closed intervals (including the single point 0)

contained in the interval [0, 1]. The space M(A) of all bounded, finitely additive

measures on A is a Banach space with the usual total variation norm. The nature of

the set algebra A and the idempotent multiplication given the interval [0, 1] make

it possible to define a convolution multiplication in M(A) which makes it a Banach

algebra. The convolution product fi*vof two measures p. and v in M(A) is defined

by

for any set E in A, where y£ denotes the characteristic function of the set E. This

is the standard way to define the convolution product of two bounded, regular

Borel measures on a locally compact semigroup, where the set algebra in question

is the ---algebra of all Borel subsets of the topological semigroup.
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The space BV[0, 1] consisting of all functions of bounded variation on the

interval [0, 1], normed by ||/|| = |/(0)| + V(f) for /in BV[0, 1] (V(f) is the total

variation of the function/), is a well-known Banach space. Moreover, BV[0, 1] is

a Banach algebra with the above norm and with pointwise multiplication of

functions as the multiplication. The algebra BV[0, 1] and the algebra M(A) are

closely related. Each measure /x in M(A) determines a function / in BV[0, 1] by

f(x) = li([0, x]) for each x in [0, 1]; conversely, each function in BV[0, 1] has this

form for some measure in M{A). This correspondence is an isomorphism-isometry

which takes the convolution product of two measures to the pointwise of the two

corresponding functions. Bounded, regular Borel measures on [0,1 ], when restricted

to be measures on the set algebra A, correspond to right continuous functions in

BV[0, 1]; continuous Borel measures correspond to continuous functions in

BV[0, 1] which are zero at x = 0; and Borel measures absolutely continuous with

respect to Lebesgue measure correspond to absolutely continuous functions which

are zero at x = 0. These results will follow from theorems proved in this paper.

The first two paragraphs illustrate how an algebra of bounded, finitely additive

measures, with convolution multiplication, can be represented as an algebra of

functions of bounded variation, with pointwise multiplication. This type of repre-

sentation plays the central role in this paper. In §2, we consider a commutative,

idempotent semigroup S (not necessarily a topological semigroup), and we let T

be a semigroup of semicharacters on S containing the identity semicharacter. A

semicharacter on a semigroup S is a bounded, nonzero, complex valued function /

on S which satisfies f(x-y)=f(x)f(y) for all x, y in S, The functions y[0>x) and

Xio.x] (x e [0, 1]) are semicharacters on the semigroup [0, 1] with maximum multi-

plication; in this case, Tmay consist of all such semicharacters or may consist of

simply the semicharacters y[0,x] (x e [0, 1]). We let A denote the Boolean algebra of

subsets of 5 generated by kernels of semicharacters in T. In our example, A would

be the set algebra of finite unions of left-open, right-closed intervals (including the

single point 0) if we choose T={xl0,xi | x e [0, 1]}. A convolution multiplication

can be introduced in the space of all finitely additive (not necessarily bounded)

measures on A. Each finitely additive measure p on A determines a function fi

defined on T by fi(f) = Li(S\{x e S | /(.*) = 0}) for each fin T; conversely, each

function on T has this form for some finitely additive measure on A. The corre-

spondence li -*■ fi is an isomorphism which takes the convolution product of two

finitely additive measures to the pointwise product of the two corresponding

functions. This result is purely algebraic in nature; it does not involve norms on the

algebras in question.

The notion of a function of bounded variation on Tis defined in §3 in analogy

with the usual notion of a function of bounded variation on the unit interval. In

fact, these notions are equivalent in our example if we choose T={y[0,„-] | x e [0, 1 ]}

and we identify the semicharacters in T with the corresponding points in [0, 1].

A norm is introduced in the space BV(T) of all functions of bounded variation on
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T which makes it a Banach algebra with respect to pointwise multiplication and

total variation norm. The space M(A) of all bounded, finitely additive measures is

also a Banach algebra with respect to convolution multiplication and total variation

norm. The isomorphism y, -> ß mentioned above carries bounded measures to

functions of bounded variation in a norm-preserving fashion. Hence, the Banach

algebras M(A) and BV(T) are isomorphic and isometric. The concept of an

absolutely continuous function on [0, 1] motivates us to define a similar concept

relating pairs of functions in BV{T). This concept allows us to discuss a Radon-

Nikodym theorem in our setting, which generalizes the theory of differentiation on

[0, 1].
We observe in §4 that the essential properties of the algebra BV(T), such as

bounded variation and norm, depend on T being a commutative, idempotent

semigroup with identity, but do not depend on T being a semigroup of semichar-

acters on some underlying semigroup S. Accordingly, we let T be a commutative,

idempotent semigroup with identity and we show that BV(T) is a semisimple,

commutative convolution measure algebra in the sense of [8]. Taylor showed in

[8] that for a semisimple, commutative convolution measure algebra M, there is a

compact topological semigroup S, called the structure semigroup of M, and an

embedding y -> fis of M into M(S) such that each complex homomorphism of M

has the form hf(ji) = $sf cIlis for some continuous semicharacter / on S. Thus the

set S of all continuous semicharacters on S can be considered the space of all

complex homomorphisms of M (the maximal ideal space of M). Accordingly, we

let 5 be the structure semigroup of the algebra BV(T). We show that the point

evaluation maps are complex homomorphisms of BV(T), and, as such, form an

idempotent subsemigroup of the maximal ideal space S of BV(T). We use results

obtained in [5] to exhibit an idempotent semigroup T such that the structure

semigroup S of the algebra BV(T) is not idempotent. We conclude that S is not

idempotent, even though T is embedded in § as an idempotent subsemigroup

which separates points in BV(T).

2. Relationships between functions and finitely additive measures on idempotent

semigroups. Let S be an abelian idempotent semigroup. Let T be a semigroup of

semicharacters on S containing the identity semicharacter. A semicharacter on a

semigroup S is a nonzero, bounded, complex valued function on S which is a

semigroup homomorphism. A semicharacter on an idempotent semigroup is an

idempotent function, and hence can assume only the values zero and one. We define

Ar ={s e S |/(s)= 1} and Jf={s e S | f(s) = 0} for each f eT, and we note that J, is

a prime ideal in S. A prime ideal in a semigroup is an ideal whose complement is a

subsemigroup. Let A denote the Boolean algebra of subsets of S generated by the

sets /, (/e T). If A={/i,.. .,/„} is a finite subset of T, am Tn (Tn denotes the

Boolean algebra of all n-tuples of zeros and ones), we define

(1) B(X,o) = f QAAnf QJfX
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Sets of the form (1) will he called fundamental sets. Clearly, the set algebra A

consists of finite unions of fundamental sets.

The following two lemmas establish "partitioning" properties of the funda-

mental sets. The proofs of these lemmas are routine and we omit them.

Lemma 2.1. The sets {B(X, a)} for aeTnform a partition of S, where X=

{/_>••■ >fn} is a finite subset of T.

Lemma 2.2. The partition {B(Y, t)} is a refinement of the partition {B(X, a)},

where X^ Y are finite subsets of T.

We call a complex valued function g on S a simple function (more precisely, a

simple function with respect to the set algebra A) if g assumes only a finite number

of values and the set g_1(z) e A for each zsC.

Lemma 2.3. The set of all simple functions on S is exactly L(T), the linear span ofT.

Proof. Let g be a simple function on S whose range is the set {au ..., am}. If

Hi=g~1(ai), then Hte A and the collection {Ht} is a partition of S. As a result of

Lemma 2.2, there exists a finite subset X={fi,.. .,/„} of Psuch that {B(X, a)} is a

refinement of {Ht}. Choose constants ba (o- e Tn) as follows: let ba = 0 if B(X, <?) = <p,

and let ba = at if B(X, and B(X, _-)<= Clearly, g = J,aeTn baxBa.a)- It follows

from (1) that

(2) *«_:..) = rn/*irn o-/«)i
[<j(i)=l    J |_T(i) = 0 J

is in L{T) for each a e Tn. Thus g e L{T).

Conversely, let g = 2?=i a.f&LiJ) (a, eC,fe T). If X={flt. ..,/„}, then g is

constant on the sets B(X, a) (o- e Tn). If we let /3- = 0 if B(X, a) = <p, and ba equal the

value of g on B(X, a) if B(X, o-)/?>, then clearly g = 2«t„ o.Xbcx,.)- Thus g is a

simple function with respect to A.

Lemma 2.4. Let i be a set of distinct semicharacters in T and let {aj}"_ i be

complex numbers. /^2?=i at/i = 0, then at = 0 for i= 1,.. ., n.

Proof. We may assume without loss of generality that f$f for i<j. The result

is trivial if n=\ since a semicharacter is a nonzero function. Suppose n>\. For

each k (1 <k^n), there is an sk in S such that sk e Afl n Jfk. If this were not the

case, then Afln Jflc = <p, and Afl would be a subset of Afk. But then fi Sfk, which is

impossible by our assumption. If we now set s = s2-s3 - ■ •_„, and recall that Afl

is a subsemigroup and each Jfk is an ideal, we conclude that s = s2-s3- ■ -sn is in the

set AH n Jf2 n • • • n Jfn. Thus
71

«1=2 aifiS) = °>
i = i

and hence ax = 0. Continuing this process by induction yields at=0 for i= 1,...,«.

This establishes the lemma.
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We now introduce a "convolution" type multiplication into the space of all

finitely additive measures on A. Let Ax A denote the algebra (not c-algebra) of

subsets of SxS generated by rectangles ExF, where E,FeA. If p and v are

finitely additive measures on A, then p x v is that finitely additive measure on Ax A

whose value on any rectangle Ex Fis p(E)v(F). A convolution product of p and v

is defined by

(3) p * v(E) = ft x K«" l(E))      (Fe A),

where a:SxS->S is the semigroup multiplication on S. The following lemma

shows that a~ 1(E) e A x A for each Ee A, and makes (3) meaningful.

Lemma 2.5. If a: SxS-> S is the multiplication map on S, then the inverse

image a'\E) of any set E in A is contained in the algebra Ax A.

Proof. It suffices to show that a fundamental set in A is contained in the algebra

Ax A. Accordingly, let B(X, a) be a fundamental set in A where X={fu ...,/„} is a

subset of T and o- is in Tn. We claim that

a -\B{X, a)) =    U    B(X, tJ x B(A, t2)

where tj a t2(/) = min (t1(/), t2(i))for l^i^n. We first show that if (_■, /) e B(X, rx)

x B(X, t2) and t1At2 = o-, then s■ t e B(X, a). If t1at2(/) = a(0=l, then t_(i) =

t2(/')=1; thus s e Aft, t e Afl, and hence j-f e Aft since y4/( is a subsemigroup. If

Ti a t2(/') = ct(/) = 0, then either t1(/) = 0 or t2(/) = 0; thus at least one of the points

j* and t is in Jfl, and hence s t eJf. since Jfi is an ideal. Therefore,

s-te \ 0  Afl] n [ H //l = B(X, a).

We next show that if s-1 e B(X, a), then i e B(X, tx) and t e B(X, t2) for some pair

r{, t2 in Pn with t1At2 = ct. Observe that since {B(X, o)}ceTn is a partition of 5",

we must have s e B(X, t,) and t e B(X, t2) for some pair tu t2 in Tn. If o-(/)= 1,

then s' t e Afi, and hence both s and r are in since the complement of y4f. is an

ideal. Thus t1(i)=t2(i)=l, and tx a t2(/') = _-(/). If _■(/) = 0, then s-teJfi, and

hence one of the points s and / is in Jfl since //( is a prime ideal. Therefore, either

T_0') = 0 or t2(/) = 0, and tj a t2(/) = o-(/) = 0. Thus t, At2 = ct. Our claim is estab-

lished, and the proof of the lemma is complete.

Theorem 2.1. There is an isomorphism y —»■ ß between the algebra of all finitely

additive measures on A, with convolution multiplication, and the algebra of all

functions on T, with pointwise multiplication. The function ß is defined by ß(f) = Li(Af)

= $sJ'dp for each fin T.

Proof. We first notice that p -> ß is clearly a linear map. The integral J"s g dp

of a simple function g with respect to p is defined in the usual way, and makes

perfectly good sense even when p is not a bounded measure. In fact, the map
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g-^jgdp is a linear functional on the linear space of all simple functions on S.

This justifies our use of the integral sign in the statement of the theorem.

To show that /la —^ /i is onto, let F be a function on T. We extend F to a linear

functional on L(T) by defining Ffäf* i Oifd = __?= 1 aiF(f) for any linear combination

of semicharacters 2?» i ^f in L(T). Lemma 2.4 assures us that F is a well-defined

linear functional on L(T). Lemma 2.3 shows that L{T) is exactly the linear span of

all simple functions. We may, therefore, consider F to be a linear functional on the

space of all simple functions. Define a measure p on A by p(E) = F(xE) for any set

E in A. The measure p is finitely additive because F is a linear functional on the

simple functions. Furthermore, ß(f) = p(Af) = F(xA/) = F(f) for each fin T, and

hence ß = F. Thus /u -> /2 is onto.

We employ a similar technique to show that p -> ß is one-to-one. The function /2

on T can be extended to a linear functional on the space of simple functions in

exactly the same way that F was extended in the previous paragraph. As such,

ß(s) = 5 8 du for each simple function g. To prove this, write g = 2f=i atft as a

linear combination of semicharacters. We obtain

r /• n n r

\8 dp =    2 a'fi dV- = 2 *M

n n

= 2 a^(/lA) = 2 fliAC/i)
( = 1 i = l

/ n v

= A^2 flf/i) = Mi)«

It is therefore clear that if /I is the zero function on F, then p is the zero measure.

Thus p^ ß is one-to-one.

We complete the proof of the theorem by showing that p ß preserves multi-

plication. Let p and v be measures on A, and let / be in T. We have (p * v)^(f)

— p * v(Af) = pxv(a~1(Af)), where a: Sx 5* is the multiplication map on S.

Since the complement of A, is a prime ideal, a~1(Af) = Af xA,. Thus

pxv(a-\Af)) = ttxw(Aj*Ad = KAMA,) = A(^/)^/)-

Therefore, (/_ * vY^ = ßv, and hence /x —> ß preserves multiplication.

We hope to invert the transform p —> ß by obtaining an explicit formula for

computing p in terms of the values of ß on T. Since p(E) = ß(xE) (E e A) when we

consider ß as a linear functional on the simple functions, our approach is to express

XE as a linear combination of semicharacters and use the linearity of ß. It clearly

suffices to compute y£ where £ is a fundamental set. If we expand the right-hand

side of (2), we obtain

(4) Xmx.«- 2 (~ir-MflfiW,
Igcr i = l

where |t|=2?=i t(7) counts the number of ones in the «-tuple t. Formula (4)

motivates the following definition.
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Definition 2.2. Let A={/,, . ..,/„} be a finite subset of T, let a e Tn, and let F

be a function on T. Define an operator L on the triple X, a, and F by

We let /° = 1 for any feT.

The operator L provides an explicit formula for inverting the transform /x —> fi.

The value of fi on a fundamental set B(X, a) is li(B(X, o))=L{X, o)fi. This is the

inversion formula we sought.

We conclude the section by pointing out the close relationship between our

inversion formula and the classical Möbius inversion formula. (Rota's paper [7]

contains the necessary background information on the Möbius and zeta functions

on a finite partially ordered set, and a proof of the Möbius inversion formula [7,

Proposition 2].) The above relationship is clear if we make appropriate notational

adjustments. Fix the set X={fu .. .,/„} of semicharacters in T. Let the Boolean

algebra Tn be the partially ordered set under consideration. A measure /x on A is

considered a function on Tn by defining

Note that Yli = if"in is the characteristic function of the set \Jlia B(X, t). Since /x

is finitely additive,

where £ is the zeta function for Tn. We can solve for p as a function on Tn using

Möbius function for Tn (denoted throughout this paper by m). We obtain

The second equality follows since Tn is a Boolean algebra, in which case m(a, t)

= (_l)Ui-ki r7> Proposition 5J

3. Properties of the map y^fi, and a Radon-Nikodym theorem. The terminology

of §2 will be used throughout this section. We introduce notions such as positive

definite and bounded variation for functions defined on T with the aid of our

inversion operator L (cf. Definition 2.2).

Definition 3.1. A function F on Fis positive definite if L{X, <x)F=0 for each

finite subset X={fu ...,/„} of Fand each a in Tn.

Definition 3.2. A function Fon Fis of bounded variation if sup 2a \L(X, a)F\

< oo, where the supremum is taken over all finite subsets A of T. The norm of F

is the number supx 2a \L(X, o)F\.

Definition 3.3. A function G on T is absolutely continuous with respect to a

positive definite function F on T if given e>0, there is a S>0 such that, for any

/x(a) = ^ m{a, r)ß(r) = £ ( - l)'1'" |("A(t).
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finite subset X={f,.. .,/„} of Tand any subset HofTn, 2„6H L(X, a)F<8 implies

Screw |P(A, a)G\ <e. If G is absolutely continuous with respect to F, we write G<F.

These definitions reduce to the usual definitions of bounded variation and

absolute continuity on the unit interval if we let S=[0, 1], with maximum multi-

plication, and T={xio,X] | x e [0, 1]}, and we identify each x e [0, 1] with the semi-

character xio.xi- Note that T is isomorphic to [0, 1], with minimum multiplication.

If F is a function on [0, 1] and X={xu ..., xn} is a subset of [0, 1] with 0^xx

S*a---S*.-1, then I„eTn\L(X, <r)F\ = \F(x1)\+Z?=2\F(xi)-F(xi_1)\. Thus a

positive definite function in the example is a nonnegative, nondecreasing function,

and a function absolutely continuous with respect to F(x) = x is an absolutely

continuous function in the classical sense. Moreover, a function on Pis of bounded

variation in the sense of Definition 3.2 if and only if it is of bounded variation in

the classical sense. It is hoped this example justifies the above terminology.

The following theorem shows how the map y -> ß relates function and measure

theoretic concepts. The proof is straightforward and is omitted. Measure theoretic

notions involved can be found in [3].

Theorem 3.1. The isomorphism y —> ß has the following properties.

(1) y —> ß maps positive measures on A to positive definite functions on T.

(2) y —> ß maps bounded measures on A to functions of bounded variation on T

in a norm preserving manner.

(3) y —>ß preserves absolute continuity; i.e., if v is a measure absolutely con-

tinuous with respect to the positive measure y, then v is a function absolutely continuous

with respect to the positive definite function ß.

Theorem 3.2. The algebra M(A) of all bounded, finitely additive measures on A,

with convolution multiplication, is a Banach algebra. The algebra BV(T) of all

functions of bounded variation on T, with pointwise multiplication and bounded

variation norm, is also a Banach algebra. The map y -> ß, defined in Theorem 2.1,

maps M(A) isomorphically and isometrically onto BV{T).

Proof. The proof follows almost trivially from Theorem 2.1 and Theorem 3.1.

The convolution product of two bounded measures y and v in M(A) is again a

bounded measure; in fact j|ft * v|| ^ \\yx v\\ = \\y\\ \\v\\. Since M(A) is a Banach

space, the above norm inequality shows that M(A) is a Banach algebra. Combining

the results of Theorem 2.1 and Theorem 3.1, we conclude that y^* ß maps M(A)

isomorphically and isometrically onto BV(T). Therefore, BV(T) is a Banach

algebra with pointwise operations and the bounded variation norm given it above.

This completes the proof of the theorem.

We conclude this section with a discussion of the Radon-Nikodym theorem in

our setting. Let v be a bounded measure and y be a positive measure with v<y.

Let wx be a simple function on S defined by

_ v v([B(X, a))
W* ~ I y(B(X, a))
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for each finite subset a of T. We adopt the convention thatv(S(A', a))jp{B{X, <t)) = 0

whenever p(B{X, <r)) (and hence v(B(X, <j))) is zero. a corresponding measure vx is

defined by vx(E) = |£ wx dp for each set E in A. Clearly, we have vx<p. The collec-

tion {vx} of all such measures forms a net, with the ordering given by a^ Y if

a<= Y. The following theorem shows that the net {vx} converges to v in total

variation norm.

Theorem 3.3. Let v and p be two bounded measures on A with p positive and v

absolutely continuous with respect to p. Then the net {vx} defined above converges to

v in total variation norm, and the corresponding net {wx} of simple functions converges

in p-measure.

Proof. The proof we give depends strongly on a result obtained by Darst [2].

We state Darst's result in the form most convenient for our purposes. Let /x be a

positive measure in the space of all bounded, finitely additive measure on some set

algebra. Then measures of the form v{E) = \E w dp, where w is a simple function

with respect to the given set algebra, are dense, in total variation norm, in the set

of all measures absolutely continuous with respect to p.

Let e>0. Choose a simple function wx such that the measure v1(E) = $E wx dp

satisfies \\v1 — v\\<e/2. Darst's result guarantees the existence of such a function.

The simple function w, can be written in the form 2<r aaXB(x,o) for some finite

subset a of Pand constants a„. Solving for the constants a„, we obtain

A similar argument shows that if F=> A, so that {B( Y, a)} is a refinement of

{B(X, a)}, then wt can be written

and hence

aa = v,{B{X, o))Ip(B(X, a)).

wi = 2
a p{B(Y,a)) Xb(Y,<j)-

For any Y=> X, we have

y f n(B(Y,a)) v{B{Y,a))

£J«r.ff) KB(Y,c)) p(B(Y,a))

2 \Vl{B{Y,o))-v(B{Y,o))\ =S If^-vfi < e/2.
a

Therefore,

II ̂  lk-vill + h-^1 < */2+£/2 = s

for any Y=> X. Thus the net {vx} converges to v in total variation norm.
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The second part of the theorem follows immediately from the first. The net {vx}

is convergent, and is therefore a Cauchy net. Hence given e>0, there is a finite

subset A of t such that for all finite subsets y and Z containing x,

|Wy-Wz| dp = \\vr-vz\\ < e.
J

It is therefore clear that

tt({je5| |wy-vvz| >. e}) < e.

Thus the net {wx} of simple functions converges in /^-measure. This completes the

proof.

The net {wx} is the closest thing to a Radon-Nikodym derivative of v with respect

to it that is possible in our setting since the measures v and p are only finitely

additive. If v and p are extendable to countably additive measures on some a-

algebras over S which contains A, then {wx} converges in l'(p) norm to the actual

Radon-Nikodym derivative of v with respect to p. The important feature of the

above theorem is that it allows us to compute the Radon-Nikodym net {wx}

directly from the functions 0 and ß. In fact, wx is given by

v l(x, o)v
Wx " 4- l(x, o)ß XBix-°>-

The quotient l(x, a)C/l(x, a)ß plays the same role as the difference quotient

(G(x)-G(y))/(F(x)-F(y)) does in defining the derivative dG/dF for functions on

to, 1].

4. Functions of bounded variation on idempotent semigroups. The definitions of

bounded variation, bounded variation norm, and positive definiteness given in

Definitions 3.1 and 3.2 can be made for functions on any abelian idempotent

semigroup T with identity, even though T is not given as a semigroup of semi-

characters on an underlying semigroup S. Accordingly, we let T be an abelian

idempotent semigroup with identity, and we show that the set BV(T) of all functions

of bounded variation on T, with pointwise operations and bounded variation norm,

is a convolution measure algebra in the sense of [8]. We then study BV(T) using

the structure theory for commutative convolution measure algebras developed

in [8].

The definition of the operator l(x, a) clearly makes sense if x is taken as a

finite subset of an abelian idempotent semigroup Fwith identity (cf. Definition 2.2).

As in Definition 3.1, we say that a function F on T is of bounded variation if

suPx 2<r \l(x, a)F\ < co, where the supremum is taken over all finite subsets A of T.

The norm of Fis the number ||F|| =supx 2» |£(A, a)F\. We say that Fis positive

definite if l(x, ct)FS 0 for each finite subset A of T and each a as in Definition 3.2.

A partial ordering is introduced into BV(T) as follows: G^Fif and only if F—G

is positive definite. It is easy to verify
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Lemma 4.1. The space B V{T) is a partially ordered, normed linear space.

We now proceed to show that BV'T) is a convolution measure algebra. A con-

volution measure algebra [8, Definition 2.1] is a complex L-space [8, Definition 1.1]

with a multiplication which makes it a Banach algebra and relates appropriately to

the norm and the order. Kakutani [4] was first to consider real L-spaces, and

Rieffel [6] first introduced complex L-spaces. The Banach space of all bounded,

finitely additive measures on a Boolean algebra is a complex L-space. Thus our

approach is to show that BV(T) is a complex L-space by producing a linear isometry

from BV(T) onto the space of all bounded, finitely additive measures on a certain

Boolean algebra. This Boolean algebra is constructed as follows. For each xeT,

let Px denote the translation operator on BV(T) defined by

(5) PxF(y) = F(xy)      (Fe BV(T), y e T).

The following facts concerning translation operators are immediate.

Lemma 4.2. Each translation operator on BV(T) is a projection (idempotent)

operator. Any pair of translation operators commute, and, in fact, PxPy = Pxy for

x, y eT. The translation operator Pu where 1 is the identity in T, is the identity

operator.

Lemma 4.2 shows the linear span of the translation operators is a commutative

ring with identity. We let B denote the set of all projection operators contained in

the linear span of the translation operators. The lattice operations of least upper

bound (v), greatest lower bound ( a ), and complement are introduced in B as

follows. For each pair of projection operators P, Q e B, define F v Q = P+ Q — PQ,

and Fa Q = PQ. The complement of a projection operator P is I—P, where / is

the identity operator. It is easy to see that B is a Boolean algebra with respect to

the above operations. This method of obtaining a Boolean algebra from a com-

mutative ring with identity is a very standard one [1]. The Boolean algebra B is

the one we have been seeking. Our order preserving linear isometry ß from BV'T)

onto the space of all bounded, finitely additive measures on B will be defined by

(6) ßF(P) = PF(\)

for each F e BV(T) and P e B.

The following definitions are needed in the sequel.

Definition 4.1. Let X={xu x2,..., xn} be a finite subset of T. For each a e Tn,

the operator

P(X, a) = ^ m(a, r)Pz
ieTn

will be called a fundamental operator, where m is the Möbius function for Tn and

F, is the translation operator Py, where v = n"=i x\m.
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Definition 4.2. A set of operators {Pi}?=1, with each Pt e B, is called a decom-

position of the identity / if

(1) /y,=oif

(2) P1VP2V ■■■vPn = I?=1Pi = I.

Definition 4.3. If P, Q e B, then ßg/5 if and only if PQ=P. A decomposition

{Q}■}?=! is called a refinement of the decomposition {Pf}*», if each satisfies

Qj^Pi for some  (1 f^i^n).

The next two lemmas demonstrate a close relationship between fundamental

operators and the fundamental sets considered in §2. In Lemma 4.3, we show that a

fundamental operator is projection (idempotent) operator in B, and that the

collection {P(X, <r)} (a e Tn) of fundamental operators form a decomposition of the

identity in the sense of Definition 4.2. In Lemma 4.4, we show that any decom-

position of the identity can be refined by a decomposition of the form {P(A, a)}

for some appropriate choice of A. The proofs we give of these lemmas, however,

are quite different from the corresponding ones in §2. Roughly speaking, the

algebraic machinery of semicharacters and prime ideals is replaced by the com-

binatorial analysis of the Möbius and zeta functions. Another important connection

between the fundamental sets and fundamental operators is the following. Since

the formula P(X, a)F(\)=L(X, a)F (Fe BV(T)) holds for the operator P(X, a), it

follows from (6) that

(7) ßF(P(X, a)) = P(X, c)F(l) = L(X, c)F.

A similar relationship between measures on A and functions on T was obtained

in §2.

Lemma 4.3. // A= {xu..., xn} is a finite subset ofT, then each operator P(X, a)eB

for each a e Tn, and the set of operators {P(X, a)}asTn is a decomposition of the identity.

Proof. The fact that each P(X, a) e B and that P(X, c)P(X, r)=0 for a^r

follow from the factorization

(8) p(x,o) = r n pj\ n v-Pxji

The formula

(9) Pe =  j T)P(X> t) (ct 6 Tn)
IET„

is verified with the aid of the Möbius inversion formula ([7], see also discussion at

the end of §2). An application of (10) with a equal to the zero n-tuple, and hence

Pa = /, yields the expression 2iern P(X, t)=I. This completes the proof of the lemma.

Lemma 4.4. Any decomposition of the identity may be refined by a decomposition

of the form {P(X, a)} for some finite subset X ofT.

Proof. Let {P(}f=i be a decomposition of the identity where each Pf is a linear

combination of translation operators Px   for l^j^nt. Set Xt == Ui=i xu ana
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A=Ur=i X- It can be shown that, if X^X, then there exist subsets H^Tm

(assuming that X contains m points) such that Pt = 2aeH, P(X, a) for 1^/fSn.

Furthermore, the sets Ht may be chosen so that P(X, r)#0 for r e Ht. This observa-

tion is verified by writing out Pt as a linear combination of translation operators

and then applying formula (9) to each translation operator. We claim that the sets

Hi are pairwise disjoint. For if reH^Hj (/#./), then P(X, T)Pt = P(X, t) and

P(X, T)Pj = P(X, r). If we multiply the first equation by P„ we obtain P(X, t) = 0,

a contradiction. Thus, /=2?=i Pf = 2>es- P(X a), where K=\Jf=1 Ht. Finally,

observe that t e K if and only if P(X, t)#0. Thus if P(X, r)^0, then TeHt for

some ;', and hence P(X, T)Pi—P(X, r) (P(A", r)^Fj). Therefore, the decomposition

{P(X, <r)} refines {Fj}r=i, and the proof is complete.

Theorem 4.1. There is an order preserving, linear isometry ß from the space B V(T)

of all functions of bounded variation on T to the space M(B) of all bounded, finitely

additive measures on the Boolean algebra B. The image ßF of a function F e B V{T)

is defined by ßF(P) = PF(\)for each P e B.

Proof. Clearly ß is a linear map. To show that ßF is finitely additive on B, let

P and Q be disjoint elements of B; i.e., Fv Q = PQ = 0. Then Fv Q = P+Q-PQ

= P+Q, and

£F(F v Q) = (F+ß)F(l) = PF(l)+QF(\) = ßF(P) + ßF(Q).

Now /?Fis bounded if sup 2?=i \ßF(Pi)\ <co, where the supremum is taken over all

decompositions {Fi}"=1 of the identity. Lemma 4.4 shows that this supremum may

be taken over all decompositions {P(X, a)}, where A' is a finite subset of T. There-

fore,

\\ßF\\ = sup 2 \ßF(P(X,c))\ = sup 2 \P(X,c)F(\)\
X    a X a

= sup 2 \L(X,c)F\ = \\F\ <co,
X a

where Fe BV(T). The third equality follows from (7). We have shown that ß is an

isometry.

To prove that ß is onto, let A be a bounded finitely additive measure on B.

Define a function F on T by F(x) = \(Px) for each x e T. We claim that ßF=X.

It suffices to show that ßF and A agree on the fundamental operators P(X, a). The

equality ßF(P(X, a)) = \(P(X, a)) can be obtained by writing out P(X, a)F(l), using

(9), and the Möbius inversion formula. Thus ß is onto. Finally, (7) shows that Fis

positive definite if and only if ßF is a positive measure on B. Hence ß is order

preserving. The proof of the theorem is complete.

Theorem 4.2. The algebra BV(T) of all functions of bounded variation on T is a

commutative convolution measure algebra, with pointwise addition and multiplication

of functions, and bounded variation norm.
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Proof. Theorem 4.1 shows that BV{T) is a complex L-space. We need to show

that BV(T) is a Banach algebra, and that the three conditions listed in Definition 2.1

of [8] hold. The essential ingredient in our proof is the formula

(10) P(X,a)(FG)=    2    MX, r1)P][P(A, r2)G],

where X={xu ..., xn} is a finite subset of T, a e Tn, and F, G e BV(T). The proof

of (10) involves formula (9), the Möbius inversion formula, and the equality

£(t> TlX(r» t2) = £(t, t, A t2)       (t, 7j, t2 g P„),

where £ is the zeta function for Tn.

The first two conditions of Definition 2.1 of [8] and the fact that BV(T) is a

Banach algebra follow from (10). For suppose F,Ge BV{T). Using (7), and

evaluating the operators in (10) at the identity yields

(11) L(X,c)(FG) =    2    [L(X, r^FmX, r2)G].
»ja»»"«

The norm inequality \\FG\\ g ||F|| ||G|| follows from (11), with equality whenever F

and G are positive definite. Thus BV'T) is a Banach algebra, and the first condition

of Definition 2.1 of [8] holds. The second condition, namely that the product of

two positive definite functions is positive definite, follows trivially from (11).

The third condition is a little more difficult to verify. Let F, G, and H be positive

definite functions on T with 0^//^FG. Since the map ß defined in Theorem 4.1

preserves order, we have O^ßH^ß(FG). Clearly, ßH is absolutely continuous

with respect to ß(FG). Recall that Darst's Radon-Nikodym theorem ([2], see also

Theorem 3.3) says the following: if v and /x are bounded, finitely additive measures

on a Boolean algebra, and v is absolutely continuous with respect to the positive

measure /x, then given e>0, there is a partition {£(}"= i such that — 2?=i a(xi|E)|| < e.

The measure /x|£( is defined by /x|£((F) = xi(Fn Et) for each set Pin the given Boolean

algebra. We now fix e>0. According to the above remarks, we can choose a finite

subset X={xu ..., xn} of Fand constants a„ (a e Tn) such that

\ßH-2aaß(FG)\ < e.

The constants aa may be chosen such that 0^a„^ 1 since ßH^ß(FG). Note that

ßF\P=ß(PF) since

PF\AQ) = ßF(PQ) = PQFV) = Ö(PP)(1) = ß(PF)(Q)
for any P and Q in our Boolean algebra B of operators. The above inequality can

then be written

\ßH-^aaßP{X,<j)(FG) \ < e.
a

Since ß is an isometry, we have

I H-^aaP(X,a)(FG) I < e.
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An application of formula (10) shows that

2 aaP(X, a)(FG) = 2 <h   2 V,«rs)C
a a Z\/\Z2 = o

= 2 "V2P(X, rJFPiX, r2)G,

where aV2 = aa whenever t, a t2 = o. We therefore have

I 'B- 2 aV2P{X, t,)FP(X, r2)G I < e.
ii Il,I2 ii

The fact that 2n P(A, r1)F=F, 2l2P(X, r2)G = G, and the fact that 05<t,„£i

for tl5 t2 in Tn, complete the verification of the third condition. The proof of the

theorem is complete.

We now investigate the structure of the algebra BV(T). The point evaluation

map hx, denned by hx(F) = F(x) for each Fin BV(T), is easily seen to be a complex

homomorphism of BV(T) for each x in T. The point evaluation homomorphisms

separate points in BV(T), and hence BV(T) is semisimple. Accordingly, there is a

compact topological semigroup 5 and an embedding F^ Fs of BV(T) into M(S)

(the measure algebra on S) such that each complex homomorphism of BV(T) has

the form hf(F) = $sf dFs for some continuous semicharacterf in S [8]. The space S

of all continuous semicharacters on S, with the weak* topology, can be considered

the maximal ideal space of BV(T). We let fx be the semicharacter in § which corre-

sponds to the complex homomorphism hx; in this manner, each point in T is

identified with a semicharacter in §. We prove in the theorem below that the

correspondence x —>fx is a semigroup isomorphism from T into the semigroup of

semicharacters § with pointwise multiplication. We further let M denote the L-

subalgebra of M(S) which is the image of the map F^*FS. An L-subalgebra of

M(S) is an L-subspace [8, Definition 1.1] which is closed under convolution

multiplication. Since § is the maximal ideal space of BV(T), it can obviously be

considered the maximal ideal space of M. Thus the map y -> ß, defined by ß(f)

= jsf dp (ti e M,f e §), is the Gelfand transform. If the transform ß is restricted

to the set Tby letting ß(x) = jsfx dp for each x in T, then it becomes a function on

T. We denote by p —> ß\T the map which carries a measure p in M to its Gelfand

transform restricted to T. The equalities

Fix) = hx(F) = £ fx dFs = Fs(x)     (Fe BV(T), xeT)

show that the map p^-ß\T is the inverse of the map F^-Fs. In particular, the

function ß\T is in BV(T) for each p in M. We formalize our remarks in the

following theorem.

Theorem 4.3. Let T be an abelian idempotent semigroup with identity. Then there

exists a compact, abelian topological semigroup S, an L-subalgebra M of M(S),

and a semigroup isomorphism x->fxofT into § such that:
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(1) Every complex homomorphism h of M has the form h(ix) = ^sf djx = ß(f) for

some f in S.

(2) If we consider T^S via the embedding x -> fx, then the map y —> fi\T is an

isomorphism and order preserving isometry of M onto BV(T).

Proof. In view of our discussion preceding the theorem, we need only show that

x-+fx is a semigroup isomorphism. This is done by producing a semigroup iso-

morphism x —> gx of T into S and then showing that fx=gx for each x in T. Our

proof depends strongly on results obtained by Taylor in [8]. We let R denote the

ring of bounded operators from BV(T) to BV(T) which leave l-subspaces invariant

[8, Definition 1.2]. It was shown in Lemma 3.1 of [8] that Q e R, then Q is an

algebraic homomorphism if and only if there is an feSu{0} such that (QF)S(V)

= \vf dFs for each Fin BV(T) and each Borel subset V of S. The algebraic homo-

morphisms in R, under composition, form a semigroup of operators. The above

correspondence Q —is a semigroup isomorphism, a fact which follows from

Theorem 1.1 of [8] and §3 of [8].

The translation operators Px are elements of the ring R. This fact becomes clear

if we consider functions in BV(T) as measures via the order preserving isometry ß

of Theorem 4.1. The equality ß(PxF)=ßF\Px (the measure ßF restricted to Px)

shows that each Px is a bounded linear operator from BV(T) into BV(T) which

leaves l-subspaces invariant. Thus each translation operator is in R. Lemma 4.1

shows that Pxy = pxPy for any x and y in T. It follows that the map x^-Px is a

semigroup isomorphism, and that each translation operator Px is an algebraic

homomorphism. The remarks of the previous paragraph now assure the existence

of a semicharacter gx in S which corresponds to the algebraic homomorphism Px

for each x in l(gx/0 since j°x#0). These remarks also show that the map Px —> gx

is an isomorphism. Composition of the maps x -> Px and Px^gx yields a semi-

group isomorphism x -> gx of T into S.

We now show that fx = gx for each x in T. Combining results of the first two

paragraphs, we obtain

I /, dFs = hx(F) = F(x)
-'s

= PxF(l) = (PXF)S(S) = f gx dFs
's

for each F in BV(T). The equality gx=fx now follows from the fact that the

measures Fs separate continuous functions on S (cf. [8]).

We conclude that the map x —is a semigroup isomorphism. This completes

the proof.

The map x —> fx embeds Tin S as an idempotent subsemigroup which separates

points in BV(T). The semigroup S, however, need not be idempotent. The counter-

example we give is a modification of one given in [5]. Let 7" be the countable
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product of the two semigroups {0, 1}, under multiplication. Observe that 7" is a

compact, idempotent semigroup. The measure algebra A/(7"), under convolution,

is a semisimple convolution measure algebra. We showed in [5] that the structure

semigroup of A/(7") is not idempotent. We now let T={fx}xsr be an idempotent

semigroup of semicharacters on 7", where fx is the characteristic function of the

set {y e T' \ y^x}. Let A be the algebra of subsets of 7' generated by kernels of

semicharacters in 7 as in §2. The map which takes M(T') to M(A) by restricting a

measure in M(T') to the set algebra A is one-to-one.

Thus M(T') can be considered an L-subalgebra of M(A), and hence of BV(T),

via the isomorphism-isometry of §2, Theorem 2.1. Since the structure semigroup of

M(T') is not idempotent, it follows that the structure semigroup S of BV{T) (and

hence the semigroup S) is not idempotent [5, Theorem 1].
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