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APPROXIMATION IN THE MEAN BY ANALYTIC

FUNCTIONS

BY

LARS INGE HEDBERG

Abstract. Let £ be a compact set in the plane, let L"(E) have its usual meaning, and

let Lpa(E) be the subspace of functions analytic in the interior of E. The problem

studied in this paper is whether or not rational functions with poles off E are dense

in L%(E) (or in L"(E) in the case when E has no interior). For 1 £p S 2 the problem has

been settled by Bers and Havin. By a method which applies for 1 sSp<co we give new

results for p>2 which improve earlier results by Sinanjan. The results are given in

terms of capacities.

I. Introduction. In recent years the problem of uniform approximation by

rational functions in the complex plane has received great attention (see e.g., [26],

[28], [11]), but comparatively little work has been devoted to the corresponding

problem of approximation in the areal mean. Carleman proved in [5] that if D is a

Jordan region, then every function in L2(D) which is analytic in D can be approxi-

mated in L2(D) by polynomials, and this result was later extended by Farrell and

Markusevic to Caratheodory regions (see [21]). Only much later was the corre-

sponding problem for approximation by rational functions studied. See Bers [2],

Sinanjan [22], [23], Havin [15]. In particular, Havin discovered that necessary and

sufficient conditions for approximation in L2 can be given in terms of logarithmic

capacity. He remarked, however, that his method of proof does not easily extend

to LP, p>2.

In this paper we employ a method of proof which applies to all p, 1 3/?<co, and

get new approximation theorems for p>2 which improve those of Sinanjan [23].

We also get new proofs of some of the results of Havin [15]. The method of proof

goes back to Bers [2], and is similar to that used by the author in [18].

The main results are stated in §3 of the paper. They are given in terms of analytic

/^-capacity, or equivalently, a-capacity, which are denned in §2 below, where we also

study the relations of these capacities to potential theoretic capacity and "Haus-

dorff content".

For simplicity we will only consider approximation on bounded sets.

The author is indebted to John Garnett, John Wermer, and the referee for valu-

able comments.
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The following notation will be used. If £ is a measurable set, £ will be its closure,

E° its interior, dE its topological boundary, and WE its complement. ££(£) is the

closed subspace of L"(E) which consists of functions analytic in E°. £"(£) is the

closure in £"(£) of rational functions with poles in WE.

For/e£p(£), \\f\\P = {)E |/(z)|" dA}llp, where dA is Lebesgue measure.

q will always meanp/(p— 1). The disk {£; |£ — z| < 8} is denoted by /\j(S). Various

constants will be denoted by K.

2. Capacities. Let £ be a compact set, and let 1 <qS 2. By O we mean the com-

plex plane when q < 2, and a fixed bounded region containing £ in its interior in the

case o = 2. The ^-capacity r,(£) is defined in the following way.

Definition. rq(£) = infw J"n |grad <p\" dA, where the infimum is taken over all

real-valued Lipschitz continuous functions <p with support in £2 such that <p(z)ä 1

on £.

If £is arbitrary we define r,(£) = supj.. rQ(£), £c£, £ compact.

Remark. This set function has been studied e.g. by Wallin [27] and Ziemer [29].

Ziemer proved, among other things, that T0 satisfies the conditions in Choquet's

theorem, and therefore e.g. all Borel sets are capacitable.

We can also define an analytic /7-capacity yp(E), 2^p<co, in the following way.

Definition. yp(£) = sup |(l/27n) J"c/(z) dz\, where the supremumis taken overall

functions/in LV{Q\E) with ||/||p3 1, and c is a Jordan curve enclosing £

If £ is arbitrary we define yp(£) = supf yp(£), £<=£, £ compact.

Remark. A somewhat different definition of analytic ^-capacity was given by

Sinanjan in [23]. This restricts his results unnecessarily, as will be seen below.

Lemma 1. Let E be compact. Then

y2(£) = ^- r2(Ey'2.

For \<q<2 there are positive constants Kx and K2 {only depending on q) such that

Air,(£)1,Q 3 yP(£) 3 A2r9(£)1".

Proof. First assume that £ (and D) has smooth boundary.

Let p = 2, and let cu(z) be the harmonic measure of £ with respect to Ü. Then,

for any /e Ll(Q\E) with continuous boundary values (I owe this idea to John

Wermer),

f f(z)dz\ = I f f(zMz)dz
Joe I      I JcE

Thus

If f(z)dz 2 3 4 f    \f\2dA f |^|2^.
\JdE Jn\E '  '       Ja\E I 8z I
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Equality holds for f=8ui/8z, which is a single-valued analytic function. It follows

that

1<■> ffI 2tt Jj
dto ,

dE OZ
||grad io\\l

and since functions with continuous boundary values are dense it follows that

y2(E) = (ll2n)r2(EY>*.

Now let p>2, and let to(z) be any complex-valued Lipschitz function with

compact support such that cu(z) = 1 on E. We obtain in the same way

f f(z)dz  = I 2/ f 3 211
05

It follows that yp(E)^KFq(E)llq. The general case follows easily.

To get the other inequality we will use a standard Hahn-Banach argument (see

e.g. Havinson [17]). We note that by the above a(f) = (l/2-rri) ]dEf(z) dz is a bounded

linear functional on La(WE) represented by

IT  \OZ / TT

8to

äz'

On the other hand, it is known (see e.g. [16, Lemma 1]) that functions of the form

3<p/dz, with <p e Co (WE) form a dense subset of the annihilating space of Va(WE).

Thus, by the Hahn-Banach theorem, there are Lipschitz functions to with compact

support, with w=l on E, such that (l/ir)\\8ca/dz\\„ is arbitrarily close to the norm

of the functional a, i.e. to yp(E). It follows that yp(E) = (\/Tr) inf ||3uj/3z||„ for such

functions to. The lemma follows since ||grad \m\||,3 AT||Sa>/Sz||g for functions with

compact support and q> 1, by the Calderön-Zygmund theory [4]. □

We will also examine the relationship between yp(E) (and r„(£')) and potential

theoretic capacity Cq(E) and "Hausdorff content" Mq(E). If /x is a measure on E

we denote the potential of p with respect to Green's function for Q. by Ug, and the

potential with respect to a kernel r"~2, l<q<2, is denoted by Ug. Then for

1 <q^2, Cq(E) = sup n(E), the supremum being taken over positive measures on E

with sup2 C/^(z)3 1.

For an increasing function h(r), h(0) — 0, we define the "Hausdorff content"

Mh{E) = inf 2f Kri)>tne infimum being taken over all coverings of E by disks with

radii rt. For h(r) = r2~q, 1 <q<2, we write Mq(E). For the properties of Mh and its

relation to capacities we refer to [7].

The following lemma is essentially contained in [7, Theorem VI: 1].

Lemma 2. Let E be compact with connected complement. Then

y2(E) = (2rr)-^C2(EY'2.

For \<q<2 there are positive constants Kx and K2 {only depending on q), such that

KtCjLE)1'* = Vv(E) 3 K2Mq(E)llq.
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Proof. First let p = 2, and let to be the harmonic measure for E with respect to

Q.. Then to can be represented as a potential, to(z) = J£ G(z, £) d]u(£), where G is

Green's function for Q, and /x is the corresponding equilibrium measure for E with

total mass C2(P). It follows that, for any Jordan curve c enclosing E,

Thus by (1)

V2(E) = J |grad a>\2 dA = 2 J*|^ <fe 2ttC2(£)

and y2(£) = {C2(£)/27r}1'2 by Lemma 1.

For p>2we prove r,(P) g KMQ(E). Cover P with finitely many disks o-j with radius

r( so that 2rf-,< A/,(P) + e. Let o-J be the expanded disks with radius 2r(. Let tot(z)

be continuous, co((z)=l on at, tu;(z) = 0 outside <r't, and a linear function of the

distance to the center of o-f for z in ct,Vi- Set co(z) = Maxf ^(z). Then

Mgrad to\" dA 3 2 f  |grad ̂ 1"

= 2 2tt r'rr"rdr = 3tt 2

which proves the inequality.

For the proof in the other direction we assume that C„(F)>0. Then there is a

unit measure p on Psuch that sup2 U^(z)^2/Cq(E). The function ß(z)= \ dfx(0/(£ —z)

is analytic off E, lim^m \zß(z)\ = \, and {J |/l(z)|p dA}11"^K/Cq(E)11'1 by an in-

equality due to du Plessis [9], and Deny [8]. (A different proof of the inequality is

given in [7].) This proves the lemma.

Lemma 3. If E is a continuum with diameter d there are positive constants Kx and

K2, only depending on p (and the distance from E to 3D., for p = 2), such that

AVOog I/o1)1'2    y2(E) 3 A2/(log I/o")1'2;

Ki d1-2'" S y„(E) ^ K2 d^'2i\     p > 2.

Proof. It is well known that Cq(E) is not increased by a contraction of E. See

e.g. Landkof [19, p. 198]. Thus by Lemma 2 it is enough to compute Cq for an

interval and Mq for a disk, which is easy by means of a homothety.

3. Main results. Theorem 1 is known, and Theorems 2 and 4 are only slight

improvements of known theorems, but we include them here in the interest of

completeness. See the historical remarks below.

We prefer to give the results in terms of yp rather than the equivalent Tq, since

yp is what is needed in most of the proofs.



1972]      APPROXIMATION IN THE MEAN BY ANALYTIC FUNCTIONS 161

Theorem 1. Let E be a bounded measurable set. Then Rp(E)=La(E), l^p<2.

Theorem 2. Let E be compact without interior. Then the following statements are

equivalent:

(i) R2(E)=L2(E).

(ii) For almost all z e E (with respect to plane Lebesgue measure)

(2) lim sup C2(K,(8)\E)8~2 > 0.
«->o

(iii) For all open sets U in £2, C2(U\E) = C2(U). In particular, C2(KZ(8)\E)

= C2(KS8)) xK/(log 118) for all z and 8> 0.

Theorem 3. Let E be compact without interior, and let 2<p<oo. Then the

following statements are equivalent:

(i) R"(E)=LP(E).

(ii) For almost all z e E (with respect to plane Lebesgue measure)

(3) limsupyp(/aS)\£)S-2'« = ».
6-0

(iii) For all bounded open sets U, yp(U\E) = yp(U). In particular, yp(Kz(8)\E)

= yp(A2(8)) = K81'2'p = K821« ~1 for all z and 8> 0.

Theorem 4. Let E be compact. Then the following statements are equivalent:

(i) R2(E)=Ll(E)-
(ii) For almost all z e 8E\8E° (with respect to plane Lebesgue measure)

limsupCa^S)^-2 > 0,
a-»o

and for almost all z e 8E° (with respect to logarithmic capacity)

(4) j C2(/C3(8)\£')S-1 d8 = co.

(iii) For all open sets U in £2, C2(U\E) = C2(U\E°).

Theorem 5. Let E be compact, 2<p<co. Then Rp(E)=La(E) if the following

conditions are satisfied:

(i) For almost all z e 8E\8E° (with respect to plane Lebesgue measure)

limsupyp(A^(S)\£)S-2/'1 = co.

(ii) There is a denumerable sequence of nondecreasing functions {hi} such that for

almost all z e 8E° (with respect to yp)

(5) lim infyp(f^£) > 0, for some i,
Ö-0 ni(°)

hf(8)81 " are nonincreasing, and

(6) LMin(^'^)dS= co.
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Lemma 3 gives the following corollary to Theorems 4 and 5.

Corollary. Let E be compact, 2fkp<<x>. Then R"(E)=Ll(E) if the inner

boundary d'E (i.e. the set of points in 8E which are not on the boundary of any com-

ponent of WE) satisfies yp(d'E) = 0.

In fact, we can take hi(S) = 81~2lp when p>2.

Theorem 6. Let E be compact, 2<p<co. If R"(E)=Lpa(E), then

(i) yp(U\E) = yp(U\E°) for all bounded open sets U;

(ii) for almost all z e BE" (with respect to Cq)

the set F<=8E° where lim^0 yp(K,(8)\E)/h(B) = 0 satisfies yp(F) = 0.

Remark I. Lemma 2 shows that Theorems 3 and 5 give sufficient conditions

for approximation in terms of potential theoretic capacity. It will be seen from the

proof that (3) can then be replaced by the somewhat weaker sufficient condition

that lim sup,,_0 CQ(KZ(8)\E)8~2>0. If yqp is replaced by Cq, (4) and (7) are of course

the integral form of Wiener's condition for regular points. See e.g. [19, p. 356].

Remark 2. Theorem 1 is due to Sinanjan [22] in the case of no interior points,

to Bers [2] for p=l (and open sets), and to Havin [15] for 1 <p<2. For p = 2 a

somewhat weaker necessary and sufficient condition than the equivalence of (i) and

(ii) in Theorems 2 and 4 is due to Havin [15]. A necessary and sufficient condition

in the case of no interior points (and p ä 2) had been given earlier by Sinanjan [23],

who also gave a sufficient condition for approximation in the general case and

p g 2. Sinanjan's results are included in ours. Related problems were also studied in

Brennan [3]. Bagby [1], [la] has obtained results related to ours.

The equivalence of (ii) and (iii) in Theorem 2 (and uniform approximation of all

continuous functions by harmonic functions) was proved by Goncar [12], [13], [14],

and Lysenko and Pisarevsku [20]. This phenomenon, the instability of capacity,

was discovered by Vituskin for analytic capacity. See [26, Chapter VI: 1].

We will treat all p, \^p<co, simultaneously. The bulk of the paper will be

devoted to the proof of Theorem 5. In §4 we prove that functions in LP(8E) can

be approximated by rational functions with poles off E, and in §5 we use this

result to prove the general result. In §6, finally, we prove Theorem 6.

4. Approximation on nowhere dense sets.

Theorem 7. Let E be compact. Then rational functions with poles off E are dense

inLP(dE), \^p<2.

(iii) for any nondecreasing function h such that

(8)
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Theorem 8. Let E be compact. Then rational functions with poles off E are dense

in Lv(dE), 2 < oo, if for almost all z e BE (with respect to Lebesgue measure)

lim sup^o yl(Kz(8)\E)8"2 = co ( > 0 for p = 2).

Theorem 7 is easy. In fact, it is enough to prove that if g e L"(8E) and the Cauchy

transform g(z) = J8B g(£)/(£ — z) dA =0 for all z $ E, then g= 0. But g is continuous,

being the convolution of geL" and z~l ePfcc. It follows that g(z) = 0 on BE, and

since g is analytic everywhere off BE and g(oo) = 0, the maximum principle implies

that g=0. It is well known that this implies g=0. (See e.g. [6, Lemma 5].)

In order to prove Theorem 8 we will estimate g(z) when g e L"(8E) and g(z) = 0

off E. We need a few lemmas.

Lemma 4. Let 2<p<co. Let F be a compact set with connected complement and

assume yp(F)>0. Let f be analytic outside F,/(oo) = 0, and \\f\\i = jVF \f\" dA<ao.

Suppose F^{\z\ ^8}.

Then for \z\ >r8> 8

where K only depends on p and r.

Proof. Cf. Sinanjan [23, Lemma 2.1]. Fix z, \z\>r8>8, and consider 0(£)

= (f(l)-f(z)W-z)- Then $ is analytic outside F, 0>(co) = 0, and lim^. |£4>(£)|

= \f(z)\. Therefore, by definition, |/(z)| SyP(F)\\<S>\\„.

We assume that ||/||p=l and claim that ||0||p3 A/(|z| -rS).

For |£| ^r8 we have

\f(z)\ S K
z\-r8

ll/l!

|/(0|p 3 lMr-l)2S2

by the mean value property. Thus, for |£| =r8

By Schwarz's lemma for |£| =rS

|0(£)| g K-(V-2>*l\t\).ll(\z\-rh).
Thus

f   \<m\'dA<K SP"2 f      =   K ■

On the other hand

f \<m\'dA£
(\z\-r8)

K
-P (11/115+ l/WIW)

which proves the lemma.
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The above lemma implies the following variant of a lemma of Mergeljan and

Vituskin. A weaker form of it, using a smaller analytic /^-capacity, was given by

Sinanjan [23, Lemma 2.1].

Lemma 5. Let 2^p<oo, and let F^{\z\^8} be compact with connected com-

plement. If Cq(F) > 0 or yp(F) > 0 there exists a function h, analytic outside F with

/)(oo) = 0, and constants K depending only on p, such that \\h\\p g KfC^F)11" or

\\h\\P^KIyp(F), respectively, and\t~*-h(Q\^K8l\l\2 for all C, \t\Z28.

Proof. First assume Cq(F)>0, \<q^2, and let y. be the corresponding unit

equilibrium measure for F. Choose h(Q = § dix(s)/(s — £)• By the inequalities of du

Plessis [9] and Deny [8] referred to earlier, \\h\\p^KjCq{Ff"'. Moreover,

lim^ l.h(Q=\, so HfBj-,«, w"1-*({)) exists. For |£|=2S clearly \l\t-' - h(Q)\

?£6S. The inequality for |£| S28 follows from the maximum principle.

Now assume yp(F)>0, p>2, and let h be analytic outside F, A(oo) = 0,

lim^^ lh(t) = 1, and ||/i||p=£2/yp(F). The lemma follows as above if Lemma 4 is

applied to h for |£|=2S.

The following lemma will be crucial also in the following section.

Lemma 6. Let E be compact, 2f^p<<x>. Let zeE and suppose F<^KZ(8)\E is

compact, yp(F) > 0. Let g e L"(E), and suppose g(£) = 0 for all     E. Then

where

\g(z)\ = Kig*{z)h\og\ + \\ \g{QVdA
\ 0 Ult-z|<2Ä

g*(z) = sup4^f \m\dA,
r    Trr   J |r-z| <r;fe£

1/fl 1

yP(F))

and K depends only on q and the diameter of E.

IfCq(F)>0and l<q^2, then (if g(z) = \imr^0 (l/nr2) f|c_s| <rXsE g(Q dA)

Proof. Cf. the proof of [6, Lemma 1]. Assume yp(F)>0, put z = 0, and let h be

the function given in Lemma 5. We extend the definition of g by setting g(£) = 0,

ü E. By Runge's theorem j gh dA = 0, so g(0) = J" g(0(lß-h(Q) dA. By Lemma 5

|g(0)| = f      ljr$dA+(      \g(0h(Q\ dA + K8 f       M dA
J Kl S2<5     |t| J|CIS2d J\K\>26 |t|

= h+I2 + I3.

co e

a * 2-1
Here

\_mdA

= 2 3'2n-f |g(£)|^ = A8g*(0).
n = 0 J|?|<d-2-"+1
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Similarly

h = 2  f 1 ö dA = Ag*(0)W,

where TV is chosen so that R < 82N +1 ̂  2R if £ is contained in {|£| £ R}.

An application of Holder's inequality to I2 completes the proof of the first

inequality.

Now assume C9(F)>0 and choose A(£) = J dfj.(s)/(s—l) as in Lemma 5. We now

write

h=   f g(OKOdA

^ f      \g(Q-g(P)\ \h(Q\ dA + \g(0)\ f      |A(Q| dA
jk\£2ö Jk\S26

Uicis2i j    <-„(/•; j        jicis2d !■> —1|

The last integral is less than AS, and this proves the lemma.

We now assume that g eL"(8E), l<q^2, and g(t) = 0, £ $ E. We shall prove that

g = 0 almost everywhere if E has the property in Theorem 8. We observe that

Lemma 6 implies that g(£) = 0 almost everywhere on BE, and this proves the assser-

tion when E has no interior.

Remark. The same argument as in Lemma 6 applies to measures and gives a

short proof of the following theorem of Vituskin (see [26, Chapter VI: 2], where a

slightly stronger result is proved).

R(E) = C(E) if for almost all zeE (with respect to plane Lebesgue measure)

lim sup^^o y(As(S)\£')/S2 = oo.

Here y is analytic capacity, and R(E) is the uniform closure of the rational

functions.

To prove Theorem 8 in the general case we need the following two lemmas.

Lemma 7. Let g e L"(8E), 1 <q^2, let z be given, and suppose g(£) = 0 in some

set F^K,(8) with mes F>irr82. Then \g(z)\g Kg*(z)8.

Proof. Suppose z = 0. The intersection of Pand a sector

Sa = {rei0; 0^^5,ai0S tx + n/2}

has measure at least ^S2. Let xi and y2 be characteristic functions of subsets of

S„n and SSnl± with measure ^tt82. It is then easily seen that we can determine

a(0 = alXl(0 + «2X2(0 so that )a(QdA = \, ^a(QdA = 0, and then |a(D|=AS-2.



166 L. I. HEDBERG [January

Now put A(0 = I a(s) dAs/(£, — s). Then sup |/z(£)| 5=A8_1, and as in Lemma 5 we

find |l/£-/;(0|3/v82/|a3,for |£|£2S, Now Jg(£)A(£) dA = - Ja(s)g(s) dA = 0, so

I#(0)| = I J"*(£)(|-A(£))^|

3 A f       ^rpi dA+KS2 ( ^ 3 Ag*(0)S
j I Cl S 20     |£| j|?IS2<5 |£|

by estimates similar to those in the proof of Lemma 6.

The following is a stronger version of a well-known lemma (see e.g. [6, Lemma

5]).

Lemma 8. If geL"(8E), \<q^2, and g(£) = 0 almost everywhere on 8E, then

g(£) = 0 almost everywhere.

Proof. As usual we put g(£) = 0, £ £ BE. By Fubini's and Cauchy's theorems

ti f    i(0 <* = i f *(*) A4 f        = - f ^
■''"'I J It-=Ä J J|C-2|-«* —t J|S-2|Sä

for almost all z and 8. Therefore the lemma will follow if we show that for almost

all z e BE

Kminfif       |g(£)| \dl\ = 0.
'K-2| =0

Let z be a density point for BE, and assume moreover that

lim 4l f g*(0 dA = 0.
cS-0 TTO J\c-e\iöMdE

This is true for almost all z e BE, since g* eL"(8E). (See e.g. [24, Theorem 1.1],

for a simple proof.)

By Lemma 7 we get for sufficiently small 8

f 11(01 dAZK.\ g*(£)|£-z| dA = o(S3)

by the choice of z. It follows that

liminflf |g(£)IKI=0,

which proves the lemma and Theorem 8.

5. Approximation on arbitrary compact sets. We shall now apply the results of

the preceding section to the general case. Suppose geLq(E) and g(z) = 0 for

z e HE. We will show that jEfg dA = 0 for feLpa(E).

We first observe that it suffices to prove that §E°fg dA = 0 for / eLp(E). In fact,

this implies that
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and therefore

f^ = 0, z$E.
JdE     l — Z

But then g(£) = 0 a.e. on 8E by Theorems 7 and 8, so \Efg dA=$E„fg dA = 0.

For p = 2, (4) implies that /£«/g dA = 0 as in [15], which proves that (ii) implies (i)

in Theorem 4. Now let /?#2. Following Bers [2], we let {o>„} be an increasing se-

quence of functions with compact support in E° such that 0 3 wB 3 1 and limn_, M o>„

= 1 for almost all zeE°. It is sufficient to prove that lim,,,,» J wnfg dA=0 for a

suitable choice of the sequence. But by Green's theorem and the analyticity of /

/■***-- :MJ«-;//%«*.
and

|J/^g^| 3 ||/||p||ggradcoB||a.

We shall show that the cun can be chosen so that ||g grad a>n||, —> 0, n —> oo.

The proof will follow from the following lemmas. Lemma 9 is a counterpart to

Lemma 6 for q>2.

Lemma 9. IfgsL\E), 2<q<co, then for \z1-z\^8

ItfO-flM ^ A-(g*(z)aiogl+{£ ̂ ̂ J^oi'^}1"-«1-»").

For ^ = co

|<(*)-J(*i)| 3 ^||g||.8 log i.

The proof is similar to that of Lemma 6 and is omitted.

Lemma 10. Let Fbe a compact subset of 8E° such that the assumptions in Theorem

5 are satisfied for all z e F. (F= 8E° for p < 2.) Then for given e > 0 there exists a

function w, 0 3 <o(z) 3 1, such that <o(z) = 0 in a neighborhood of F, and co(z) = 1

outside an e-neighborhood of F, and ||ggrad a>||,<e.

Proof. By considering hdn, «=1,2,..., and reenumerating, we can assume that,

for each z e F, yp(A'2(S)\P)äAm(S) for all l/m, for some m. Let Fm be the set of

such z, so F=[Ji Fm.

We now fix m, and we shall construct a function a>m which is 0 in a neighborhood

of Fm, 1 outside a neighborhood of Fm and is such that j|ggrad cum ||, < e/2m.

By Lemma 6 applied to a point z at distance S(z) from Fm and to the disk Kz{28(z)),

we obtain

(Put «(z) = 82"'-1 for p< 2 by Lemma 9.)
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To construct c_m we now apply an idea of Ahlfors which appears in [2].

Let A(/), />0, be a nonincreasing function such that jr \(t) dt = A(r) -> oo as

r-> +0. Let k(t), t>0, be a continuous piecewise linear function such that k(t) = 0

for rgl, &0)= 1 for ? = 2, and \k'(t)\3 1. Put Kn{t) = k{njA{t)), «=1,2,.... Then

/c;(?) = Ä:'(«/A(/)) (-n/A2(0) (-A(0), so K'n(t) = 0 except for 0<r„;gr^C For

r„<r3C A(0/«__a;(,)__4A(0/«, and j£ I.
We now choose A(f) = Min (l/(Hog 1//), hpm (f)Ap-1), and put ojm(z) = a-(S(z)),

where « is to be determined. Then |grad com(z)| ̂ K'n(S(z)). A short calculation gives

|g(z)grad «.(z)|« 3 -£y. (s*(z)9+^8P f k(0l'^)'
«        v övzj     j|E-2|<4<S(z) /

By the Hardy maximal theorem (see e.g. [24, Theorem LI] for a simple proof) we

only have to estimate the integral of the second term. We find, since A is non-

increasing,

\g(0\«dA(
j        °\z) J It-2|< 4,5(2)

£ *(Htn>K+j mdt}\g\\t £ K\\g\\i,

since A(/)^ 1 jt. Thus ||g grad ojm||„<e/2m if n is large enough.

Now put ai(m} = Ui <»i- Then |grad a/m)| Igrad o>,|,so ||ggradw(m)||?<e. Also

£u<m> = 0 in a neighborhood Om of Fm, and the sequence {Om} is increasing. Therefore,

by the compactness of F, F^ON for some N. We choose w = lo(n\ and this finishes

the proof of the lemma and of Theorem 1.

Lemma 11. Let 2^/?<oo and let F be a Borel subset of 8E° with yp(F) = 0. Then

there exist functions ton, 0^cun(z)__l, such that lim--.«, ||ggrad c--||- = 0,

limn_.cc a>n(z) = 1 in E°, and <x>-(z) = 0 in a neighborhood of F.

Proof. By Lemma 1, and since Borel sets are capacitable for r„(see [29]), there

is for every n an open neighborhood On of F such that Tq(On)llq^enln, and

lim-_oo-- = 0. Then there is an increasing sequence of compact sets, K^On,

On = Uf Ku and functions <pf,<pf{z)=\ on Kh such that ||grad 9™||,__-„/«. We

choose a weakly convergent subsequence of {<p(n}}i, and denote the limit function by

<pn. Then <pn(z)= 1 on On, and )|grad <pn\\q g ejn. Moreover (see [29]), rj'"{z; <pn(z)>-_}

^Kejn. Set 9>;(z) = 2 Max (<pn(z)-|, 0). It follows that lim^*, 9>n(z) = 0 a.e. in E°,

at least for a subsequence, which we still denote by {<p'n}.
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Now set Sn = {z; \g(z)\>«}. By the Calderon-Zygmund theory for singular

integrals (see [3]) ||grad g||,__/_||g||„ and moreover |grad \g\ | s= [grad g\ almost

everywhere, so r„(5',l)1'^(A:/«)||g||-.

Define ipn(z) = 0 on Sn, <pn(z)= 1 outside Snl2, and i/<n(z) = 2(l — g(z)/n) otherwise.

It follows that I grad >pn\\Q = o(]/n), and that \\m„^x </<n(z)=l almost everywhere.

We now set wn = (l — <p'n)2>Pn- Then

|gradajn| ^ 2(l-<pJ^2Jgradcp-|+2(l-<pJ2<A-|grad >/>n\

^ 2i/>„(|grad 9=n| + [grad iA-.|).

We find J \g>pn grad i/in\" dA g«5||grad i/>n||^<e for n large enough, and similarly

J* \g4>n grad <pn\q dA f£n?|jgrad 9?n[|^<£. This proves the lemma.

To complete the proof of Theorem 5 we now only have to observe that, by assump-

tion, (5) is satisfied except on a set G with yp(G) = 0. We choose a function to' as in

Lemma 11, with cu' = 0 in a neighborhood O of G. Then 8E\0 satisfies the assump-

tions of Lemma 10, and we choose a>" = 0 in a neighborhood of 8E\0 as in Lemma

10. We then set w = to'to", and the result follows.

6. Necessary conditions for approximation. We shall first show that if

RP(E)=LP(E) then yp(U\E) = yp(U\E°) for all open bounded sets U. The proof is

similar to the corresponding proof for uniform approximation as given e.g. in

[28, p. 104].

Lemma 12. Let U be a bounded open set. Suppose that f e R"(E), f is analytic

outside a compact subset of U and that/(co) = 0. Then f e R"(WU u E).

Proof. By Runge's theorem (z — a)f can be uniformly approximated on WU

for all a by rational functions with poles in U. If a is chosen in U it follows that

fe R"(WU), p^2, where the norm is taken over a fixed disk for p = 2. The lemma

now follows exactly as in [28, 11.7 and 15.9].

Now assume RV{E) = LP{E) and let U be any open set with yp(U\E°)>0. Then

for given e > 0 there exists a function/which is analytic outside a compact subset of

U\E°, jVcrnr, 1/1" dA = \, and |/'(co)| ^yp(U\E°)-e. We put/(z) = 0 for z e U\E°.

The restriction of/"to E is in R"(E) by assumption, so by Lemma 12 we can find

a sequence of rational functions /„ with poles in U\E tending to fin LP(WU u E).

Clearly/^(oo) -+f'(co), and

f      \fn\'dA-+\      |/T^=f       \f\'dA « 1.
J^UuE JtfUuE J<rC7u£°

It follows that yp(U\E)^yp(U\E°)-e, which proves Theorems 2(iii), 3(iii), 4(iii),

and 6(i).

We shall now prove that these statements imply Theorems 4(h), and 6(ii) and

(iii). (Cf. Vituskin [26, Chapter V:2].)

Suppose yp(U\E) = yp(U\E°) for all bounded open U, and assume that there is a
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compact set F^8E° with yp(F)>0 such that j0 yp(/_s(S)\£)_<>-3 d8<<x> for all

zef. Then, for all z e F

f yp(Ä-2(S) n F)S*~3 d8     f yl(Uo)\E°)8a-3 </8
Jo Jo

= J" y^/aS)^-3^. < 00.

By Lemma 2, |0 Q(AT2(S) n F)S"-3 d8<oo, and that this implies Ct(F) = 0 is

Kellogg's lemma. See e.g. [25, Theorem 111:33] or [19, pp. 327 and 353], compare

also [26, Chapter 111:6].

In order to conclude that the assumptions in Theorem 6(iii) imply that yp(F) = 0

it is clearly enough to prove the following lemma.

Lemma 13. Let F be compact, \<q^2. If for all zeF and 8, 0<8<S0,

Fq(Kz(8) n F) __ h(8), where h>0is increasing and jQ h(8)8" ~ 3 dB < co, then FQ(F) = 0.

Proof. Suppose Vq(F)>0. For any „>0 we can then find a subset F' of F

with diameter ^d and r,(F')>0. If F' is covered by disks KZi(8t) it follows from

the assumption and the subadditivity of TQ that r.(P') g 2, «(Sj), so F-(F') ^ Mh(F').

But on the other hand, it is easily seen from [7, Theorem IV: 1] and Lemma 2

above that

Mh(F') ^ C„(F') Ph(8)8«-3 d8 ^ AT-(P') pA(8)S«-3
Jo Jo

which is a contradiction if d is small enough. This proves the lemma.

Theorem 6 follows easily, and this finishes the proof.
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