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A CHARACTERIZATION OF THE GROUP UAfft1)

BY

RICHARD LYONS

Abstract. Let T be a Sylow 2-subgroup of the projective special unitary group

t/3(4), and let G be a finite group with Sylow 2-subgroups isomorphic to T. It is shown

that if G is simple, then G^ t/3(4); if G has no proper normal subgroup of odd order

or index, then G^ t/3(4) or T.

1. Introduction. We denote by U3(4) the projective special group of 3 x 3

unitary matrices with coefficients in the field of 42 elements. Let T he a Sylow

2-subgroup of U3(4). Our main result is

Theorem 1. Let G be a finite simple group whose Sylow 2-subgroups are isomorphic

toT. Then G^U3(4).

As a simple consequence we obtain

Corollary. Let G be a finite group whose Sylow 2-subgroups are isomorphic to T

Suppose 02.(G) = G/02'(G)=1. Then G^ £T3(4) or G^T.

Theorem 1 can be applied to complete the proof of the following result of Janko

and Thompson [11].

Theorem. Let G be a finite nonabelian simple group with Sylow 2-subgroup S.

Assume that

(a) SCN3(S) = 0,

(h) CG(x) is solvable whenever x is an involution in S such that \S: Cs(x)\ ^2.

Then G is isomorphic to A7, ATn, L3(3), U3(3), U3(4), or L2(q) for q odd.

When the classification of finite simple groups with wreathed Sylow 2-subgroups

is finished (see [1]), it will combine with results of MacWilliams [12], Alperin-

Brauer-Gorenstein [1], Gorenstein-Walter [10], and with Theorem 1 to provide a

classification of finite simple groups in which every elementary abelian 2-subgroup

has rank at most 2. If no new groups turn up in the wreathed case, then the only

such groups are L2(q), L3(q), U3(q) for q odd; A-j, Afn, and U3(4).
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We note the following well-known facts about T:

if) \T\=26;
(ii) Z(F) = F' = <S(F) = Ü1(F) = Ö1(F) is a four-group.

With a little extra effort we can prove the following slight strengthening of

Theorem 1 :

Theorem 2. Let G be a finite simple group. Suppose a Sylow 2-subgroup T of G

satisfies (i) and (ii). Then G^ U3(4).

The proof of Theorem 2 is patterned after the characterization of M12 by Brauer

and Fong [7]. Namely, we compute the generalized decomposition numbers for the

principal 2-block of a group G satisfying the hypotheses of Theorem 2, and then

use group-order formulas to conclude that G has an ordinary rational character of

degree 12. From the resulting bound on \G\ it follows easily that G has a strongly

embedded subgroup and so is isomorphic to i/3(4) by a theorem of Bender [2],

2. 2-local structure. We begin the proof of Theorem 2. Let G be a finite simple

group with a Sylow 2-subgroup F satisfying (i) and (ii). Let ? be a fixed element of F

of order 4, and let z = t2.

Lemma 1. (a) G has one class of involutions and one class of elements of order 4.

(b) Elements of order 4 are rational but not strongly real.

(c) ArG(F)/02(ArG(F))^F</3>, where ß is a fixed-point-free automorphism of T

of order 15.

(d) CG(z)/02.(CG(z))?T<ßfa

(e) \CG(t)/02,(Ca(t))\=2\

Proof. By the Z*-theorem [8], no involution in Z(T) is weakly closed in F.

Since Z(T) = fa(T) contains just three involutions, they must all be fused in G.

Hence G has one class of involutions. Moreover, by a result of Burnside, K=

Ag(T)/TCg(T) contains an element a of order 3 acting fixed-point-free on T. In

particular, all involutions in F have the same number (20) of square roots in T.

As |F/<D(F)|=24, | Af | | 32 ■ 5 ■ 7. We claim |Af| = 15, which will prove (c). Suppose

x e Ff has order 7. Then |Cr(jc)| =23 and x centralizes Z(T), so stabilizes each set of

20 square roots of elements of Z(T)#. Therefore \CT(x)\^3.6, a contradiction.

Hence 1 \ \K\. Suppose 9 | \K\; then K contains a Sylow 3-subgroup <a, ai>,

where af = l and \CT/<i(T)fa)\=4. Then ax must centralize Z(T), so |Cr(a!)| = 16.

Since ax commutes with a, it must fix the same number of square roots of each

involution of F, and hence fixes 4 of each. Hence ax acts without fixed points on the

remaining 16 square roots of each involution, which is absurd. Therefore 9\ \K\.

Suppose 1^1=3. Let C=Ca(z). Obviously Z(T)/(fa is weakly closed in T/fa)

with respect to C/fa), since Z(T) = Q.x(T). By the Z*-theorem, Z(T)iZ*(C). Let

C=C/02.(C)Z(T). As \K\ =3, C has a Sylow 2-subgroup lying in the center of its

normalizer; thus C has a normal 2-complement, so C does also. Moreover, we

claim that N0(T) controls fusion of elements of F. This is clear for involutions. If
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tx, t2 e Thave order 4 and tl = t2 for some g e G, then i2 = (/f)nfor some « e Na(T);

hence gn e CG(tf) and t{n e T. As CG(tf) has a normal 2-complement, if is T-

conjugate to tx. Hence t[ is conjugate to tx in NG(T). Now by a theorem of Glauber-

man [9], G is a Suzuki group, which is absurd (e.g., 3 | |G|). Therefore |A"| ̂ 3.

Hence | A| = 15, proving (c). We next prove (d). Let C= CG(z). As above, we have

Z(T)^Z*(C). Denote residues modZ(T)02.(C) by bars. Thus \NC(T):CC(T)\ = 5.

Let N be a minimal normal subgroup of C. As 02(C) = 1, NnT^l. But Afc(f )

acts irreducibly on T so T^N. Now the main theorem of [14] implies that N is

abelian, so T=N<]C. Thus C=02,(C)-Nc(T), which proves (d).

Next, ß acts transitively on the elements of {T/Z(T))#. Hence the coset tZ(T)

= IT' contains representatives of all G-conjugacy classes of elements of order 4.

Suppose that not all elements of tZ(T) are fused in T, i.e. |CT(/)|>24. Then

\CT(t)\ =25 as t $ Z(T), and by applying ß we conclude that |Cr(jc)| =26 if x e T

—Z{T). This implies that T has 4 + 30 conjugacy classes. Hence it has 16 linear

characters and 18 ordinary characters of degree at least 2, so \T\ 2:16+4.18, a

contradiction. Therefore, all elements of tZ(T) are fused, proving (a). Also, as

t2=z, CG{t)/02.{CG{t))^CT<fy{t) by (c); this equals CT{t), proving (e).

Finally, (b) is clear from the fact that T contains three involutions, hence no

subgroup isomorphic to T)8.

3. Generalized decomposition numbers of B0{G). For any group TT, we denote

the principal 2-block of TT by B0(H). We first determine the Cartan matrices Cz

and C! of B0(CG(z)) and B0(CG(t)). Since CG(t) has a normal 2-complement,

B0(CG(t)) contains just one Brauer character and C' = (16) with respect to the basic

set {1}. Let A be a fixed linear character of CG(z) with kernel T-02(Ca(z)). Let p. be

the restriction of A to the elements of CG(z) of odd order.

Lemma 2. (C%=4(3 + âw) with respect to the basic set {I, p., p.2, p.1, p.3}.

Proof. We may assume 02(CG(z)) = 1 ; then since Z(T)^Z(CG(z)), it suffices to

show that Cij = 3 + 8ij where C is the Cartan matrix of B0(Tiß3y/Z(T)) with respect

to the /x''s considered as Brauer characters modulo Z{T). (See [5], [6].) One checks

directly that each A', hence each p.', is in the principal 2-block; since the p) are the

only Brauer characters of Tiß3y/Z(T), all ordinary characters of this group lie in

the principal 2-block. There are five linear characters, and three faithful ones, which

equal 2f= o p' on elements of odd order. The lemma follows easily.

Let l=xo,Xi,---,Xm be the ordinary characters in B0(G). Then there exist

generalized decomposition numbers d\ and tdf, 1 ̂ /^5, OSjúm, such that

Xí(tp) = d\   and
(3.1) Ki

XfZTT)  =   xdf + 2dfp(TT) + 3dfp2(TT) + idfpi(TT) + 5dfp.3(TT)

for all p e CG(t) and tt e CG(z) of odd order. The ,<// are automatically rational

integers; since xÁt)=d} and t is rational, the d) are as well. We consider dt and

id* to be columns of numbers indexed by B0(G), whose j'th entries are d\ and 4*
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respectively. For any two columns A and B indexed by B0(G), put (A, B) = Jf=0 AjB,

(the bar denotes complex conjugation). By Lemma 2 and [3] we have

(3.2)
(d\dt) = 16;       (d\td*) = 0;

(ld',id') = 4X34-8«)   forl i i,j i 5.

The method of contribution [7] yields

(3.3)

for each/ Oijim

W+ 2 (i¿/)2 + 3 2 indfaidf)2 < 64
i = l 7i<i

Lemma 3. x(z) = x(0 (mod 4) for any character x of G.

Proof. By Lemma 1, |CT(x)|=24 for all xeT-Z(T). Since F has 24 linear

characters all nonlinear characters of F vanish outside Z(T). Let </> be such a charac-

ter not containing z in its kernel. Then ¡/i(l) = 4= — ¡/r(z) and so (x\T, >¡>)eZ implies

x(l) = v(z) (mod 16). Then summing y on CT(t) yields 4x(z)4-12x(0=0 (mod 16),

proving the lemma.

Together with (3.1), Lemma 3 yields

(3.4) d\= ltd!   (mod4), Oijim.

Let a be a Galois automorphism of some splitting field for G, such that p."=fi2.

Then for any x¡ in BoiG), x¡ is also in B0(G) so there exists an index k,0ikim,

such that xfaXk- From (3.1) we obtain dfadi, i</f=i«fc 2df=5d^, 3df=2d£,

idf=sdk, 5df=idi¿. We refer to this fact as "Galois symmetry."

Now, using (3.2), (3.3), (3.4), and Galois symmetry, we shall show that the

generalized decomposition numbers for BQ(G) are one of the possibilities (A)

through (V) listed in Table I, up to a sign change in each row and a permutation

of rows. In each case, the^th row consists of d\ and ¡of, i=l, 2, 3, 4, 5. We denote

by Vj the 5-tuple ddf, 2df, 3df, 4o7,5df).

Table I

Possible sets of generalized decomposition numbers of B0(G)

dl   xd* 2d* 3dz id*  5d*   ±x(i) dl   xdz 2d* 3d* J* 5d*   ±y(l)

(A)  -    (B)
Zx or Z2

1 1 0

1 1 0
1 1 2
2 2 2

0
0

2

2

0
0
2
2

0
0
2

2

)'i

}'3

i

i

i

2

0

Zx or Z2

>'2

J5
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(C)

d*   xd*  2d*  3d*  ¿* 5d*   ±x(l)

Zx or Z2
(D)

dl   xdz 2d* 3d* ¿*  6d*   ±x(l)

Zx or Z2

(E)

6x

(G)

(J)

1

1

1

2

0
0

1

1

1

2

0
0

1 1
1 1
1    1

1

1
1

1

2

1
1

1

0

0
1

1

2

1

1

0

1

1

2

1

1

0
1

1

2
1

1

Zx or Z2

Z,

0

1
2

1
1

1
1

0
1

1

0
1

2
1

1

1

0
1

0

1
2

1

1

1

1
0
1

0
1

1

2
1

1

2 2 2 2
0 0 0 0
0     0     0     0

1

0
1

2
1

1

1

0
1

}'l

ye

1      10     0     0     0
111111
0     0     1111

0     0     1111

)'l

)'i

)'2

>2

>'3

ya

y-t

4x

(F)

(H)

3x

(K)

0
0

-1

-1

-3

1 1
1 1

1 1

1 1

1

1

1

0
0

0     0

0
0

1

2

0
0

1

2

0

0
1

2

1

1

0

1

1

0     0
1    1
1    1

z4

2

1

0

1

1

1

2
1
0

1

1

1

z4

0
1

0
1
2

2
0
0

1

0
1
0
2

2
0
0

0

1
0

1

2

2
0

0

0

0

1

2

1
0

1
0

2

2
0
0

)>2

}'2

y-¿

}'i

y%

J'2

y*

(L) (M)     1      1     0     0     0     0     1

0

1

0
1

2

1

0

1

0

2

0
1

0
1

2

1

0
1

0
2

Ji

)'i

J'2

V2

y3
-i

x3

}'l
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d*   xd*  2d* 3d* ¿l*  hd*   ±x(l)

111111
111111
1      1      0     0     0     0 y6

0     0     1      1      1      1 y7

0 0     1      1      1      1 yB

(N)      110     0     0     0 1

Z5 Xx

Z5 x2

Zg x3

Zg X4

— 222222 x5

1 1 0 0 0 0 x6

1 1 2 2 2 2 x7

1      1     0     0     0     0 xe

(Q)      110     0     0     0     1

Z5 Xx

Zg x2

Zq x3

Zg x4

^3      Ï      i      i i      i      x¡
1      1      2     2 2     2     x6

1      1     0     0 0     0     x7

0     0     1      1 1      1     jc8

_Zr_

Zg x2

Zg X3

-2     0     1     0 1 0 x4
-2     0     0     1 0 1 Xi

1      1     2     2 2 2 x5

1      1      1      1 1 1 xe
1      1      1      1 1 1 x7

0     0     1      1 1 1 x8

d*   xd* 2dz 3d* id2 hd*   +x(l)

1 1 0 0 0 0 y2

1 1 0 0 0 0 y3

0     0     1      1      1      1     j4

(P)       110     0 0     0     1

Z5 Xx

Z5 x2

Zg x3

Zq Xí

~2     2     2     2 2     2     x¡~
1      1      0     0 0     0     x6

1      1      1      1 1      1      x7

1      1      1      1 1      1      x8

0     0      1      1 1      1      x9

0 0     1     1 1     1     x10

(R)      110     0 0     0     1

Z5 Xx

Zg x2

Zq x3

Zg Xi

-3      1      1      1 1      1      x5

1 1      1      1 1      1      x6

1      1      1      1 1      1      x7

3x       0     0     1111

_z!_
Zg x2

Z5 X3

~l     i     2     I 2 i x~i
-1      1      1     2 1 2 x4

1 1     2     2 2 2 x5

2 2     1      1 1 1 xe
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(U)

d*   xdz 2dz 3dz ±dz 5dz   ±x(l)

(V)

d*   xdz 2dz 3dz tdz 5dz   ±x(l)

X% Xo

-1
-1

2

1

0

where

Zx:

Z2:

1

2

1

0

1

2

2

0

1

-1

2

0

0

0

0

2
2

0

2

0
1

1
1

1

0

0

2

0     0     0
1 1 1
1 1 -1
1 -1    1

1

2

0

0

0

2

0
2

0

0

1

1
2

1

0

0

1

2

1

2

0

0

2

0

0
2

0
1

1

2
0

0

0

1

1

2

1

2

2

0

1

0
-1

1

1
1

2

0

2

0

0

0
2

0

1

2

0

1
0

1

1

0

2

X3

A 4

X4

X7

1

*1

Xj

*i

Xi

x2

1

Xi

X!

Xi

Xi

X2

1

Xi

Xi

Xi

Xi

x2

x2

x2

x2

•*3

4x

Z4:

ZB:

Z7:

-1

-1

1

0

1

0

0 1
0 1
0 1
0 1

1    1    1

1

1

1

0

1
2

1

0

1

2

1

1

0

1

x3

xt
X4

v(l)x5

1
2

1
(lSi^4)
0 x6

1 X7

1 10 0 0 0 1

1 1     2 1 0 1 xj

1 1      1 0 1 2 xx
1 1     0 1 2 1 xj

1     0     xj

10 10     0     0
10 0     10     0
10 0     0     10
10 0     0     0     1

1 1 0
1 0 1
0 1 1
1 1 1

10 0 0 0 1

1      1 1 0 0 xx

1      1 0 0 1 xx

1     0 0 1 1 xx

1     0 1 1 0 xx

Define the following columns of rational integers indexed by B0(G) : 0A = 1d!!—2dz,

xA = 2dz-3dz, 2A = 3dz-idz, 3A = idz-5dz, ^A = hdz-2dz. Thus for any;', 2*-i \A¡

=0, and by Galois symmetry there exists f with 0Aj. = 0Aj+xAj, iAj=i+1Aj-

0'= 1, 2, 3), 4^ = 1^;- From (3.2) we get (XA, ̂) = 8 (0^4); (XA, 4^) = ((^, l+1A)

= {0A,±A)=-4 (0úiú3); and (0A, 2A) = (0A, 3A) = (xA, 3A) = (2A, ,A)=0. We

always take Xo = 1g! thus 0A0 = l, iA0=0 for i>0.

We consider first the case when some entry of some ¡A, i>0, is ±2. By Galois

symmetry we may assume i'=l, and since we are allowing permutations of rows
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and sign changes in each row, we may assume 1.41 = 2. If 3Ax = 2, then (¡A, ¡A) = 8

and 2?=ii^i=0 imply 2Ax = iAx= — 2. By Galois symmetry, we may assume

xA2 = 3A2= — 2A2= — iA2= — 2, contradicting (XA, 3A) = 0. Therefore 3A1¥i2.

Again by Galois symmetry, we may assume iy4i = ,^4, for 1 i i,ji 4; xdfaxd2 = yd3

= xdt; dtx = d2 = d3 = dti; and 0^í=o^-i + i^-i for 2iji4. It follows easily from

(xA, 3A) = 0 that 3Ax = 0. We consider the several possibilities for 0Ax separately.

Note that always x^z)^0, for otherwise, fa, d')=16, a*j = x/0 —xifa (mod 4)

imply Xjit) = 0, whence x> has defect zero, contradicting x¡ e B0(G).

Case 1. 0Ax>0. Then 0A2 = 0Ai + i^ie2, contradicting (0/4, <y4) = 8.

Case 2. oAx = 0. By an argument like that in Case 1, we find x-A2 = 2Ax= — 1 or

-2.

(a) Suppose !^2=-2. (XA, i^4) = 8 yields i^y = 0 for j>2. From (d\dt) =

iid*, idz) = l6, (3.3), and (3.4), we find d[=-l and ^ = (1, 1, -1, 1, 1). For7>4

we have 2df = 3dj=idf = 5df, so xdz = d\ (mod 4). Since fa, xdz) = 0, we may assume

dfa-2, xd§ = 2. Then clearly d} = xdf for j > 5. For i>l, (id2, 1d*-dt)= 12 yields

¡0*1=2. It now follows easily that we have one of the cases (A)-(E) of Table I, with

Zx's.

(b) Suppose xA2= -1. Then ^3=0 implies 1^4= — 1. It follows that 2*=o o¿l

= 1; since (0A, 0^) = 8, we may assume 0^5 = L 0^=0 for7>5. The conditions on

(0A, ¡A) imply x^5 = 2A5= -3A5= -4^5= — 1. By Galois symmetry there exist at

least four 7>4 with i^,^0, contradicting (xA, i^) = 8.

Case 3. 0^1= -!• Suppose first that 2Ax or 4/4x is ±2. As (xA, xA) = i, it must

be — 2. If iAx = — 2 we replace the first row by the fourth with a sign change and so

may assume 2Ax= —2; then 3Ax = iAx = 0. As in Case 2(a), we easily conclude that

we may assume d{ = — 1 and Vx = (l, 0, 2, 0, 0).

As in Case 2(a) we may assume ;df = — dl = 2, and we get (A)-(E) in Table I,

with Z2's.

Now suppose li^il i 1, 2iii4. It follows that 2Ax = iAx= — 1. As xi(z)/0, we

may assume by (3.3), (3.4), that d[ = 1 and Vx = (l, 2, 0, 1, 1) or (1,0, 2, 1, 1).

The arguments in both these cases are the same so we consider only the first.

We have 2*=i iA¡ 3A¡ = 2. Since (xA, 3^) = 0 and \¡Ak\ i 1 for7>0, k>4, we may

assume xA5=—3A5 = l. By Galois symmetry, xs has at least four algebraic con-

jugates under o, and it follows easily from (¡A, ¡A) = % that 2A5 = iA5 = 0. We may

assume xli=X5-n, 0iii3. As (0A, 0^) = 8, 0^5=0 or -1. By replacing the fifth

row with the seventh with a sign change if necessary, we may assume 0^5=0.

Then we may assume dfa-I, and t?B—(1, 1. 0, 0, 1). As in 2(a) we may assume

dfa -xd¡= -2; (yd2,1o'2-di) = 12 yields ¡d% = 2 for 2iji5. We then clearly get

(F) or (G) in Table I.

Case 4. 0A = -2. If 2Ax = -2, then 0A2 = 0 and xA2= -2, and Case 3 applies.

Similarly, if ^=-2, then gAt=0 and i^44=-2 and Case 3 applies again. As

2f=i i^i=0, we may assume 2^4i = 4^i= -1 ; an argument like that in Case 2(b)

gives a contradiction.



1972] A CHARACTERIZATION OF THE GROUP l/3(4) 379

Now we may assume that \¡Aj\ S 1 for i'=ï 1 and ally.

Case 5. xAx = 2Ax= — 3Ax= — iA1 = l. By Galois symmetry, we may assume

1y42 = 4.42 = 3/l3 = 4./l3 = 2^4 = 3^4=1 and other tAs, 2^/¿4, l^y'^4, are —1. The

conditions on the inner products (tA, ¡A) imply that we may assume xA$ = 2A6

= xAi = 2A8 = 3A5 = iA6 = 3A-, = 4^8 = 1 and other tAj, 5^y'^8, l^/^4, are —1.

From (0A, 0A) = & we may assume 0Ax=-0A3 = 0Ai = 0A.7=-l, 0^2 = 0^4 = 0^6

= 0AB = 0. We then have d¡ = xdf (mod 4) fory> 8. (3.3) and xÁ2)^® imply that we

may assume d[ = l, Vx = (1, 2, 1,0, 1), by replacing the first row with the third with

a sign change, if necessary. By Galois symmetry, (2dz, 2dz) = l6, and (3.3), we have

t)5 = (l, 2, 1, 2, 1), (0, 1, 0, 1, 0), (1, 0, 1, 0, 1) or (2, 1, 2, 1, 2), and similarly for v7.

(a) If t>5 = (2, 1,2, 1,2), then 4=0; (3.2) implies v7 = (l, 0, 1,0, l)and4=-l.

Then (d\ xdz) = 0 implies we may assume 4 = —3, xdz= 1. (¡dz, dt)=0 yields ¡dz = 1

for 2-¿j-¿5 and we have (H) in Table I.

(b) If vs = (0, 1, 0, 1, 0), then d\= ±2. If 4 = 2, then the Schwarz inequality on

the columns (d¡)j>e and (2df)j>6 yields 6¿271/2, a contradiction. So 4= — 2. Now

(dl, i/') = 16 implies e7=(l, 0, 1, 0, 1) or (1, 2, 1, 2, 1); (d\ xdz)=0 implies we may

assume 4 = — 1, i4=3, and so (xdz, 2dz)^0 (mod 3), a contradiction.

(c) We may now assume that v5 and u7 are either (1, 0, 1, 0, 1) or (1, 2, 1, 2, 1).

If both are (1,2, 1,2, 1), then 2?=o (2¿/)2 = 16 and 2ho idf 2df= 10, a contra-
diction. Hence we may assume v5 = (l, 0, I, 0, I), d&= -1. As (dl, xdz)=0, we may

assume 4= ~xd%=-2, d\=xdz=l, 10á;^12; we easily get (J), (K), or (L) in

Table I. This disposes of Case 5.

Since 2*-i tA}=0 for ally", we may assume that for each j, (iAj)t=x is some cyclic

permutation of (1, 0, -1, 0); (1, -1, 1, -1); (1, -1, 0, 0); or (0, 0, 0, 0), possibly

with a sign change. (3.2), (3.3), (3.4), Galois symmetry, x/z)#0, and the conditions

on (¡A, ¡A) yield the possibilities for v¡ shown in Table II.

Case 6. No (¡4,)?=! is (1,0, -1,0). Then since (xA,3A)=0, no (¡A^x is

(1, -1, 1, -1). Hence we may assume (i^4n+i)f=i=(l, -1, 0, 0)andx4n+k=xln+1i>

0á«<;3, l ^k^4. If 0Ax= -1, we get 0A3 = 0Ai = -1- Since 0A0 = l and (0A, QA)

= 8, we may assume 0Ax = 0A5 = 0Ag = 0. We have d\ = xdz (mod 4) for j> 16.

(a) 0^13 = 0. Then vlt v5, va, and v13 are each either (0, 0, —1, 0, 0) or (1,1,0,1,1).

Correspondingly, d{, d\, 4, and d{3 are either —1 or 0. Since (xdz, xdz) = (d\ dl)

= 16, we cannot have vx = v5 = v9 = v13. Depending on whether one, two, or three

of Vx, v5, v9, and t;13 are (1, 1, 0, 1, 1), we get (by permuting rows and changing

signs) cases (M); (N) or (P); (Q) or (R) in Table I.

(h)0A13=-l. If »13 = 0,2, 1,2,2), then, by (2dz, 2dz) = l6, Vl = v5 = v9 =

(0, 0, -1, 0, 0), against (xdz, 2dz) = l2. So t>13 = (0, 1, 0, 1, 1). Thus d[3 = -1, and

as (d\ dt) = l6, we may assume v9 = (l, 1,0, 1, 1). Suppose that k of v5 and v7 are

(0, 0, -1, 0, 0). By (d\ xdz) = 0, we may assume x^7=k +1 and 47=k - 3 (k=0,1,

or 2). From (2dz, xdz-dl) = 12, we get 2dZT=k. The Schwarz inequality on

(xdf)w and (*df)iiin yields (3 + 2k-k2f^(4+2k-k2)(2+2k-k2) which is
impossible for 0 ̂  k ̂  2.
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Table II

Possible Vj for given (¡,4;)4=1

G^i)i4=i oAj Possible Vj: (up to sign change

and Galois conjugacy)

(1,0,-1,0) 0 (1,1,0,0,1)
(1,1,2,2,1)

(1,-1,1,-1) 0 (2,2,1,2,1)
(1,1,0,1,0)
(0, 0, 1, 0, 1)
(1,1,2,1,2)

(1,-1,1,-1) 1 (2,1,0,1,0)
(1,0,-1,0,-1)
(0,1,2,1,2)

(1,-1,0,0) 0 (1,1,0,1,1)
(0,0,-1,0,0)

(1,-1,0,0) -1 (1,2,1,2,2)
(0,1,0,1,1)

Case 1. (ti4J)f=1 = (l, 0, —1,0) for two distinct values of j, say 7=1 and j= 5.

Then idf= -dj=±l for 1 ijiS, by Table II. As Gd2, dl) = 0, we get 1df = dt¡ for

7>8. Since (XA, 3A) = 0, we may assume (i^9)4=i=(l, —1, 1, -1); then Table II

and (3.4) yield xda^d'g, a contradiction.

Case 8. We may now assume (i.41)f=1 = (l, 0, —1,0), (¡/45)f=1 = (l, —1, 1, —1),

iiA7)î=x = iiAxx)î=i = fa -l,0,0).Since(0A,0A) = 8,0Ax = 0¿s = oA1 = 0;0A11 = -l

or 0. From Table II, 2}°=i fa-2df)2 = 3, 2£u (d}-2df)2^3. If Dl=(l, I, 2, 2, 1),

then we get (dl - 2dz, dl — 2d2) > 32, a contradiction. Therefore, »i=(l, 1,0,0, 1),

and d{=-l. Suppose 0A11=-l. Then 0^i = 0 for7>14; (2dz, 2d2)=16 implies

Vxx = (0, 1,0, 1, 1), so d[x=-l. Now fa-xd2, d'-1d2) = 32 implies d¡=xdf for

7>14. Hence 4 + Z}l5 (df)2 = 2)U ifa,)2 = 2)U faff, as fa, dl) = (xd\ ^2) =
(2d2, 2d2). None of the possibilities for v¡, 5iji 10, listed in Table II satisfy these

equations.

Therefore 0^n = 0. As above, xdf = d] for j> 14. If v7=v11=(0, 0, -1,0, 0), then

(d\ dt) = (1dz, xd2) = l6 implies v5 = (2, 1, 2, 1, 2), so (2d2, 1d*-dt) = i, a contra-

diction. Therefore we may assume Vu=(l, 1,0, 1, 1). If f7 = (l, 1,0, 1, 1), then

(dt,dt) = (xd\xdz) and (2dz, xd*-dl) = 12 imply t>5=(0,1, 0, 1,0) and 4=-2.

This yields (S) in Table I. Finally, if v7 = (0, 0, -1, 0, 0), then (2d2,1d2-di) = 12

implies r>7 = (l, 2, 1, 2, 1), and we easily get (T), (U), or (V).

4. Character degrees. We show in this section that either case (U) or (V) in

Table I holds, that G has a rational character of degree 12, and

(4.1) \G\ = 195|CG(z)|3/|CG(Z(F))|2.
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Let d be one of the columns dl or ¡dz; let x=f or z, respectively. Let G = C*(x)

and let d be the corresponding column of generalized decomposition numbers for

B0{G) (with respect to the basic set {1} if x = t, {1, p., p.2, p,*, p.3} if x = z). Let

Xo> Xi, • • •> Xn be the ordinary characters in B0{G) and define «; = 2<* Xi(z<x)l\C~G(za)\,

where za runs over G-conjugacy classes of involutions. Then by a result of Brauer

[4],
m n

\G\ 2 x&fdhiï) = \G\ \CG(z)\2 2 «M/xXl)-
y = o j = o

We denote the left and right sides of this equation by L(d) and R(d), respectively.

If A is any column indexed by B0(G) which is a linear combination of dl and the

idz, T{A) is defined as the corresponding linear combination of L(i/') and the L(¡¿2).

Lemma 4. (a) L(4) = 0.

(b) LG^-2^)=0.

(c) L(xdz)=m\CG(z)\3/\CG(Z(T))\2.

Proof. Lemma 1(b) and a result of Brauer [4] imply (a). By Lemma 1, |CT(x)|=24

for all elements x of T of order 4, so Thas 16 linear characters and three irreducible

characters >p, i/>B, and i/>"2 of degree 4 vanishing off Z(T). Choose notation so that

ker i/i = <z>.

Let C= CG(z)/02.(C0(z)). As argued in Lemma 2, all characters of C lie in T?0(C).

Let T be the image of T in C. Thus Ts T.

The characters lr, ^, i/>B, ¡/i"2 are all invariant in C and hence extend in five ways

each to C. Since exp C=20 and <p is rational, it is easily seen that at least one

extension <p of i/> is rational, whence <¡>(zf)= — 1 for all fe C of order 5. The exten-

sions of <A are then </>X', 0S/á4. We have >/>Xi{zf) = ZJ¿i Xff) for allfe C of odd

order. Hence the generalized decomposition numbers at z for the characters i¡iA'

are the cyclic permutations of (0, 1, 1, 1, 1). Similarly, those for (/¡"A' and ^"2A' are

the cyclic permutations of (0, —1,-1,-1, —1). Finally, the fifteen linear non-

principal characters of T form three orbits under the action of C and so by induc-

tion to C yield three irreducible characters of C of degree 5 vanishing off T and

with z in their kernels. Thus the generalized decomposition numbers for each of

these characters at fare (1, 1, 1, 1, 1). Now expand R{xdz — 2dz) from its definition.

Apart from a constant factor, there is a sum of terms indexed by B0{C). It is clear

that the only nonzero terms arise from 1 and A; ¡p and >pX; $" and i/j"X; ¡J>ß2 and <pe2X;

and these cancel in pairs, proving (b). Put c(z)=|C0(z)|, c(Z(T))=\CG(Z(T))\.

The C-classes of involutions are represented by z, y, and yz where Z(T) = iy, zy.

We find

*d*> = <w[(¿5 +^) 2+©(!) - cjzm)2

WI   c{z)J ~ \4) \   c(z)j + \5) \c(z)+ c(Z(T))j \

= 128c(z)3/c(Z(D)2,

proving (c).
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Lemma 5. (a) x/0) = 12 ifO<jim.
(b) Xy( 1 ) + 3 2f=i idf + 60dj is a nonnegative integral multiple of 64.

(c) 2/m=o XAW¡ = I?=o Xifadf = 0fior each i.

Proof, (a) Since x,|Fis faithful and (Xi\T, <£) = (x?|F, V) = fa\T, V) = fa\T, <P>2),
Xj\T must contain \p+^iß + ^ß2. (b) simply restates that (x|F, lr) is a nonnegative

integer; (c) is due to Brauer [3].

We shall use also the following consequence of a theorem of Schur [13]:

(*)   If x/1) = e > 5 and Q(x¡) = Qfa, then no prime divisor of \G\ exceeds e+1.

The^th row of the column ± x(l) in Table I is defined as + x/1), according as the

7'th row of generalized decomposition numbers for G is ± the 7th row in Table I.

We now eliminate (A)-(T) case by case.

(A) LGd2-2d2) = (±x(l), 1d2-2d2) = 0 yield

(Al) 1 +(18/x1) + (l/j1) + (l/j2)-(81/.v3)=0,

(A2) 1+2x1+j1+j2-j3 = 0.

By Lemma 5(b), Xj = 51, yx = 1, y2 = 1, y3 = 41 (mod 64). If Xi > 0 or xy < — 77, (Al)

implies j3=41, whence (18/51)4-(l/65) + (l/65)ä(18/x1) + (lM) + (l/v2) = 40/41,

a contradiction. Therefore — llixx <0. If Xx= —13, (Al) impliesy3<0; it is clear

from Table I that ß(xi)=ö(A), so (*) implies j3<-343, so (2/65)4-(81/343)

= (l/>'i)4-(l/>'2)-(81/>'3) = 5/13, a contradiction. Hence xx=-77. |(1M) + (1/j2)|

^2/63 implies |(59/77)-(81/y3)| ^2/63, so ,y3=105. Then (l/j1) + (l/j2) = 2/385,

and (A2) gives j14-_k2 = 258. These equations have no solution, so (A) is impossible.

(D) and (G) yield the same equations as (A) and so are also impossible.

(B) From (±x0), 1d2-di) = 0 we get x2=-2x!. Then L(1dz-dt)>0 implies

x1<O.L(1d2-2d2) = L(1d2-2d2 + d') = (±x(l),id2-2d2) = (±x(l),d!) = 0 yield

(Bl) l+(18/x1)-(81/>-3) + (36/j4)-(16/^)=0,

(B2) 2 + (82/x1) + (25/y1) + (25/j2)4-(108/74)-(16/>'6) = 0,

(B3) l4-2x1->>3+J'4-y5 = 0,

(B4) l+yx+y2+y3 + 2yi = 0.

From Lemma 5(b), X! = 51, yx = S3, y2 = 53, t>3 = 41, j4 = 54, y5 = 52 (mod 64) ;

x2^90, and if j4<0, then yAi — 138. Since x2= — 2x1; we get x±i —77. Adding

(B3) and (B4), we find that we cannot have ylt y2, j4<0, j5>0 at the same time.

Suppose Xx < - 77. Then by (B2), we get yt = -138, Xx = —141, and we may assume

j!=-75. If v2<0, then (B4) implies j3^425, and subtracting (Bl) from (B2)

yields 81/425>(64/141)4-(25/75)-f (72/138) —1, a contradiction. So y2>0; by (B2),

>>5 = 52; (B3) yields 7^ = 471 =3-157, violating (*) applied to a character of degree

141. Therefore, x1=-77. If >>4>0, (B2) implies ̂ =^=-75, t-5 = 52; (B3) and

(B4) give .y4 = 118, violating (*) as y5 = 52. Therefore yt < 0, and (B3) implies either

y3 or y5<0. If v3<0, (Bl) implies 1 <(18/77) + (36/138) + (16/52), a contradiction.

Therefore y5<0, and (Bl) implies y3=41 or 105. If j3=41, (Bl) implies y5= -12,

violating (*); therefore y3= 105. Subtracting (Bl) from (B2) yields (25/yx) + (25/y2)
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< — (81/105) — ( 13/77) +■ (72/138). By (B4) we may assume ̂ >0, so 25/j2< -1/3,

— 75<.y2<0, which is impossible.

(C) L(xdz-2dz) = 0 yields 1 +(18/x1) + (l/ji)-(16/j5)-(16/j6) = 0. From Lemma

5(b), Xx = 5l,yx=l,ys = 52, j6=i52(mod64). As in (B) we get xx<0. If xx< -13,

then the above equation gives (l/63) + (16/52)-2ä59/77, a contradiction. Thus

Xx= -13. If y5< -12, (*) implies ys< -140; similarly for yB. If both are < -12,

we get —l/yx>(59/77)-(32/140), against \yx\ g63. Thus we may assumey5= -12;

then (l/ji)-(16/.y6) = 37/39, violating >>6 = 52 (mod 64). Cases (E) and (F) yield

similar contradictions.

(H)L(4) = (±x(i),4>=0 yield

(HI) l+(100/x1)-(18/j2)-(75/j3)=0,

(H2) l+4xx-2^2-3^3 = 0.

We have xxs53, y2 = 5l,y3 = 31 (mod 64), and if _v3>0, then y3^ 165. It follows

easily from (HI) that Xi<0. By (H2) either y2<0 or y3<0. Therefore 100/x!

>1-(75/165), andx! = -75 or -139. In either case (HI) and (H2) yield a quad-

ratic equation for y3 which has no integral solutions, a contradiction.

(J) L(xdz-2dz) = (±x(l),xdz-2dz) = (±x(l),dt-1dz)=0 yield

(Jl) l+(9/yx)-(49ly2) + (36/y3) + (l/y6)-(l6/y7) = 0,

(32) l+yx-y2+y3+ye-yi = 0,

(J3) ^+^+^3 = 0.
ji = 51, j2 = 39, y3 = 38, y6 = l, j7 = 52(mod 64). By Lemma 4,

L(-31dz + 42dz-dt) > 0,

and this easily yields y2 = 39 or 103. However, if j>2 = 103, then(*) implies \y}\ > 102,

j= 1, 3, 6, and 7; the congruences and (Jl) yield a contradiction. Therefore y2 = 39.

Suppose yx ̂  -13. By (J3), (9/jO + (36/y3) < 0, and (Jl) implies y7 = - 12, yY = -13,

y3= —26, |y6| ¿2, a contradiction. Therefore y±< —13, y3>0, and (36/y3) + (9/yx)

>0. From (Jl), y7+ —12, otherwise |j6|<l. Now if yx= — 77, then (Jl) yields

0<j7<40, which is impossible. Applying (*) to a character of degree 39, we find

Ji^—333. The function (9/vx) + (36/-j^ —39) is increasing for ji<0, so (Jl)

implies y7> —112, y7<0. Therefore y7= —76. Now (J2) and (J3) imply y6=l, a

contradiction.

(K) L(xdz-2dz) = (±x(l), xdz-2dz) = 0 yield

(Kl) l+(9/yx)+(9ly2)-(Sl/yi) + (l/y;i) + (lly6) = 0,

(K2) l+yx+y2-yi+y5+y6=0-

^! = 51, y2 = 51,j4=41, ya = l, y6 = l (mod 64). If yx=y2, we can argue as in (A)

to a contradiction. So we may assume yx¥=y2- If neither is —13, (Kl) implies

j4< 105, y,>0, so j4 = 41; thus from (Kl), (40/41) + (9/^1) + (9/j2) + (l/^) + (l/j6)

=0, which is impossible. We may thus assume j»t= —13. As y2iiy1, 6(x)£ ß(A)

where x is a character of degree 13, and (*) applies. Now (Kl) yields y4<540,

^4>0. If ^4==169, then (Kl) implies (-9/j2) + (l/j;5) +(1/^29/169, so j2 = 51,
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violating (*). It follows from (*) that y4 = 297. Suppose y5< —63. Then (*) implies

y5<— 500; similarly for y6. It follows easily from (Kl) that we may assume

y5= -63. (Kl) and (K2) yield (9/_v2)-r(l/j>6) = - 172/9009, y2+y6 = 312. Therefore

j6>0, y2<0; (*) implies y2=-ll, and so l/y6 = (9/77)-(172/9009) > 1/63, a

contradiction.

(L) L(1d2-2d2) = (±x(l),1d2-2d2) = (±x(l),1d2-di) = 0,L(1d2-di)>0yield

(LI) 1 +(9/yx) + (9/y2) + (l/ys)-(l6/yi)-(l6/ye)=0,

(L2) l4->'i4->'24-j6-j7-7'8 = 0,

(L3) yx+y2+y3=0,

(L4) (36/yi) + (36/y2) + (400/y3) >0.
yx = 5l, y2 = 5l, y6=l, y7 = 52, j8 s 52 (mod 64). By (LI), either ji or j2=-13.

So we may assume jj= —13. Then (L4) implies 0<y3<200. Ify3=154, then (L3)

gives y2 = — 141, violating (*). Hence y3 = 90, y2 = —11. If y7 and y8 both exceed 52,

then (LI) and (L3) give y7=yB = 180, j6= —63, against (L2). So we may assume

y7 = 52.  Then  (LI)  and  (L2)  imply  (l/y6)-(16/j;8) = 9/77, y6-yB=l4l.  Thus

— 160 < j8 < 0, so by (*) yB = — 140. Thus y6 = 1, a contradiction.

(M) L(1d"2-2d2) = 0 yields

l-(llxx)-(l/x2)-(llx3) + (l6/Xi) + (l/y2) + (lly3)-(l6/yi) = 0.

Also, x¡= 1 (1 iii3),xi,yi = 52,y2,y3 = l (mod 64). It follows easily that x4= — 12.

Then |(16/j4) + (l/3)| ^5/63, so -140<j4< -12; by (*) applied to a character of

degree 12, _y4# -76, a contradiction.

Remark. These are the generalized decomposition numbers for 2?0(F<j8».

(N) L(d') = LGd2 - 2d24- d<) = 0 yield

(Nl) l+(4/x1) + (4/x2)-(200/x5) + (l/x6) + (81/x7) + (l/x8) = 0,

(N2) 2 + (3/xx) + (3/x2) + (16/x3) + (16/x4) - (200/x5) + (2/x6) + (2/x8) = 0.

Xx, x2, x6, x8= 1 ; x3, x4 = 52; x5 = 26, x7 = 41 (mod 64); if x5>0, then x5^90,

and if x7<0, then x7i —87. First suppose x5 = 90. (Nl) implies x7=41, which is

impossible as |xt|ä63, i—I, 2, 6, 8. So x5#90. Then (N2) implies that we may

assume x3= —12. If also x4= —12, then subtracting (Nl) from (N2) we find

— 81 < x7 < 0, which is impossible. So x4 # — 12. Now we can apply (*) to a character

of degree 12. Thus x4^— 76. Suppose x5^154. By (*), x5>600 if x5>0. This

contradicts (N2), so x5= 154. By (N2), 0<x3<40, a contradiction.

(P) L(d() = L(xd* - 2d2)=0 and L(xd2 - d') > 0 yield

(PI) 1 + (4/xx) + (4/x2) - (200/x5) + (l/x6) + (25/x7) + (25/x8) = 0,

(P2) l-(l/x1)-(l/x2) + (16/x3)+(16/x4) + (l/xg)-(16/x9)-(16/x10) = 0,

(P3) ( - 4/xx) - (4/x2) + (64/x3) + (64/x4)+(400/xB) > 0.

then x5^90. From (PI), we easily get x5>0. If x5 = 90, (PI) implies either x7 or x8

is >0 and <50, a contradiction. Hence x5äl54. If x4= —12, then (P3) implies

0<x3<32, a contradiction. Therefore x4, and similarly x3, is ^ —12. Since

|xj|^63, i=l,2,6, it follows easily from (P2) that x3=x4=—52, x9=x10 = 76;

thus (l/x1)4-(l/x2) — (l/xg)=—9/247. We may then assume that xx=—63, and
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either x2= — 63 or x6 = 65. In either case the third x¡ turns out not to be an integer,

a contradiction.

(Q) L(dt + xdz-2dz) = Q, L(1dz-dt)>0 yield

(Ql) 2 + (3/x1) + (16/x2) + (16/x3) + (16/x4)-(75/x5) + (2/x7)-(16/x8)=0,

(Q2) (-4/xx) + (64/x2) + (64/x3) + (64/x4) + (100/x5) >0.

Xx, x7 = 1, x2, x3, x4, x8 = 52, x5 = 37 (mod 64) ; if x5 > 0, then x5 ä 165. Suppose

x2= —12. Then (Q2) implies either x3 or x4 is positive and <32, a contradiction.

Hence x2/ —12, and similarly for x3 and x4. Now (Ql) implies 75/x5>-2-, so

0 < x5 < 150, a contradiction.

(R) L(dt) = (±x(l),dt)=0 yield

(Rl) 1 + (4/xx) - (75/x5) + (25/x6) + (25/x7) = 0,

(R2) l+4x1-3x5 + x6 + x7=0.

X! = l, x5 = 37, x6 = 53, x7 = 53 (mod 64); if x5>0, then x5 2:165. From (R2), it

is impossible that xlt x6, x7 < 0 and x5 > 0 at the same time. Then (Rl) easily yields

0<x5<225, so x5= 165. Also from (Rl), we may assume that x6= —75. Then we

obtain (4/xJ + (25/x7) = -7/33, 4xi + x7 = 569. Therefore x7 = 53 (mod 256). From

the first equation, - 165<x7<0, a contradiction.

(S) From Lemma 5(b), x1=e51, x4 = 50, xe, x7 = 53, x8 = 52 (mod 64) ; if x4>0,

then x4äll4. Now 0>L(5i/f + 31i/2-42J2)ä8-(144/51)-(96/114)-(100/75)-

(100/75)-(64/52), a contradiction.

(T) L(dt + xdz-2dz) = L(-dt + 2xdz-22dz) = {±x(l), dt + 31dz-42dz)=0, T(xdz)

>0 yield

(Tl) 2-(18/x1) + (16/x2) + (3/x3)-(147/x4) + (108/x6) = 0,

(T2) 1 + (72/xO + (32/x2) - (6/x3) - (243/x5) = 0,

(T3) 1 —2x4 —xs + x6 = 0,

(T4) 1 + (36/xj) + (64/x2) + (98/x4) + (81/x5) + (72/x6) > 0.

*i = 51, x2s52, x3= 1, x4 = 39, x6 = 54 (mod 64); if x5<0, x5á —87; if x6<0,

then x6á —138. We show first that x2# — 12, x17¿ -13. If x2= - 12, (T2) implies

x5<0, and (T4) implies 98/x4>2, so x4 = 39. As x5< —87, (T3) gives x6<0. Then

(T4) yields 98/x4>3, which is impossible. If xx= — 13, (T2) implies 243/x5< —3, so

— 81<x5<0, a contradiction. Now since x2# —12, (Tl) gives 0<x4<295. If

x4 = 39, (Tl) implies x6< 108 and x6>0, so x6 = 54. Then (T3) implies x5= —23, a

contradiction. If x4= 167, then(*) implies |x¡| > 165, 1 ̂ ¡'^6, and (Tl) cannot hold,

a contradiction. If x4 = 231, (Tl) implies 108/xe<-| so x6=-138; (T3) gives

x5= —599, aprime, violating(*). Therefore, x4 = 103. If x6>0,(*)implies |x¡| ä 102,

lúiú3, and (Tl) cannot hold, a contradiction. Therefore x6>0, and from (T3),

x5 < 0. By (*), x2 ̂  -140 if x2 < 0. Then (T2) implies 72/xj < - 2/3, so -108 < Xj < 0,

violating (*).

(U) We show in this case and (V) also that G has a rational character of degree

12, and prove (4.1). From Lemma 4,

(Ul) 1 -(36/x1) + (4/x3)-(98/x4) + (200/x5) + (l/x6)=0,

(U2) l+(18/x1) + (16/x2)-(l/x3)-(49/x4) + (l/x6)-(16/x7) = 0,
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(U3) 1 + (36/xx) + (64/x2) + (98/x4) + (200/x5) 4- ( 1 /x6) > 0.

Also, Xi=51, x2 = 52, x3= 1, x4 = 39, x5=42, x6 = l, x7 = 52 (mod 64); if x5<0,

then x5i - 150. Suppose first that x2= -12. Adding (Ul) and (U3) yields 400/x5

>3, so x5 = 42 or 106. If x5 = 42, then (Ul) implies (36/xO 4-(98/x4) > 5, which is

impossible. So x5 = 106, violating (*). Thus, x2^ —12. Suppose x^-13. (U2)

implies 0<x4<228. If x4= 103 or 167, then (U2) cannot hold without a violation

of (*). Thus x4 = 39. From (Ul) we get 200/x5> 12/13; thus x5 = 42, 106, or 170.

By (*) applied to a character of degree 39, x5^ 106. If x5 = 42, then (Ul) clearly

cannot hold. So x5 = 170. Now (Ul) yields — 140<X!<0, so Xj= — 77; again by

(Ul), (4/x3) + (l/x6) < —1/10, which is impossible. We have proved that Xj = —13.

It now follows easily from (Ul) that x4 = 39, x5= -150; then (4/x3)-l-(l/xe)= 1/13,

so x3 = x6 = 65. From (U3), 64/x2>7/12, so x2 = 52. (U2) yields x7= —12. The

character with degree — x7 is clearly rational. By Lemma 4(c),

128]CG(z)l3 _ ,r|/,_36   64 , 98_200    l_\
\C0(z,y)\2      '   '\     13   52 + 39    150 + 65J'

proving (4.1).

(V) We get the same equations as in (U), with 2f=i 25/x(5i) substituted for 200/x5,

and now x's's^ (mod 64), liii4. Suppose x^ —13. If x2= —12, then adding

(Ul) and (U3) we get 24=1 50/x»> > 42/12, so some .*#>=53, violating (*). Thus if

Xx+—13, then x2# —12. As in (U), we conclude that x4 = 39. Now (Ul) implies

that some x6i} is 53, again contradicting (*). Therefore Xx= — 13. As in (U) we find

x4 = 39. Now (Ul) gives 2*=i 25/x(5i)< -964/819. (*) applied to a character of

degree 13 implies that xf< -200 if x(5°< -75. It follows that each xj^ -75.

We can now argue as in (U).

5. Completion of the proof. Since G has a rational character of degree 12, a

theorem of Schur [13] implies | G\ | 26 ■ 38 • 53 ■ I2 ■ 11 • 13. We show Ca(z) = Ca(Z(T)).

Let p be a prime divisor of |G2(CG(z))|, and let F0 and F be F-invariant Sylow

/«subgroups of 02.(CG(z))n Ca(Z(T)) and 02.(Ca(z)), respectively, with P0iP.

Suppose P0<P. Then from the character theory of F we conclude /?* | |F:F0|, so

pi\ |CG(z)l/lCa(Z(T))|. By (4.1), we get/712 | |G|, a contradiction. Therefore P0=P

and, as p was arbitrary, 0T(CG(z)) i CG(Z(T)). The structure of CG(z) modulo core

yields Ca(Z(T)) = CG(z). Let N=NG(Z(T)). Thus N is strongly embedded in G.

By a theorem of Bender [2], G^5z(8), U3(4), or F2(64), since |F| =26. As F has

exactly 3 involutions, G^ U3(4), completing the proof of Theorem 2.

We turn to the corollary to Theorem 1. Let A7 be a minimal normal subgroup of

G. IfTiN, then A^G and since Fis indecomposable, G is simple; thus G^ U3(4)

by Theorem 1. So assume T$ N.

If A is nonsolvable, then by the Z*-theorem, N is simple and A^Z(T), since F

contains only 3 involutions. As argued in the proof of Lemma 1, A contains an

element a normalizing A n T and cycling Z(T)#. Therefore \A n T\ = 1 (mod 3).

If \N n T\ = 16, then the existence of a implies that A n T^ZtxZi, contradicting
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the main theorem of [14]. So N n T=Z(T), and N?L2(q) for some q= ± 3 (mod 8),

by [10]. But then 24f|AutAT| so CG(A0 contains an involution; this implies

CG(N) n TV =4 1, which is impossible.

Therefore N is solvable, so N^Z(T). lf\N\=2, then since Z(T) is weakly closed

in T, we get Z(T)/N<\G/N. Hence Z(T)<\G in any case. Since G=02'(G), Z(T)

SZ(G). Denote residues modulo Z(T) by bars. The proof of Lemma 1(c) implies

that T has no automorphism of order 3 or 7 acting trivially on Z(T). Hence 3 and 7

do not divide \NS(T)/CB(T)\. Clearly G is core free. By the main theorem of [14],

a minimal normal subgroup of G is solvable, and it follows easily that 7X1G.

Therefore T= G, as required.
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