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TWO POINT BOUNDARY VALUE PROBLEMS

FOR NONLINEAR FUNCTIONAL

DIFFERENTIAL EQUATIONS

BY

PAUL WALTMANP) AND JAMES S. W. WONG

Abstract. This paper is concerned with the existence of solutions of two point

boundary value problems for functional differential equations. Specifically, we

consider

/(f) = L(t, yt) +f(t, y,),        Mya + Nyb = <A,

where M and N are linear operators on C[0, K\. Growth conditions are imposed on

/to obtain the existence of solutions. This result is then specialized to the case where

L(t, yt) = A(t)y(t), that is, when the reduced linear equation is an ordinary rather

than a functional differential equation. Several examples are discussed to illustrate the

results.

1. Introduction. Let Ch denote the Banach space of continuous functions from

[a—h, a] into En, the «-dimensional Euclidean space, where we take the sup norm

in Ch, i.e. for <p e Ch

||?|| = sup{|<p(0)| : 6e[a-h,a]},

and | • | is any convenient norm on En. Let L(t, <p) and f(t, <p) be continuous map-

pings from [a, b] x Ch into En and for each t e [a, b], let L(t, <p) be a bounded linear

transformation from Ch into En. For a continuous function fit) defined on [a, b],

let f denote the element in Ch defined by f(6)= fit+ 6—a), 6 e [a—h, a].

We consider the two point boundary value problem

(1-1) y'(t)=L(t,yt)+f(t,yt),       te[a,b],

(1.2) Mya + Nyb = f,       4> e Ch,       b > a + h,

where M and N are bounded linear operators on Ch. The present work is a con-

tinuation of an earlier investigation [8] of R. Fennell and the first named author.

A linear version of this problem was posed by Cooke [1]. Results on the linear

problem may be found in Halanay [10] and in Henry [12]. The earlier work, [8],

considers the special case of ( 1.1 ) with Lit, <p) = 0 and, for most part, M and N were
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restricted to be n x n matrices. Moreover, the hypotheses on M and N were such

as to preclude the important periodic case. Here the problem is treated in the more

general, and seemingly more natural case, namely, when the boundary conditions

are given in terms of bounded linear operators. Furthermore, the results also

apply to periodic boundary conditions, and hence, with periodic forcing, offer a

way of demonstrating the existence of periodic solutions of functional differential

equations. As in [8], the basic approach is that of a "shooting method", that is,

we seek to find the initial function q e Ch, such that the corresponding solution of

the initial value problem of (1.1) also satisfies the boundary condition (1.2).

First, in §2, we discuss basic equations and pertinent hypotheses and also develop

some results in the linear case. The main results are given in §3. §4 is devoted to a

discussion of some important special cases when the linear term L(t, yt) ceases to be

functionally dependent, that is, for the case when/=0, equation (1.1) becomes an

ordinary differential equation. In §5, we describe how some of the assumptions in

§2 may be relaxed and indicate other results when/satisfies rates of growth other

than (2.1). We conclude in §6 with examples illustrating how our results may be

applied to yield the existence of solutions of boundary value problems and show

why some of the conditions are imposed.

2. Preliminaries. We first describe the basic hypothesis on the functions L(t, ç>)

and fi(t, 99). Let L(t, <p) be a continuous linear mapping from Ch into En for each

t e [a, b]. We assume

(HO There exists a bounded integrable function l(t) such that |F(í, <p)\ á/(í)||<p||

for t e [a, b] and <p e Ch.

Let/(?, 93) be a continuous mapping from [a, b] x Ch into En. We assume also

(H2) f(t, <p) maps closed bounded subsets of [a, b] x Ch into bounded sets in En

and satisfies

(2.1) lim sup ^!'f^ = 0,   uniformly in t e [a, b].
ikon-» ||<P||

In particular, if/(/, <p) is bounded then (2.1) is satisfied.

We consider the first order system of functional differential equations of the form

(1.1) y'(t)=L(t,yt)+f(t,yt),       te[a,b],

and the associated linear equation

(2.2) x'(t) = L(t, xt),       t e [a, b],

subject to the two point boundary conditions:

(1.2) Mya + Nyb = </-,       b > a+h,
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where <p e Ch. In order to prove existence of solutions of the two point boundary

value problem (1.1) and (1.2), we assume in addition

(H3) Solutions of the initial value problem (1.1) with ya=q e Ch exist and are

unique.

We note that the existence of local solution to the initial value problem (1.1)

with ya=q is guaranteed by the continuity of L(t, <p) and /(/, <p) as mappings on

[a, b] x Ch into En. The extendibility of a local solution to the entire interval [a, b]

is guaranteed by (H^ and (H2), (see, for example, Hale [11, p. 21]).

To facilitate our discussion, use will be made of properties of the linear non-

homogeneous equation

(2.3) x'(t) = L(t,xt)+g(t),

where g e C[a, b]. For any initial function q e Ch, we write x(q, g)(t) as the solution

of (2.3) satisfying xa(q, g)=q. For each g e C[a, b] and qe Ch, a solution of the

initial value problem exists for tïa-h, and is unique, see for example [10] or [11].

Such a solution may be represented by

(2.4) x(q, g)(t) = x(q, 0)(0 + x(0, g)(t),

t^a — h. It follows from Gronwall's inequality, see [11, p. 81], that

(2.5) \\xt(q, g)\\ è {kl +£ \g(s)\ dsj exp (£ l(s) ds},

for t ̂  a.

An elementary result for the linear equation (2.3) subject to the boundary con-

dition (1.2) provides motivation for the hypothesis we shall make concerning the

nonlinear problem (1.1), (1.2). The following obvious lemma gives a necessary and

sufficient condition for the linear boundary value problem (2.3), (1.2) to have a

solution

Lemma (2.1). 77je two point boundary value problem (2.3), (1.2) has a solution if

and only if Nxb(0,g)eip + R(M+NX) where R denotes the range and X is an

operator on Ch, defined by

(2.6) Xq = xb(q, 0),

which maps q e Ch into the segment at b of the solution of the initial value problem

(2.2) withxa=q.

Proof. Suppose that Nxb(0,g)eip + R(M+NX). To show that the boundary

value problem (2.3), (1.2) has a solution, it suffices to establish that the functional

equation

(2.7) Mq+Nxb(q, g) = </-,       <f¡ e Ch,
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has a solution. Using the decomposition formula (2.4), we can write (2.7) as follows

(2.8) Mq+NXq + Nxb(0,g) = 4>,

which admits a solution q by hypothesis. Conversely, if the boundary value

problem (2.3), (1.2) has a solution x(t) on [a — h, b], then xa=q satisfies (2.7) and

(2.8). Consequently, Nxb(0, g) e ifi + R(M + NX) which completes the proof.

In the discussion to follow, we need the following result concerning the operator

X defined in (2.6).

Lemma (2.2). The operator X is a completely continuous linear operator on Ch.

Proof. For qx,q2eCh and scalars a and ß, we define z(t) = ax(qx,0)(t) +

ßx(q2,0)(t)—x(aqx+ßq2,0)(t). It is easily verified by the linearity of L(t, <p) that

z(t) satisfies (2.2) and the initial condition za = 0. By the uniqueness of the solution

of the linear equation (2.2), we obtain z(t) = 0, proving that Zis linear. Since, in

case of linear equations, the solutions depend continuously on initial conditions,

A'is continuous. However, X is linear, therefore it is bounded. To see that A" is also

compact, let {qn} be a bounded sequence in Ch, say ||an|| ^B, «=1,2, 3,_By

(2.5), we have

\\Xqn\\ = !*»(?„, 0)|| â ||an||exp(£/(0&),

which is uniformly bounded for all n. Since x(qn, 0) is a solution of (2.2) we have

||xi(an,0)|| =     sup    \L(t,xt(qn))\=     sup    /(0IW<7n)||
b-h<t<b 6-ftSigi)

b-
sup    /(i)knllexp(f l(s)ds),

which is uniformly bounded for all n by (HO. It then follows from the Arzela-

Ascoli Theorem that {an} contains a convergent subsequence, proving that X is

completely continuous.

3. The general problem.    The principal result for the general case is

Theorem (3.1). Assume that L(t,y) and f(t,<p) are continuous mappings on

[a, b] x Ch into Rn, L(t, <p) is linear in <p for each t e [a, b] and satisfies (HO, and

fi(t, cp) satisfies (H2). Suppose also that (H3) holds. If the operator (M+NX), where

M, N are given in (1.2) and X by (2.6), has a continuous inverse, then the boundary

value problem (1.1), (1.2) has at least one solution.

Proof. For each a e Ch, denote by y(t, q) the solution of the initial value problem

(1.1) with ya=q, and yt(q) the corresponding segment at t. Define g(q)(t) =

f(t, yt(q)). Then y(t, q) also satisfies the nonhomogeneous linear equation

(3.1) x'(t)=L(t,xt)+g(q)(t).
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Using (2.4), we can write

y(t,q) = x(q,g)it) = xiq, 0)(0 + x(0, g(q))(t).

Define a mapping T: Ch -> Ch by

(3.2) Tq = ybiq) = xbiq, O) + xb(0, g(^)).

A solution to the boundary value problem (1.1), (1.2) is determined by an initial

condition which is a solution of the functional equation

(3.3) iM+NT)q = <p,       <l>eCh.

This may be rewritten as (M+NX+NiT-X))q=ip, <\>eCh. Let T = iM+NX)~1

which exists by hypothesis. Equation (3.3) then is equivalent to

(3.4) (7+ IW(T- X))q = iy,       0 e Ch,

where /denotes the identity. To show the existence of a solution of (3.4) we use the

following theorem (Granas [9], Dubrovskiï [3]):

Let B be a completely continuous operator mapping a Banach space X into

itself. If

(3.5) lim sup  |, "y1 < 1
IKPH-* °o    || y ||

then R(I-B) = X.

Note that TN is continuous by hypothesis, so B will be completely continuous if

we can show that T— X is. Let q e Ch. Consider the solution y(t, q) of the initial

value problem (1.1), ya=q. By (2.1) and (2.5), we can estimate the function ||yt(q)\

by

(3-6) \ytiq)\ É l(|?|| +M0+£ \\ys(q)\\ <&)>

where L = exp {jba ¡is) ds} and M0 is an appropriate constant. Using (3.6) and the

Gronwall inequality, we obtain

(3-7) \\ytiq)\\ è Li\\q\\+M0)e^-^ = Kx\\q\\+K2.

Now let {qn} be any bounded sequence in Ch. We first note that by (2.5), (3.2) and

(3.7), we have

\iT-X)qn\ = \\XbiO,h(qn))\\ ï L Ç \fis, ysiqn))\ ds
(3.8) b a

á L Ç(M0+\\ys(qn)\\)ds g L(b-a)(M0 + Kx\\qn\\+K2),
Ja

which shows that the sequence {(T— X)qn} is uniformly bounded. On the other

hand, by (2.1) the sequence of derivatives {[(T- X)qn]'} satisfies

(3.9) \\xii0,giqn))\\ Ï   sup  {l(t)\\xt(0,g(qn))\\+ M0 +\\yt(qn)\\}.
aStSb
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Note that for t e [a, b], we have from (2.4), (2.5) and (3.7)

\\xt(0,g(qn))\\ ^ |W?0ll + IW?»,0)|| Ú Kx\\qn\\+K2+L\\qn\\.

Using the above estimate, assumption (HO and (3.7), we obtain from (3.9) that

{||x¿(0, h(qn))\\} is uniformly bounded. Thus, an application of Arzela-Ascoli

Theorem will provide the complete continuity of T— X and hence the operator B.

Suppose that there exists a sequence of functions qn e Ch, \qn\ -> oo such that

(3.10) ßn=   sup   \\yt(qn)\\ t °o    asn->co.

Let 0<£< l/Kx. By (2.1) there exists a number r>0 such that if ¡<p| >r, \f(t, <p)\

èe\\q>\\ for all te [a,b]. Since for each se [a, b], || vs(an)||>r or || ys(qn) || ̂  r, we

have

(3.11) ||*,(0, g(qn))\\ SlC \f(s, ys(qn))\ ds S L(b-a) Max (R, eßn),
Ja

where jrv = max{|/(5, <p)| : a^s^b, ||<p||:Sr} and the numbers ßn are defined by

(3.10). From (3.7), we have ]8ttgKx\\qn\\ +K2, hence

11^(0,g(qn))\\ á L(b-a) Max (R, eKx\\qn\\+eK2).

Since e is arbitrary, this establishes (3.5) for any sequence qn such that the corre-

sponding sequence {ßn} -> oo as n -» oo. On the other hand, for any sequence {qn}

for which the corresponding sequence {ßn} is bounded, (3.11) implies

lim   A W0,g(?B))||=0,
ll«n«-*°°    \\<ln\\

so that (3.5) holds also. This completes the proof of the theorem.

As an immediate consequence of the above result, we obtain the following

important corollary:

Corollary (3.2). Assume that the two point boundary value problem (2.2), (1.2)

has only the trivial solution. If M has a closed inverse^ then the boundary value problem

(1.1) and (1.2) always has a solution.

Proof. Since Ch is complete under the sup norm, the closed linear operator

M_1 is also continuous by the closed graph theorem. Note that the boundary

condition (1.2) may be rewritten as

(3.12) fya+M-Wy,, = M-V,       teCh,

where Us the identity operator. Since Xis completely continuous by Lemma (2.2),

so is the operator M~1NX. It now follows from the Fredholm alternative that

I+M~1NX has continuous inverse (see Dunford and Schwartz [5, p. 515], or

Edwards [6, p. 677]) and the result follows.
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Corollary (3.3) (Fennell [7]). Suppose that the mappings L and f in equation

(1.1) are, in addition, periodic with period P=b — a, i.e. L(t+P, <p)=L(t, <p) and

f(t+P, <p)=fit, <p)for all t'a a and all q> e Ch. If the only P-periodic solution of (2.2)

is the identically zero solution, then equation (1.1) has a P-periodic solution on [a, oo).

Proof. Put M=I, N= -I'm the boundary conditions and set ^=0.

Remark 1. We would like to point out that the condition on the invertibility of

the operator M+NX is not as severe as it may seem. If one picks an initial function

q e Ch, then as we noted above the solution y(t, q) satisfies the nonhomogeneous

linear equation (3.1) where giq)it)=fit, y(q))- However, a necessary and sufficient

condition for the boundary value problem (3.1), (1.2) to have a solution is by

Lemma (2.1) that Nh(q) e ip+R(M+NX). Since one expects to have such a con-

dition hold for all qeCh, RiM+NX) = Ch is a reasonable requirement. That

M+NX is one-to-one follows from assuming uniqueness of solutions of the linear

boundary value problem (2.2), (1.2).

4. Degenerate cases. In this section, we consider equation (1.1) when the

linear part is not a functional on Ch. More specifically, we consider functional

differential equations of the form

(4.1) y'it) = Ait)yit) +/(i, yt),       t e [a, b],

where/is a continuous mapping from [a, b] x Ch into En and Ait) is a nxn matrix

function continuous in t. Equation (4.1) will be considered as a special case of

equation (3.1). Thus, we also assume that (H2), (H3) hold throughout this section.

We consider first the case when Ait)=0 which was earlier discussed in [8]. In

this case, the operator X defined by (2.6) reduces to

(4.2) Xq = q(a),

where q(a) denotes the function in Ch which has the constant value q(a). We intro-

duce an equivalent norm on Ch which is useful in the present analysis. For each

q e Ch, we define

(4-3) hi = W)\ + \\q\\,

where || • || denotes the sup norm. For a linear operator T on Ch, we define the

operator norm with respect to the norm || ■ ||0 by

(4.4) ||r||0=   sup  (ilT^IU).
llalla -1

Except for the additional hypothesis (H3) (cf. end of Remark 5), the following

result is an extension of the main theorem in [8] :

Theorem (4.1). IfT0 = iM+N)~1 exists, is continuous, and ||iyv||a< 1, then the

boundary value problem (4.1), (1.2) with A(t)=0 has a solution.
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Proof. In view of Theorem (3.1), it suffices to show that (M+NX)'1 exists and

is continuous, where the operator X is given by (4.2). Consider solving the func-

tional equation

(4.5) (M+NX)q = <p,       9eCh,

which may be rewritten as

(M+N+N(X-I))q = <p,       9eCh,

and then as

(4.6) (/+ F0N(X-I))q = I>,       <p e Ch.

Observe that for q1} q2 e Ch,

\\(X-I)qx-(X-I)q2\a = \\(X-I)qx-(X-I)q2\\

= \\9i(a)-9a(a)\\ + \\q1-q2\\

= \qAa)-q2(a)\ + \\qx-q2\\ = \\qx-q2\\a-

Since |r0Af||a<l, the operator F0N(X-I) defines a contraction on Ch. Thus,

equation (4.6) has a unique solution for every <p e Ch. It is also easy to see that the

operator (I+F0N(X—I))~1 is Lipschitzian. Therefore

(M+NX)-1 = (/+r0/vr(x-/))-ir0

is also Lipschitzian and in particular continuous. This completes the proof.

Remark 2. Theorem (4.1) was first given in [8] where the boundary operators

M, N were assumed to be n x n matrices and 0 = 0 in the boundary condition (1.2).

The proof there explores the dual role played by n x n matrices as operators from

En into En and also as operators from Ch into Ch. Suppose that M, N are nxn

matrices ; then F0N is also a nxn matrix. We note that

||IW||a=    sup   {\F0Nq(a)\ + \\F0Nq\\}
ii«ii«-i

=   sup   l\F0Nq(a)\+     sup     \F0Nq(9)\\
ll«lla = l I a-hSBia J

¿ \F0N\   sup   {|a(a)| + |a||}= \F0N\,
ll«lla=l

where |r0Af| denotes the matrix norm of r07Y. Thus, the present condition that

||ro7V"||a< 1 is less stringent than that of \FQN\ < 1 used in [8].

Remark 3. We note that the assumption on the existence of T0 rules out the

possibility of allowing periodic boundary conditions such as M=I and N= — I.

This is to be expected, since the reduced equation of (4,1), namely x'=0, is an

ordinary differential equation which for periodic boundary conditions has any

constant as a solution.

Remark 4. Suppose that the «-dimensional space En is equipped with the

Euclidean norm. Let M, N be positive definite symmetric matrices. It is easy to see

that if M and N commute then F0 exists and satisfies | F0N | < 1. On the other hand,
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the result is not true without the commutativity assumption on M and N. Consider

the following 2x2 matrices

where A is some large positive number. Clearly, M, N are positive definite if A > 1

and in fact with positive entries in this case. It is easily found that

and

<«->—s ce* "/;"">
Now consider the vector x=(l, 0). We find that (M+N)-1Mx=\(3-A'1, 2-A)

and (M+7V")"1ArA:=y(2-l-^4"1, A — 2) which shows that the operator norms of

(M+N)'1M and (M+N)'1N cannot be less than one if A is large.

We now consider equation (4.1) when A(t)jí0. In view of Theorem (4.1), it is

natural to seek conditions on A(t) which will allow periodic boundary conditions.

However, since in this case the reduced equation

(4.7) x'(t) = A(t)x(t),       te[a,b],

is an ordinary differential equation, the mapping X defined by (2.6) will assign the

same value to the different functions qlt q2 e Ch as long as qx(a)=q2(a). Therefore

it will be unreasonable to expect that the operator M+NX be invertible. This

difficulty already occurs in Theorem (4.1). There we imposed the contractive con-

dition ||r0Ar||I,< 1 in order to insure the invertibility of M+NX. Here we wish to

seek alternative conditions in order not to preclude the periodic boundary con-

ditions. Here, we assume also that M and N are n x n matrices and wish to obtain

an extension of the main result of [8] in another direction. Let O(0 be the funda-

mental solution matrix of (4.7) satisfying O(a) = 7, the identity matrix. We define an

operator X9: Ch -*■ Ch by

(X*q)(6) = ®ib-a+6)qie),       6e[a-h, a].

We are now ready to state the desired result.

Theorem (4.2). Let M and N be nxn matrices. Suppose that for all B e [a—h, a]

the matrix M+N<&ib-a+0) is nonsingular and that r(0) = (M+N<&ib-a+ 0))_1

satisfies

(4.10) ¡TA^II =     sup     ^(0)^0(^-0+0)1 < 1.
a-hSOia

Then the boundary value problem (4.1), (1.2) has at least one solution.
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Proof. The segment yt of a solution y(t, q) of equation (4.1) can be represented as

(4.11) yt(6) = <D(i - a + 6)\q(d) +£ "   + " * - \s)f(s, ys(q)) ds j

for 6 e [a—h, a]. Let T0 be a mapping defined on Ch by

(4.12) Toq(0) = q(a)+ f "   + V W(*, ys(q)) ds.
Ja

Using (4.11) and (4.12), we can write yb(q) = X^Taq. Thus a solution to the boundary

value problem (4.1), (1.2) may be found by solving the functional equation

(4.13) (M+NX9T0)q = ^,       ¿eCh.

Let T be an operator on Ch defined by

(4.14) (Fq)(d) = F(6)q(6),       6 e [a-h, a].

The operator T just defined in (4.14) is clearly invertible. Therefore, equation (4.13)

is equivalent to

(4.15) (/+ FNX*(T0 - I))q = T0,       ^eCh.

Decompose the operator T0 — I as the sum of two operators Ty and T2 defined by

(4.16) Tiq(6) = q(a)-q(6),

(4.17) T2q(6) = i""1*9 ®-\s)f(s, ys(q)) ds.
Ja

To obtain a solution of equation (4.15), we invoke a result of Nashed and Wong

[14, Theorem 3], and show that the operator FNX,¡,Tx is a contraction and the

operator FNX^T2 is completely continuous and is asymptotic to zero in the sense

of [3]. As in the proof of Theorem (4.1), we shall work with the new norm intro-

duced in (4.3). We first show that the operator FNX9TX is a contraction on Ch with

respect to the new norm || ||a. Let a1; a2 e Ch, we have from (4.16) that for any

9 e [a — h, a]

\{Txqx-Txq2)(6)\ Ú \qi(a)-q2(a)\ + |ax(ö)-a2(Ö)|

= \qi(a)-q2(a)\ + \\qx-q2\\ = \\qi-q2\\a,

from which it follows that

(4.18) \\Txqi-Txq2\\a Ú ||?i-?a|..

Now condition (4.10) together with (4.18) show that FNX^Tx is a contraction. The

fact that FNXlpT2 is completely continuous follows the same way as in the proof

of Theorem (3.1). Here the operator T2 defined by (4.17) is completely continuous,

since/satisfies (H2). Using (4.11), we can obtain the estimate on yt(q):

(4.19) \\yt(q)\\ Ú *(l?(fl)l+J"a' Ifc-W/U*(?))! ds),
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where 7C=supa_hS(Si) |O(0|- Using (2.1) and the Gronwall's inequality, we can

deduce from (4.19) the existence of a positive constant TCj and K2 such that

||j>t(0)|| ̂  ATill^l +7v2 for all t e [a, b]. The last fact can be used to establish that the

operator T2 is asymptotic to zero, i.e.

Hm   Ç# = 0,
inn«-»»     ||<JÍU

and therefore the operator YNX,¡¡T2 is also. This completes the proof.

Remark 5. The invertibility of the matrix M+N<$>(b -a + 9) for each 8 e [a - h, a]

can be guaranteed by the following requirement:

(H4) Equation (4.7) subject to the boundary condition Mxia) + Nxir)=0 has

only the trivial solution for each r e [b — h, b].

To see this, we note only that a matrix is invertible if and only if it is one-to-one.

Now suppose that for two vectors vlt v2 e En,

iM+N®ib-a+d))vx = (M+N<!>(b-a+6))v2.

Since 6 e [a — h, a], we have b — a + 6 = re[b-h,b]. Consider the solution O(0

(vx — v2) of equation (4.7) which satisfies

M<i>(a)(vx-v2) + Na>(T)ivx-v2) = ÍM+N®Ít))vx-ÍM+N<Í>Ít))v2 = 0.

Therefore, (H4) implies that O(0(t>i - f2) = 0, or v1=v2. In the special case when

,4(0 = 0, assumption (H4) is clearly satisfied provided that Af+A^is invertible. In

this case, the fundamental solution matrix O(0 becomes the identity matrix so the

requirement (4.10) reduces to \(M+N)~1N\ < 1. Thus, except for the assumed

uniqueness of solutions of initial value problems, namely (H3), Theorem 1 of [8]

becomes a special case of Theorem (4.2). In fact, since our discussion is limited

only to matrices, the approximation technique devised by Kato [13] could be used

here in the same way as was done in [8] to remove this restriction. A similar com-

ment applies to Theorem (4.1) if M and N are restricted to be matrix operators.

5. Other results. In this section we consider two alternatives to the hypothesis

(H2). Both involve making the interval sufficiently small in order to prove the

existence of a solution. First, suppose instead of (H2) we assume the weaker

hypothesis :

(H2)' The mapping / is bounded on some sphere, i.e. there exist positive

constants r and K such that \<p\ f£r implies \f(t, <p)\ 5S7C for all t e [a, b].

Denote by/*(i, q>) the bounded continuous extension of fit, q>) which is equal to

fit, <p) on \\<p\\ fir and [a, b]. The existence of/* is given by a result of Dugundji

[4]. We now consider

(5.1) y'(t)=L(t,yt)+f*it,yt),
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subject to the boundary condition (1.2) with some prescribed <j¡ e Ch. Let X he the

operator on Ch defined by (2.6). Suppose that the operator M+ NXhas a continuous

inverse, then Theorem (3.1) establishes the existence of a solution of (5.1) and (1.2).

However, since the theorem yields no information about the size of ||a||, the correct

initial function, it is not possible to conclude that this solution also solves (1.1)

and (1.2). The following result shows that existence to the original problem (1.1),

(1.2) is always guaranteed provided that the interval [a, b] is sufficiently small.

Theorem (5.1). Let L(t, <p) and fi(t, <p) be given as in §2 and also assume that

(Ux), (H2)', (H3) hold. If the operator M+NX has a bounded inverse and if b — a

is sufficiently small, then the boundary value problem (1.1), (1.2) has a solution for

every >f>eCh such that ||r</i|| <r.

Proof. We proceed in the same manner as in the proof of Theorem (3.1), i.e.

we wish to establish the existence of a solution to the functional equation (3.3) or

(3.4). Consider the operator F defined by

(5.2) Fq=FJj- FN(T- X)q,        <b e Ch,

where the mappings F and Fare defined by (M+NX)'1 and (3.2) respectively. It is

clear that a fixed point of the mapping F defined by (5.2) yields a solution to

equation (3.3) and hence a solution to the boundary value problem (1.1), (1.2).

Let Sa = {q : qeCh, \\q— F</i\\ ̂a} denote the sphere of radius a centered at Fib.

We show that, for sufficiently small a, the mapping F maps Sa into Sa and is com-

pletely continuous with respect to Sa. The existence of the desired fixed point then

follows from the Schauder fixed point theorem. For any a e Sa, any a>0, we have

¡Fq-m á HT/VU \\xb(0,g(t))\\,

where g(t) =f*(t, yt(q)). As long as we have \\yt(q)\\ úr, g(t)=f(t,yt(q)). Hence

using (H2)', we find by (2.5)

(5.3) \Fq-m\ Ik \\FN\\KLa,b(b-a),

where La<b = exp(pa l(s) ds). On the other hand, in order that ¡ji(a)||^r it is

sufficient that {\\q—Fi/i\\ + \\Fib\\+K(b — a)}La¡b^r, or equivalently, taking a =

\\FN\\KLa¡b(b-a), we have

(5.4) \\F+\\La,b + (\\FN\\La,b+l)KLa,b(b-a) á r.

Note that Lab(b-a) tends to zero and Fa „ tends to 1 as b—a tends to zero. Hence,

it is possible to restrict b — a so that (5.4) holds. For such restricted intervals, we

define a to be the right-hand side of (5.3). Then we see that F(Sa)Ç:Sa and for all

a g Sa, the solution y(t, a) of (1.1) coincides with that of (5.1). The operator T— X

is completely continuous as already established in Theorem (3.1). Hence, Fis also

completely continuous, proving the theorem.

We note that if i// = 0 in the boundary condition (1.2) then the condition ||ri/i|| <r

imposed in Theorem (5.1) is always satisfied. On the other hand, such a condition
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can be waived if we assume the stronger hypothesis than (H2)' that/be bounded on

every bounded closed subset in [a, b] x Ch.

Now we consider the other alternative to hypothesis (H2), namely, when /

satisfies a uniform Lipschitz condition of the form

(5.5) \f(t,<Pi)-f(t,<P2)\ Í K\\<px-<p2\\.

Putting <jp2 = 0 in (5.5), we obtain

\fit,cp)\ ̂  |/(/,0)|+*H| è  sup \fit,0)\+K\\<p\\,
iela.61

for all <p e Ch. In particular, the above discussion applies here also. However, with

the Lipschitz condition (5.5), a direct argument is possible using the contraction

mapping theorem, and this has the advantage of yielding uniqueness as well. We

note that condition (5.5) implies (H3).

Theorem (5.2). Let Lit, <p) and fit, <p) be given as in §2 satisfying (Hj) and (5.5).

If the operator M+NX has a bounded inverse and ifb — a is sufficiently small, then

the boundary value problem (1.1), (1.2) has a unique solution.

Proof. We proceed in the same way as the proof of Theorem (5.1). Consider the

operator F on Ch defined by (5.2). To prove the theorem, it suffices to show that

the mapping F defines a contraction on Ch when the interval [a, b] is made suffi-

ciently small. For qlt q2 e Ch, we note that

||F?i-F?a|| Ú \\TN\\ \\iT-X)qx-iT-X)q2\\

= ||IW| \\xbiO,giqx))-xbiO,g(q2))\\,

where g(q)(t)=f(t, yt(q))- Observe that from (5.5), we have

\\xb(0,g(qx))-xb(0,g(q2))\\ Í \"\T(s,ys(qx))-T(s,ys(q2))\ ds
(5.6) Ja

â K f \yJifd-yJM ds.
Ja

It is well known [10] that if/satisfies the Lipschitz condition (5.5) and L satisfies

(Hj) then solutions of (1.1) satisfy

(5-7) \\yt(qi)-yt(q2)\\ ^ C\\qx-q2\\,       te[a,b].

Using (5.7) and (5.6), we obtain

\\Fq1-Fq2W i \\TN\\KC(b-a)\\qx-q2\\,

which clearly defines a contraction with sufficiently small b — a.

6. Examples. In this section, we present several examples to illustrate how

theorems in previous sections may be used to yield existence of solutions of specific

boundary value problems. We also present problems which attempt to isolate some
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of the difficulties encountered in boundary value problems for functional differential

equations and which motivate some of the hypothesis imposed in our theorems.

The boundary operators involved and the equations discussed are kept simple to

avoid lengthy computations.

We first show that it is in fact possible to verify the hypothesis of Theorem 3.1

directly. Consider the functional differential equation

(6.1) yV) = y(t-l)+f(t,yt),     re [0,2],

subject to the boundary conditions

(6.2) yo = \y2,       >w2eC[-l,0].

Equations (6.1) and (6.2) describe a special case of the boundary value problem

(1.1) and (1.2) we considered in §3. Here L(t, yt)=y(t-l), M=I, N=-\I, a = 0,

b = 2,h = l,4> = 0 and/is any mapping from [0, 2] x C[ - 1, 0] into Rn which satisfies

hypothesis (HO and (H2), e.g. f(t, <p) = X(t)<p", 0<<r<l, A e C[0, 2]. In this case,

the initial value problem for the homogeneous linear equation

(6.3) x'(t) = x(t-l),       te [0,2],

can be solved by the method of steps, i.e. for any initial function q e C[— 1, 0], we

have from (6.3)

x(0 = 9(0)4-J* q(s-l) ds, 0 S / £ 1,

(6.4) = q(0)+Çoq(s-1) ds+q(0)(t-1)

+ í  i"    q{s-l)dsdu, l ú t -¿2.

Thus, Xq(6) is given by the second part of (6.4) (setting t = 2 + 6, 0e[-l,O]).

It is easy to see that supn,n = i \\Xq\\ <A, from which it follows that the operator

(I—IX) has a continuous inverse. Hence, Theorem (3.1) yields the existence of a

solution to the boundary value problem (6.1), (6.2).

We modify the above example to show how Corollary (3.3) may be applied to

obtain the existence of a periodic solution. Consider

(6.5) y'(t) = y(t- l)+fi(yt) sin t,       t e R,

together with the boundary condition

(6.6) y0 = y2n,      y0, y2n e C[-2ir, 0].

We assume that f(yt) is chosen so that f(yt) sin (/) satisfies the hypothesis (H2),

(H3). Since the characteristic equation for (6.3) has no imaginary roots, equation

(6.3) has no nonzero periodic solutions. Therefore, Corollary (3.3) applies here and

yields a 2-7r-periodic solution for the boundary value problem (6.5), (6.6).
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Next we consider examples with regard to the degenerate functional differential

equations discussed earlier in §4. We want first to illustrate the difference between

the invertibility of M+NXq as an operator on Rn for each 6 e [a-h, a] and that of

M+NX as an operator on Ch. Consider the following two dimensional system

u'(t)=fx(t,ut,vt),
t e [0, 2],

v'(t) = v(t)+f2(t,ut,vt),

subject to the boundary condition (1.2) with boundary operators

/l    0\ /0   0\

The fundamental solution matrix for the reduced linear equation is

The matrix T(f?) of Theorem 4.2 is given by the inverse of

M+ATO(2-0)=(o   A)'

which is clearly invertible for every 6. However the operator M+A^when applied

to q=(qx, q2) e Ch, say h = 1, yields

(M+NX)q
(   ?i(0)   \

" U(0)e2-9/'

which shows that it is not one-to-one (both functions (0, 0) and (í, 0 are in Ch

and mapped into (0,0) in Ch). This shows that condition (4.10) cannot be eliminated.

We now wish to show that Theorem (4.2) applies to certain equations with

periodic boundary conditions. Consider the one dimensional equation

(6.7) y'(t)= -y(t)+f(t,yt),       t ^ 0,

-where fit+TT, yt)= fit, yt) for all i^0 and satisfies (H2), (H3), together with the

periodic boundary conditions

(6.8) yo=yn,       y0,y„eC[-1,0].

It is easy to see that in this case, T(ö) = (l — e-"-8)"1 which satisfies condition (4.10),

i.e.

1
\TNX4 =    sup

-lgeso e*"1-!
< 1.

\(l-e-*-°)\

Thus, Theorem (4.2) applies here and yields a solution to (6.7), (6.8).

Finally, we discuss an example involving integral boundary conditions which

illustrates the improvement made through Theorem (4.1) over the previous results

[8]. Consider

y'(t) = f(t, yt),       Mya+Nyb = 0,   ya, yb e Ch,
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where Mq(6)=q(6)-}L-q(á), Nq(6) = iq(a) + i ft q(r) dr, 6 e[a-h,a]; h<b-a, and

q(a) is the constant function in Ch with value q(a). It is easy to see that M+N

= I+\A, Aq(6) = laBq(r)dr. If h=l, then |M||0<1. Thus, (M + N)'1 exists and

satisfies ||(Af+A)')"1||a = t- Moreover, we have ||Ar||a<|. Therefore \\(M+N)~1N\\a

^\\(M+N)'1\\a\\N\\a<l, and Theorem (4.1) applies. On the other hand, no

theorem in [8] would apply in this case.
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