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CONNECTIONS ON SEMI SIMPLE LIE GROUPS

BY

ROBERT E. BECK

Abstract. The plus and minus connections of Cartan and Schouten, which exist on

any Lie group, have the following three properties: (1) the connection is left invariant,

(2) the curvature of the connection is zero, (3) the set of maximal geodesies through the

identity of the Lie group is equal to the set of one-parameter subgroups of the Lie group.

It is shown that the plus and minus connections are the only ones with these properties

on a real simple Lie group. On a real semisimple Lie group the connections with these

properties are in one-to-one correspondence with the ways of choosing an ideal of the

Lie algebra and then choosing a complementary subspace to it.

1. Introduction. To find all the connections on a real semisimple Lie group with

the properties listed in the abstract, we restate the properties in terms of representa-

tions of Lie algebras and classify the representations which correspond to connec-

tions. Specifically, these properties induce skew-symmetric representations of the

corresponding Lie algebra. By using computational methods of representation

theory, the skew-symmetric representations of a complex simple Lie algebra can

be determined. With standard techniques of representation theory these results are

extended to complex semisimple Lie algebras in §3 and then to real semisimple Lie

algebras in §4.

Let G be a real Lie group with Te{G), the tangent space at the identity, considered

as its Lie algebra g. Let V be a left invariant affine connection on G. Nomizu [4] has

shown that V arises from a bilinear map a: gxg-^g. When the curvature of V is

zero, it is easily shown that a is a Lie algebra representation of g on itself, con-

sidering a: g -> gl {g). Helgason [2] shows that the geodesies of V have property

(3) if a is skew-symmetric. Consequently, the desired connections arise from

representations (/>, g) of g on itself which are skew-symmetric (p(x)x=0 for all

xeg).

Let g be a complex semisimple Lie algebra and let « be a Cartan subalgebra of g.

Let A be the set of roots of g with respect to h and let tt = {(*!,..., an} be a set of

simple roots of A. Let {TTj,..., Hn} he a basis of « chosen so that ^(TTy) e Q, the

field of rational numbers, for i,j=l,...,«. In this paper, we will call an element

H eh generic if TT=2?=i axHi where the complex coefficients als..., a„ are linearly

independent over Q. It can be shown that generic elements have the properties

listed in the following lemma.
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Lemma 2. (a) a(//)/0 for every root a of g and every generic element ofih.

(b) // co, co' are weights of some arbitrary representation (a, V) of g, and if

co(H) = co'(H) for some generic element of h, then co = w.

(c) Let (a, V) be a representation ofig. Assume that for a generic element, H, ofih,

there is a nonzero ve V and a to eh* such that o(H)v = co(H)v. Then w is a weight of

fa V).
2. Skew-symmetric representations. Throughout this section let (p, g) be a

skew-symmetric representation of g. Let V0 = {xeg\ p(g)x = 0}. Using the defini-

tion of skew-symmetry it is easy to show that

(1) ipfa))2 = pfa) ad x   for all x e g

and that ker p= F0. Hence, F0 is an ideal in g.

Lemma 1. If p is a faithful skew-symmetric representation of a semisimple Lie

algebra, then every invariant subspace is an ideal.

Proof. Let Vx be an invariant subspace of g under p. Since any representation

of a semisimple Lie algebra is completely reducible [3, p. 79], we may write

g= Vx ® V2 where F2 is an invariant subspace of g under p. Now pig)[x, F]s Vx

where x e g and v e Vx. Writing [x, v] = [x, v]x + [x, v]2 where [x, v]t e Vt, i=l, 2,

we have that

Vi 2 Pig)[x, v] = Pig)i[x, v]x) + pig)i[x, v]2).

From the invariance of F¡, i =1,2, we conclude that [x, v]2 = 0 and that Fx is an

ideal.

We are now able to characterize the weights of a skew-symmetric representation

of a complex semisimple Lie algebra.

Theorem 3. Let g be a complex semisimple Lie algebra. Every nonzero weight

of p is a root ofig. Furthermore, 0 is a weight of p.

Proof. With respect to ad we may write

g = gfa 4- 2 Sfa,   where a is a root of g.
a

With respect to (p, g) we may write

g = F(0) + 2 V fa),   where tu is a weight of (p, g).
(Ú

We first show that g(0), which is a Cartan subalgebra, h, of g is a subspace of F(0).

Let Y e h. By equation (1) for all He Awe have (P(H))2Y=P(H)[H, F] = 0.1tcan

be shown that for all H eh, p(H) is semisimple. Thus, (p(H))2Y=0 implies that

p(H) Y=0 and Ye V(0). Hence, 0 is a weight of p.

Now let H e h he generic. Then a(F/)#0 for every root a of g. Let g(a) = CEa and

consider p(H)Ea.

(2) P(H)(p(H)Ea) = p(H)[H, Ea] = a(H)P(H)Ea.
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There are two cases :

(a) p(H)Ea = 0 which, by Lemma 2, choosing w = 0, implies that Ea e V(0).

(h) p(H)Ea /O which, by Lemma 2 and equation (2), implies that a is a weight

and P(H)Ea e V(a).

Label the roots so that (a) is true for a(1),..., a{k) and (b) is true for a(k + 1\ ...,

alr). Then

(3) F(0)2«+g(a(1))+-.-+^n

(4) F(a(«) 2 p(H)g(a<»),      j = k+l,...,r.

By a dimension argument, we have equality in (3) and (4). Therefore,

g = V(0)+ V(ëk + »)+ ■■■ + V(aw)

is a weight space decomposition of g and a{k+1\ ..., aM are the only nonzero

weights of (p, V).

Knowing about the weights of (p, g) where g is complex semisimple, we can

prove this theorem about equivalent representations.

Theorem 4. Let g be complex semisimple. If p is equivalent to ad, then p = ad.

Proof. There is an element B e GL (g) such that, for all X e g, ad X= B~ 1p(X)B.

Since p skew-symmetric, we have Bad XB~1 = 0 for all Xeg, and using the non-

singularity of B, [X, B~1X\ = 0. By polarization, [X, B~1Y}=[B~1X, Y], or

[BX, Y] = [X, B Y] for all X, Y eg. Since p is equivalent to ad, «£ F(0) implies that

«=F(0).

Let TT be a generic element of «. We have p(H)BEa = B ad TYi^ = a{H)BEa for

every root, a, of g. Since TT is generic, BEa e V(a) and, from the proof of Theorem

3, p(H)Ea e V(a). Therefore, there is a nonzero constant depending on a and TT

which will be denoted by C(«, TT) such that BEa = C(a, H)p(H)Ea.

For any root a and any H eh, equation (1) implies that

ip{H))2Ea-P{H)[H,Ea] = p(H)(p(H)Ea-a(H)Ea) = 0.

Therefore, if H is a generic, p(H)Ea — a(H)Ea = TT(a) e h. Let ß be any root of g.

Then for generic TT,

[BE„ Eß} = [C(a, H)P{H)Ea, Eß] = C{a, H)a(H)[Ea, Eß] + C{a, H)ß{H™)Eß

and

[Ea, BEß] = [Ea, C(/S, H)P{H)Eß] = C{ß, H)ß(H)[Ea, Ee]-C(ß, H)a{H^)Ea.

But [BEa, Eß] = [Ea, BEß] which gives us on equating terms

(5) (C(a, H)a(H)-C(ß, H)ß(H))[Ea, Eß] = 0

and

(6) C(a, H)ß(H^)Ee + C(ß, H)a(H^)Ett = 0.

If a=ß, we have a(TT(a)) = 0. If a^ß, we have ß(H(a)) = 0 from (6).
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Therefore, for any root a, Hla) = 0, and p(H)Ea = ad HEa for all generic H eh.

Consequently BEa = C(a, H)a(H)Ea for all roots a. Since p(H)H' = 0 = ad HH'

for all H, H' eh and by skew-symmetry p(Ea)H = ad EaH for all roots a and all

generic elements of h, to show p(X) = ad X for all X we must only show p(Ea)EB

= ad EaEB for a #(8. Now

p(Ea)Ee = Bad E.B-'E, = B[E„ EB]/C(ß, H)ß(H).

If a + ß is not a root, then p(Ea)Ee = 0 = ad FaFÄ. Otherwise [Ea, EB] = kEa+B where

& is a constant and

P(Fa)FÄ = (C(a+ß, H)(a + ß)(H)/C(ß,H)ß(H)) ad FaF,.

But from (5), C(fi, H)fi(H) = C(-fi, H)(-fi(H)) since [Ea, EBfaO and Cfafi, H)
xfaß(H)) = C(a + ß,H)(a+ß)(H) since [Fa+ß, E.BfaO. Therefore, p(Ea)EB =

ad FaF„ and, by linearity, p(X) = ad Xfor all Xeg.

3. Skew-symmetric representations of complex semisimple Lie algebras. In this

section we find all the skew-symmetric representations of a complex semisimple

Lie algebra. The technique used is to first study skew-symmetric representations of

complex simple Lie algebras and then extend these results to the semisimple case.

Throughout this section g will be complex semisimple and (p, g) will be skew-

symmetric.

Initially, our goal is to show that the only nonzero skew-symmetric representa-

tion of a complex simple Lie algebra is the adjoint representation. Since V0 is an

ideal, when g is simple a skew-symmetric representation of g will be either 0 or

irreducible and faithful. If p#0, in light of Theorem 4, we need only prove that p

is equivalent to ad, or equivalently the highest weight of p is equal to highest root

of g. We then will be able to conclude

Theorem 5. If g is simple, p=0 or p = ad.

Lemma 6. If g is simple and p=£0, then the highest weight of p is equal to the

highest root of g.

Proof. We first consider the case that all the roots of g have the same length,

i.e. A is simply laced (g = An, Dn, En). Let A = set of weights of p. Let oieA and

a 6 A. By Theorem 3, w e A. Hence, there is an element s of the Weyl group of g

such that s(co) = a. But s(m) e A since the Weyl group preserves weights. Therefore

A = A, and the highest weight equals the highest root.

Now if the roots of g have two different lengths, i.e. A is doubly laced, consider

the case where the length of the highest weight = the length of the highest root. By

the same argument as above, one can show that the highest root is a weight, and,

therefore, must be the highest weight.

Finally, if the length of the highest weighty the length of the highest root, the

same argument shows that the highest weight = the highest root with length not
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equal to the length of the highest root of g. In fact, the highest root of a doubly

laced root system always has the longer length. The highest root of short length is

the highest weight of an irreducible representation of g, but in each case dim (p)

< dim (g) which is contrary to hypothesis. Consequently, this situation is not

possible, and the other two cases give the desired result.

By examining the possible dimensions for irreducible representations, the author

has also proved Lemma 6 in the following form.

Lemma 6'. Let (o, V) be an irreducible representation of a complex simple Lie

algebra g such that dim (a) = dim (g). Then cr~ad.

Turning to the semisimple case we first consider representations for which

F0 = {x | P(g)X = 0}

is zero. It has been shown that with this hypothesis p is faithful and every invariant

subspace is an ideal. The converse is also true.

Lemma 7. Let g be semisimple and (p, g) be skew-symmetric. IfV0 = 0, every ideal

of g is an invariant subspace of p.

Proof. Let g= Vx ® ■ ■ ■ ® Vs where V¡, j—l,..., s, are irreducible invariant

subspaces of g. Then V¡ is an ideal for each j. If each V¡ is a simple ideal, we are

finished, so suppose that Vk is not simple. Then p restricted to Vk is irreducible,

faithful, and skew-symmetric. Let Vk=gx ® ■ ■ ■ ® g, where the g¡ are simple ideals

of g. Let Pt = p|^i- Using the same method as in the proof of Theorem 3, one may

show that every nonzero weight of p¡ is a root of g¡. Since p is irreducible it may be

written as the tensor sum of the representations ct¡ where ct¡: gt -> gl (Wt) and W¡

is a minimal p¡ invariant subspace of g. That is, for p restricted to Vk

r

p(Xx +■■■+ XT){wx <g> • • • <g> wr) = y Wx <g> • • • <g) p(Xi)wi <g) • • • (g) wr
i = i

for Xi e g¡, and w¡ e Wt. Every weight of p is the sum of weights of ct4. But weights

of c7j are also weights of p¡ and hence roots of g¡. Therefore, we have on one hand

every weight of p is a root of g, and on the other hand every weight of p is the sum

of roots gi and hence not a root of g. This contradicts the assumption that Vk was

not simple.

Theorem 8. If (p, g) is a skew-symmetric faithful representation of a complex

semisimple Lie algebra g, then p = ad.

Proof. Let g=gx ® ■ • ■ ® gk where g¡ is a simple ideal. Write p = piH-Vpk

where p¡ is an irreducible representation of g on g¡. Let o¡ he equal to p¡ restricted

tog;. Then <j; is skew-symmetric and faithful. From Theorem 5, o} = adgj and hence

P = ad9.
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We now consider the case where Fo#0. We have seen that F0 is an invariant

subspace under p. Since g is semisimple we may write g = F0 ® Vx as vector spaces

where Vx is a complementary invariant subspace to F0 and also g=gx ®g2 where

gi = F0 and g2 is an ideal. Then as vector spaces Vx = g2. Let n^: g ->g¡, i=l, 2, be

projection maps. Then n2 is the isomorphism between Vx and g2. Also if we let

</>=nx °7r2~\ then <p:g2^gx and

Fi = {* + </>(*) | xeg2}.

We see that <f> is a vector space homomorphism, and it is a Lie algebra homo-

morphism if and only if Vx is a subalgebra of g.

Now let px be the representation of g2 on Kj. induced by restricting p to g2. Then

Pi is faithful. For if px(x) = 0 for some xeg2, we have p1(x)y1 = p(x)i;1 = p(i'1)x = 0

for all Vx e Vx. Furthermore, p(x)vo = p(vo)x = 0 for all v0 e V0. Therefore, p(v)x = 0

for all v = v0 + Vx e g which implies that x egx and consequently that x = 0.

Let p2(x:) = 7r2 o Pl(x) o n^1 where x eg2. Then p2 is a faithful representation of

g2 on itself. Also we have

p2(x)X = n2(Pl(x)(x + cb(x))) = n2(p(x)(x) + p(x)cb(x)) = 0.

From Theorem 5 we conclude that p2(x)y=[x, y] and that

P(x + <f>(x))(y + <f>(y)) = [x,y] + </>([x,y])

where x, y eg2. We have shown

Theorem 9. Le/ (p, g) èe a skew-symmetric representation of a complex semi-

simple Lie algebra of whose zero space is gx- Let Vx be a complementary subspace to

gx defined by </>:g2~^gx where g2 is a complementary ideal to gx. Then for all

x,yeg2, we have p(x+</>(x))(y + </>(y))=[x,y] + <f>([x,y]) and p|7l = ad|Vl if Vx is a

subalgebra ofig.

4. Skew-symmetric representations of real semisimple Lie algebras. In this

section we extend the results of the preceding section to real semisimple Lie groups.

We use the standard techniques of complexifying real Lie algebras and their

representations which are described below.

If F is a vector space over R, the field of real numbers, denote by Ve the com-

plex vector space obtained from V by extending the ground field. That is,

Ve = V®BC £ V® iV   and   dim* F = dimc Ve.

If g is a real Lie algebra, then gc is a complex Lie algebra, called the complexifica-

tion of g, and the bracket product in gc is defined by

[X+iY,Z + iW] = ([X,Z]-[Y, W])+i([Y, Z] + [X, W]).

It can be shown that g is semisimple if and only if gc is semisimple.
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If (p, V) is a real representation of a real Lie algebra g, denote by (pc, Ve) the

complex representation of g induced by p where

pc(X)(v + iw) = p(X)v + ip(X)w

for any Xeg and v + iw e Ve. (pc, Ve) can be extended to a representation of gc,

denoted by (P, Ve) and defined by

P(X+iY) = p<(X) + ip<(Y)

for all X+iYeg<.

The properties of faithfulness, equivalence, skew-symmetry, and adjoint all lift

from a real representation of a real Lie algebra to the induced representation of the

complexification of the algebra, and conversely they are induced on a real repre-

sentation of a real Lie algebra by its lift to the complexification of the algebra.

Consequently, we may extend Theorem 8 to read

Theorem 10. Ifi(p, g) is a skew-symmetric faithful representation of a real semi-

simple Lie algebra, g, then p = ad.

Using Theorem 10 in place of Theorem 8 we may extend Theorem 9 to read

Theorem 11. Let (p, g) be a skew-symmetric representation of a real semisimple

Lie algebra g whose zero-space is gx- Let Vx be a complementary subspace to gx

defined by <f>: g2^- gx where g2 is a complementary ideal to gx- Then for all x,ye g2,

we have

P(x + cp{x))(y + <p(y)) = [x,y] + <p([x,y]).

Converting the Lie algebra results to Lie group ones as described in §1, we have

shown

Theorem 12. For a real semisimple Lie group G, the left invariant linear connec-

tions on G which have

(a) zero curvature, and

(b) set of maximal geodesies through the identity = set of one-parameter subgroups,

are in one-to-one correspondence with the decompositions of the Lie algebra g of G

into the vector space sum of an ideal gx and a subspace Vx where the representation

defining the connection is zero on gx and as in Theorem 11 on Vx.

However, if we assume that the connection is also right invariant, we can show

Theorem 13. The bi-invariant connections on a real semisimple Lie group G

which have properties (a) and (h) of Theorem 12 are in one-to-one correspondence

with the decompositions of the Lie algebra g of G into the direct sum of two ideals,

g = gi® g2, where the representation defining the connection is zero on gx and equal

to the adjoint representation on g2.
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Proof. Using Nomizu's results [4], we have that a bi-invariant connection

satisfying (a), and (b) is defined by a skew-symmetric representation (p, g) of g such

that

ad XP(Y)Z = p(ad X- F)Z-rp(T)(ad X)Z.

Applying this identity to the result of Theorem 11 yields [X, </>([Y, Z])] = 0 for all

Xegx and Y,Zeg2. Therefore, <j>([Y,Z]) = 0. But since g2 is semisimple [g2,g2]

=g2 and we have </) = 0. Therefore, given gl5 the only choice for Fx is g2.
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