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CONVOLUTION OPERATORS ON LEBESGUE SPACES
OF THE HALF-LINE

BY

VICTOR W. DANIELO)

Abstract. In this paper we determine the lattice of closed invariant subspaces for

certain convolution operators on Lebesgue spaces Lp(do) where o- is a suitable weighted

measure on the half-line. We exploit the rather close relationship between convolution

operators and the collection of right translation operators {7\}AS0 on L"(do). We

show that a convolution operator K and the collection {rA}Aä0 have the same lattice

of closed invariant subspaces provided the kernel k of K is a cyclic vector. The converse

also holds if we assume in addition that the closed span of {Fv^}Aä0 is all of W(da).

We show that the lattice of closed right translation invariant subspaces of L"(da) is

totally ordered by set inclusion whenever a has compact support. Thus in this case a

convolution operator K is unicellular if and only if its kernel is a cyclic vector.

Finally, we show for suitable weighted measures a on the half-line that the convolution

operators on V(da) are Volterra.

1. Introduction. In this paper we study convolution operators on Lebesgue

spaces Lv(do), l^p<ao, where a is a measure on [0, oo) of the form do = a dx where

a ^ 0 is a nonincreasing function on (0, oo). A convolution operator K on Lp(do)

is an operator of the form

Kg = ^k(x-t)g(t)dt

where the kernel k is a Lebesgue measurable function on (0, oo). Under suitable

integrability conditions on k we show that K is everywhere defined and bounded on

Lv(do) and furthermore

K e strongly closed algebra generated by {FA}A g 0

where {FA}AÏ0 is the collection of right translation operators on W(do).

In general, the lattice of closed invariant subspaces of A" is not known. However,

from above we see that any closed right translation invariant subspace of V(do)

is also invariant under K. In this paper we determine sufficient conditions on the

kernel k so that these subspaces represent all the closed invariant subspaces of K.
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Under additional hypotheses on a we get a simple necessary and sufficient condition

on k ; namely that k be a cyclic vector for K.

Of special interest is the case where the closed support of a is compact. Then we

can show that the collection of closed right translation invariant subspaces of

L"(do) is totally ordered by set inclusion. In this case we determine sufficient con-

ditions on the kernel k so that the convolution operator K is unicellular.

Another problem we investigate is determining conditions on the measure a so

that the convolution operators on Lv(do) are Volterra. It is a well-known fact that

convolution operators on Fp(0, 1) are Volterra. So not surprisingly we find that

convolution operators on L"(do) are Volterra whenever a has compact support.

For general measures a on the half-line there may exist convolution operators that

are not Volterra. For example, there are no nonzero compact convolution operators

on either Fp(0, co) or L"(e~x dx). However, if a is a suitable weighted measure on

the half-line (e.g. da=e\p (—x2) dx), then convolution operators on L"(do-) are

Volterra.

2. General development. Throughout this paper a will denote a measure on

[0, co) of the form da = adx where a ^ 0 is a nonincreasing function on (0, co).

We will add additional hypotheses on o as the need arises. Unless otherwise stated,

p will denote any real number satisfying 1 ip<co and q will denote the conjugate

top given by l/p+l/q=l.

We find it convenient to regard functions in V(da) as being defined on the whole

real line and having the value 0 on (-co, 0). With this convention we define the

right translation operators {FA}Ai0 on V(do) by (TAg)x=g(x- A) for all g in L"(da).

Clearly ||FA|| i 1 since a is nonincreasing on (0, co). In fact, {FA}AS0 is a strongly

continuous semigroup of operators on Lp(da).

Given two Lebesgue measurable functions k and g on (0, co) we define the

convolution k * gin the usual manner by

(k*g)x= Í k(x-t)g(t)dt

at each x for which the Lebesgue integral exists.

Suppose A; is a Lebesgue measurable function on (0, co) and let K be the con-

volution operator on W(do) with kernel k defined by Kg=k * g. We prefer to view

the convolution operator K in terms of Bochner integrals as follows :

Kg = ^g(x-t)k(t) dt = ^(Ttg)xk(t) dt = [£" Ttgk(t) df] (x)

Ttg dp.(t)   (Bochner /¿-integral)
i;[0,m)

where p. is the measure on [0, co) defined by dp = k dt. The Bochner integral need

not exist in general without additional assumptions on p. and g. If the Bochner
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integral does exist, then by a theorem of S. Bochner (see Yosida [5]) we must have

f     \\TtgUMt)\ < <».
J[0,oo)

Fortunately this condition is strong enough to guarantee the existence of the

Bochner integral when p. is a Baire measure on [0, oo). We state without proof the

following lemmas :

Lemma 1. Suppose p. is a complex Baire measure on [0, oo) and set

D(K) = \fieL"(do) : f        \\Ttfl\dp.(t)\ < oo).

Then we can define a convolution operator K on D(K) by Kf=ï[0x) Ttfdp.(t) where

the Bochner p.-integral exists for all f in D{K). Furthermore,

Kf= lim f (Tjlnf)p,([(j-l)/n,j/n))
n-><x> i = x

for all fin D(K). Thus if D(K)=Lp(do) it follows that K is bounded and

Ke strongly closed algebra generated by {FA}AÈ0.

Lemma 2. Suppose p. is a complex Baire measure on [0, co) and K is the convolution

operator on D(K) defined in Lemma 1. Then for each fin D(K) the function t -> (Ttf)x

—f(x—t) is in L1(dp)for a-a.e. x and furthermore

(Kf)x = f(x-t)dp.(t)   foro-a.e.x.
J[0,co)

Lemma 3. For each positive integer n, set

o„(x) = n   ifl/n^x^ 2/n,

= 0   otherwise.

Then {on}"=1 is an approximate identity for convolution on L"(do). That is, lim 8„ * g

=gfor all g in W(do) where the limit is taken in the norm ofW(da).

Although Lemmas 1 and 2 are stated for convolution operators K on V(do)

whose kernels are Baire measures, we are primarily interested in the case where p.

is a Baire measure on [0, oo) of the form dp. = k dt. Then k is the usual kernel

function for K and

Kg=r (Ttg)k(t) dt=k * g
Jo

for all g in D(K). Note that g e D(K) implies that (k * g)x exists for a-a.e. x and

k*ge Lp(do).

Of special interest is the case where the kernel k e L^ll^tl dt) (\\Tt\\ denotes the

norm of Tt acting on Lv(do)). Then by Lemma l,Kis everywhere defined on Lv(do)

and ||A^|| S \\k\\ where \\k\\ denotes the LHII^tl dt) norm of k. One easily computes
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that Kng = (k*n)*g where k*n = k * k *■ ■ ■* k (n times). Each k*n eZ.1(||7;|| dt)

since FHIIFill dt) is closed under the binary operation * (this follows from the

estimate ||FÍ+S|| i \\Tt\\ \\TS\\, valid for all s, t^O).

Now we can state the main result of this section.

Theorem 1. Suppose k e V-^T^ dt) and K is the convolution operator on Lv(do)

with kernel k. Assume {&*"}"= i is fundamental in F1(||F(|| dt). Then

strongly closed algebra generated by K

= strongly closed algebra generated by {FA}A s 0-

Proof. By Lemma 1 we already have K e strongly closed algebra generated by

{FA}ASo- Conversely, we intend to show that each FA e strongly closed algebra

generated by K.

Fix AïïO and let {Sn}™=1 be the approximate identity of Lemma 3. For each

positive integer n choose pn e linear span {A:*"}"=1 so that \\pn — FASn|| i l/n. Let

pn(K) be the polynomial in K defined by pniK)g=pn * g. Then for any g in W(da)

we have

\\pÁ.K)g-TAg\\p i b„*g-FA*g||,,4-||FASn*g-FAg||J,

= llF-n-FAl ||g||P-l-||on*FAg-FAg||p.

Thus lim pn(K)g=TAg for all g in Lp(da). Hence FA e strongly closed algebra

generated by K, proving the theorem.

Corollary. Suppose a is submultiplicative (i.e. a(x+y) i a(x)a(y)for all x, y > 0)

and k e L1(da) satisfies

(*) closed span of{TÁk}Át¡0 = L^do).

Let K be the convolution operator on L1(da) with kernel k. Then the following are

equivalent:

(i) k is a cyclic vector for K,

(ii) strongly closed algebra generated by K=strongly closed algebra generated by

\FA}A a o»

(iii) K and {FA}Aê0 have the same collection of closed invariant subspaces.

Proof, (i) => (ii). Suppose A: is a cyclic vector for K. Then {Knk}£=0 = {k*n}Z=1

is fundamental in L1(da). A short calculation shows that {A:*"}"=1 is fundamental in

F1(||F(|| dt). Now (ii) follows from Theorem 1.

(ii) => (iii). Obvious.

(iii) => (i). Assume (iii) holds and set M=closed span of {Knk}n=0 in Li(da).

Clearly M is a closed invariant subspace for K. Then by assumption, M is a closed

invariant subspace for {FA}AÈ0. Using (*) we get

L\da) = closed span {FAÂ:}Aê0 Ç M S L\da).

Thus M=L1(da) and so £ is a cyclic vector for K. This proves (i) and completes the

proof of the corollary.
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3. Measures o with compact support. In this section we assume that the closed

support of o is compact. Without loss of generality we may assume that supp <j

= [0, 1]. Thus a is a measure on [0, 1] of the form do=adx where a>0 is a non-

increasing function on (0, 1).

Our development of convolution operators indicates the importance of deter-

mining the lattice of closed right translation invariant subspaces of LP(do). This

lattice forms a chain under set inclusion when the measure a has compact support.

This result was first proved by S. Agmon [1] for the Lebesgue measure case. The

proof for the general case is not difficult using the Titchmarsh convolution theorem.

Thus we state without proof the following lemma:

Lemma 4. Suppose suppa=[0, 1]. Then the lattice of closed right translation

invariant subspaces of LP(da) is the chain {Ma}oiaSl where

Ma = {fe L"(do) : / = 0 a.e. on [0, a]}.

An operator is said to be unicellular if its collection of closed invariant subspaces

forms a chain under set inclusion. Combining Theorem 1 and Lemma 4 we obtain

the following sufficient condition for a convolution operator to be unicellular:

Theorem 2. Suppose supp a = [0,1] and k eL^Tj dt). Assume {k*n}„=x is

fundamental in L1(||Fi|| dt). Then the convolution operator K on L"(do) with kernel k

is unicellular, its chain of closed invariant subspaces is {Ma}0¿a¿x-

So far we have assumed only that supp o = [0, 1]. If we assume in addition that a

is submultiplicative (i.e. a(x+y)^a(x)a(y) for x, j>0), then we get the following

necessary and sufficient conditions for a convolution operator on L"(do) to be

unicellular:

Theorem 3. Suppose a is submultiplicative and supp <r = [0, 1]. Suppose k e Lp(do)

and K is the convolution operator on L"(do) with kernel k. Then the following are

equivalent:

(i) K is unicellular,

(ii) k is a cyclic vector for K,

(iii) strongly closed algebra generated by K= strongly closed algebra generated

by {FA}AS0.

Proof. A short calculation shows that ||F(|| ga(F)1/p. Hence keL"(do)^

LWlTW dt) and so K is everywhere defined and bounded on V(do) by Lemma 1.

(i) => (ii). Suppose K is unicellular. By the Titchmarsh convolution theorem we

have Kg=0 iff g=0 a.e. on [0, 1 -lk] where

lk = sup {/ à 0 : k = 0 a.e. on [0, /]}.

But dim(ker.K)in since K is unicellular. Thus /fc = 0. Set M=closed span of

{Knk}n=0 in V(do). Clearly M is a closed invariant subspace for K. Thus M=Ma

for some a, O^a^l. Since A: e M and 4=0, it follows that a=0. Hence M=L"(do),

proving that A: is a cyclic vector for K.



484 V. W. DANIEL [February

(ii) => (iii). Assume A: is a cyclic vector for K. Then {k*n}™=x is fundamental in

Lp(do), hence fundamental in F1(||F(|| dt). Now (iii) follows from Theorem 1.

(iii) => (i). This follows immediately from Lemma 4. The proof of the theorem

is complete.

An operator is Volterra if it is compact and quasinilpotent (its spectrum

contains only the point 0). We remark that a convolution operator K on V(da)

whose kernel k eV-faTtX dt) is Volterra whenever the support of a is compact. The

proof involves approximating K in operator norm with convolution operators Kn

whose kernels kn are continuous on [0, 1] and vanish in some neighborhood of 0.

Showing that such convolution operators Kn are Volterra is routine.

4. Weighted measures on the half-line. In this section we study convolution

operators on Lebesgue spaces Lp(da) where a is a special type of weighted measure

on [0, oo] ; throughout this section we shall assume o satisfies the following property:

Property P. <j is a measure on [0, co) of the form do = adx where a^0 is a non-

increasing function on (0, oo) and a(x+y)ia(x)a(y)ß(y)x for all x, j>0. The

function ß on (0, oo) satisfies

(i) 0iß(t)il for all í>0,

(¡O cp=\i^ fiity-dt]1'"<co.

Under these hypotheses we can extend the corollary to Theorem 1 to such

Lp(do) spaces when 1 ip <co. Note that for the p= 1 case that any measure a on

[0, oo) of the form do = adx where a^0 is nonincreasing and submultiplicative

satisfies Property P (simply take (8=1). Thus the corollary to Theorem 1 will be a

special case of our extension. We also can show that convolution operators on

L"(do) are Volterra whenever o satisfies Property P and ß(t)< 1 for all i>0. Before

proving these results we need the following lemma:

Lemma 5. Suppose a satisfies Property P and let k,ge Lp(do). Then (k * g)x

exists for o-a.e. x, k * g eLp(do), and \\k * g||p^(l + Cp)||A:||p||g||p. The convolution

operator K on Lp(do) with kernel k is everywhere defined and bounded, and furthermore

Ke strongly closed algebra generated by {FA}Ag0.

Proof. Set kx = xio,i-Jc and k2 = xn,ai)k where xe denotes the characteristic

function of a set E. Consider the two Bochner integrals:

C(Ttg)kx(t)dt   and    P (Ttk2)g(t) dt.
Jo Jo

Both integrals exist since by Property P we have the following estimates:

Ço\\Ttg\\p\kx(t)\dti \\kxU\gl,

f* OO

Jo  \\T»k2\\p\g(t)\ dt i CJMpIIsIp.
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By Lemma 2 each Bochner integral can be evaluated for <7-a.e. x as regular Lebesgue

integrals :

[ (Tg)kx(t) dAx = f g(x-t)kx(t) dt = (kx * g)x,

|   (Ttk2)g(t) dAx = j   k2(x-t)g(t) dt = (k2 * g)x.

Thus (k * g)x = (kx * g)x + (k2 * g)x exists for o-a.e. x and furthermore

ll**f?ll, = ll*i||p|líí||p + C,||*a||p||*||, á (l + C,)||*U|g||,.
Thus the convolution operator K with kernel k is everywhere defined and

bounded, in fact \\K\\ ̂ (1 + Cp)||â:|]p. Next we show that K e strongly closed

algebra generated by {FA}AÈ0.

For each positive integer n, set kn=xio.n\k and let Kn be the convolution operator

on U(do) with kernel kn. Then \\K-Kn\\ ¿(1 + Cv)\\k-kn\\p -^0 as « -> oo. The

lemma will follow at once if we can show that each Kn e strongly closed algebra

generated by {FA}Aä0-

Now Kn can also be defined on L"(do) by the Bochner integral

Kng= i" (Ttg)kn(t) dt.
Jo

The existence of the Bochner integral follows from the estimate

fVrfl»l*»(OI* $«"«1*1,1*1,.
Jo

Thus by Lemma 1 we have Kn e strongly closed algebra generated by {FA}Aê0.

This proves the lemma.

Theorem 4. Suppose o satisfies Property P and k e Lp(do) satisfies

(*) closed span of{TÁk}Ái0 — Lv(d<j).

Let K be the convolution operator on Lp(do) with kernel k. Then the following are

equivalent:

if) k is a cyclic vector for K,

(ii) strongly closed algebra generated by K= strongly closed algebra generated by

i-Ta/aï o>

(iii) K and {FA}A È 0 have the same collection of closed invariant subspaces.

The proof of Theorem 4 is essentially the same as the proof of Theorem 1 and

its corollary, except we must use Lemma 5 in place of Lemma 1. Also we must

use the norm estimate for convolution product given in Lemma 5. Hence we omit

the proof of Theorem 4.

Theorem 5. Suppose a satisfies Property P with ß(t)<l for all t>0. Suppose k

is in either Lp(do) or Z,1(||Z'i|| dt). Then the convolution operator K on Lp(da) with

kernel k is Volterra.
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Proof. In the usual manner we can construct a sequence of convolution operators

fan}™ = i whose kernels kn are continuous functions on (0, oo) with compact support

such that A'=lim Kn in operator norm. If we can show each Kn is Volterra, then it

follows that K must be Volterra.

Hence it suffices to assume that the kernel A: of A' is a continuous function on

(0, oo) with compact support, say supp k^[a, b] where 0<a<6<oo. For each

positive integer n set

Pn = the projection of Lp(da) onto Xio,n\Lp(do),

Qn = the projection of Lp(do) onto Xin,^->Ep(do).

We intend to show that AT=limFnA'Fn in operator norm. Now each PnKPn is

essentially the convolution operator on PnLp(do) with kernel Pnk. As noted earlier,

such operators are Volterra. Thus it will follow that K is Volterra once we establish

that K= lim PnKPn.

A short calculation using Property P yields the estimates :

l|TAßn|| i a(\y<pß(\yp,     ||ô„fa|| i a(\ypß(\y"-»<p,     n z x.

Thus by the bounded convergence theorem we get

ll*ö»ll = fV.ß.ll l*(OI *
Ja

i í a(t)llpfi(t)nlp\k(t)\ dt^O   as n -> oo,
Ja

\\QnK\\ i p||ß.rt|||A:(0|Ä
Ja

i í o(/)1",/3(í)<"-»",|A:(r)| dt-+Q   as n ^ oo.
Ja

Now it follows in a straightforward manner using the triangle inequality that

A'=lim PnKPn. This completes the proof of the theorem.

Finally we offer a method of constructing measures a satisfying Property P.

Suppose a is a measure on [0, oo) satisfying the following property:

Property Q. a is a measure on [0, oo) of the form da = adx where

a(x) = expíí  logfi(t)dt\

where jS is a nonincreasing function on (0, oo) satisfying

(i) 0ifi(t)<l for all/>0,

(ii) ß is submultiplicative,

(iii) C, = rJ-j8(0",,A]1"<oo.

It is a straightforward exercise to show that Property Q implies Property P.

An example of a function a satisfying the conditions in Property Q is a(x) =
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exp ( - axs) where a > 0 and í 2:2. The corresponding function ß is given by ß(x)

= exp ( — asx3'1).

Conjecture. If o is a measure on [0, oo) satisfying Property Q, then the lattice

of closed right translation invariant subspaces of Lp(do) forms a chain under set

inclusion.

5. The Lebesgue spaces Lp(0, oo) and Lp(e~x dx). In this section we study

convolution operators on the Lebesgue spaces Lp(0, oo) and Lp(e~x dx). Both of

these spaces are examples of Lp(do) spaces where a is a measure on [0, oo) of the

form do = adx where a^O is a nonincreasing submultiplicative function on (0, oo).

The study of convolution operators on Lp(0, oo) is closely related to the study of

convolution operators on Lp(e~x dx).

Consider the isometry U: Lp(0, oo) ->Lp(e-* dx) defined by (Uf)x=exlpfi(x). It

is easily checked that U is an isometry of Lp(0, oo) onto Lv(e~x dx) and that

t/-1: Lp(e~x dx)^Lp(0, oo) is given by (U-1g)x = e~xlpg(x).

Suppose A' is a convolution operator on Lp(0, oo) with kernel k. A short calcula-

tion shows that K0 = UKU'1 is a convolution operator on Lp(e~x dx) with kernel

k0=Uk. Thus U provides an isometric equivalence between the convolution

operators on Lp(0, oo) and those on Lp(e~x dx).

Likewise one can show that U provides an isometric equivalence between the

right translation operators {FA}Aao on Lp(0, oo) and the operators {e*'pFA}AÈ0 on

Lp(e~x dx) where {FA}A60 denotes the collection of right translation operators on

Lp(e~x dx). An immediate consequence is that U maps the lattice of closed right

translation invariant subspaces of Lp(0, oo) one-to-one onto the lattice of closed

right translation invariant subspaces of Lp(e~x dx).

The remainder of this section will be devoted to a study of convolution operators

on Lp(0, oo) as any results obtained will be applicable to Lp(e~x dx) as well.

Next we show that no convolution operator on either L^O, oo) or L2(0, oo) is

unicellular if its kernel is in L^O, oo). By Lemma 1 all we need show is that the lattice

of closed right translation invariant subspaces of either space does not form a

chain under set inclusion.

The structure of the lattice of closed right translation invariant subspaces of

L2(0, oo) is well known and does not form a chain under set inclusion (see Hoffman

[2]). This lattice is identical to the lattice of closed invariant subspaces of the

Laguerre shift S on L2(0, oo) defined by S: </>n -> </>n+1 where {$„}"= 0 is the ortho-

normal basis of Laguerre functions.

Next we show that the lattice of closed right translation invariant subspaces of

L^O, oo) does not form a chain under set inclusion. Suppose g e L^O, oo). In order

that

(*) closed span {FAg}AS0 = Ll(0, oo)

it is necessary that ^g never vanish on (—oo, oo) where ¡Fg denotes the Fourier

transform of g. This result follows directly from the methods used in a proof of a
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theorem of Wiener [4]. Taking g = X[o,u we ëet farg)x=(êx- l)/(ix(2n)112). Clearly

J^g vanishes at x = 2nn for all integers n^O. Thus M=closed span {TAg}Ái0

#F1(0, oo). But M^L1(a, oo) for any a>0 since lg = 0. Thus M^L\a, oo) for any

aäO, proving that the lattice of closed right translation invariant subspaces of

F^O, oo) does not form a chain under set inclusion.

Finally we remark that there are no nonzero compact convolution operators on

F"(0, oo). See, for example, Kreln [3].
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