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ONE-DIMENSIONAL BASIC SETS IN
THE THREE-SPHERE

BY

JOEL C. GIBBONS

Abstract. This paper is a continuation of Williams' classification of one-dimen-

sional attracting sets of a diffeomorphism on a compact manifold [Topology 6

(1967)]. After defining the knot presentation of a solenoid in S3 and some knot-

theoretic preliminaries, we prove Theorem: If Ei, /¡i and 22, h2 are shift classes of

oriented solenoids admitting elementary presentations K, gi and K,g2, resp., where

gi' = (#2*)': Hi(K) ->■ Hi(K), there is an Anosov-Smale diffeomorphism /of S3 such

that 0.(f) consists of a source A " and a sink A + for which A +, //A + and A", /" 1¡A'

are conjugate, resp., to Ih h,, and S2, h2. (The author has proved [Proc. Amer.

Math. Soc, to appear] that if/is an Anosov-Smale map of S3, £2(/) has dimension

one, and contains no hyperbolic sets, then / has the above structure.) We also prove

Theorem: there is a nonempty C'-open set F2 in the class of such diffeomorphisms

for which K=S1 and g¡=g2 is the double covering such that each/in F2 defines a loop

/ in S3, stable up to C1 perturbations, for which at every x in t the generalized stable

and unstable manifolds through x are tangent at x.

0. Introduction. The purpose of this paper is to construct a family of examples

of Anosov-Smale diffeomorphisms of S3. Following Smale's characterization of

diffeomorphisms by labeled diagrams [1], the problems of realizing some possible

diagrams arose. The one we are interested in consists of two basic sets—a source

and a sink. In particular, we will construct the family of these diffeomorphisms for

which the source and sink are 1-dimensional and oriented.

The methods we use are in essence drawn from [2]. Williams defines solenoid,

2, h, and elementary presentation K, g of a solenoid. A' is a smooth wedge of 1-

spheres, and g is an immersion of K. A transpose g* of g is an immersion of K such

that K, gl is a presentation of a solenoid, 2', h\ and £* = (#')*: Hx(K) -> Hx(K).

After considerable knot-theoretic preliminaries, we prove

Lemma 3.2. Every elementary presentation K, g admits a transpose K,gl,

and

Theorem 3.3 Let "L,h be a solenoid with elementary presentation K, g. Let K, gl

be any transpose, generating E', g*. There is an Anosov-Smale diffeomorphism fi of S3

such that

(a) Í2(f) = A + u A", A+ a source, A~ a sink,

(b) A + ,f'1/A+ is topologically conjugate to S, h and A",//A" is topologically

conjugate to 27, hK
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We note that no larger class of pairs of solenoids occur as source and sink of an

Anosov-Smale diffeomorphism of S3. We also prove that our diffeomorphisms are

not structurally stable, and in particular

Proposition 4.2. There is a diffeomorphism of the type we have defined which has

a loop of points oftangency of stable and unstable manifolds off. This property is

C1 stable.

I would like to thank Professors Robert Williams, Daniel Kahn, and Mark

Mahowald for their many helpful comments.

1. Topological preliminaries. Our basic procedure for constructing solenoids is

derived from [2]. The first step is to define open sets N and M such that S3 = N

uMuSJV and 8N=8M=T, and then defining a diffeomorphism / such that

f{Mu T)<=M.
Definition 1.1. Tí is an elementary branched l-manifold if it is a wedge of one-

spheres.

Henceforth, we will be interested exclusively in smooth, oriented elementary

branched 1-manifolds, which we call branched knots.

If A" is a branched knot and i: K -> S3 is an embedding, i is simple if there is a

family of two-discs Dx,..., Dk such that each loop of i{K) bounds a disc, and any

two are disjoint. For simplicity, we will identify K with i{K) and refer to K (as a

subset of S3) as a simple branched knot.

Definition 1.2. Nn, for any positive integer «, is a fundamental neighborhood

(of K) if (a) Nn is an open subset of S3, (b) 8Nn is a smooth two-manifold of genus «,

and (c) Nn contains the simple branched knot K as a deformation retract. We will

also use Mn to refer to a fundamental neighborhood, and L a simple branched

knot. Where it does not enter the argument, we will suppress the subscript denoting

the genus of 8Nn.

TO• ' *i
Figure 1
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Nn is diffeomorphic to the quotient space obtained by attaching the "stubs" of

the figure shown according to the numbers.

N admits a decomposition into disjoint smoothly embedded open two-discs

corresponding under the quotient map to the vertical slices of the figure above.

We refer to this decomposition as the foliation (SN. Note that this foliation has the

property that if N is a fundamental neighborhood of K we may choose the foliation

so that K is transversal to all of the leaves. In this case, we say K is transversal to

9N.

Let 8Nn = T. Hx(T) admits a basis «j.a„, ßx, ■ ■ -, ßn defined as follows: Let

K=\Jnkj-, if Gj is any leaf of '¡SN such that G, n K<=k„ 8G¡ has homology a¡,

oriented so that 8G¡ has linking +1 with k¡. ßt contains a loop homologous in

Nn to kj. Then the leaves of '¡SN are of two types, those with boundary homologous

to a generator of HX(T) and those with homology ax + a2+ ■ ■ ■ +an. The union of

all the leaves of the latter type is called the body of Nn, 3SN.

Having defined one of our desirable neighborhoods, we want next to "fill up"

S3 with two such.

Proposition 1.3. If N is a fundamental neighborhood of K and 8N=T, S3-Tu N

is a fundamental neighborhood. There is a diffeomorphism (Cx) of S3 such that if

M=S3-TU N

(a) h(T) = T,h(N) = M,

(h) M is a fundamental neighborhood of h(K) = L,

(c) h2 = identity of S3, and

(d) h carries 'SN to a foliation 'S M of M transversal to L.

Proof. It suffices to construct h. Also, properties (b), (c), and (d) will follow from

(a) by standard topological arguments. For simplicity, we refer to the points in S3

by their images under some fixed stereographic projection. We assume that A^

consists of the unit ball with handles which intersect the x-y plane on discs. Sup-

pose that A' has n handles, and let N* consist of the unit ball with n holes drilled

in it. N* is isotopic to N; let g be the map of S3 which sends N to N* defined by the

isotopy. Let h* be the diffeomorphism, in polar coordinates, h*(r, 9, </>) = (l/r, 8, </>).

The diffeomorphism h is completed by an isotopy which sends h*g(N) to M, i.e.

h is the composite function.    Q.E.D.

This diffeomorphism is merely a realization of the isomorphism of //1(A/) to

Hx(M) defined by Alexander duality (up to some natural identification). This

completes the topological groundwork.

2. Knot presentation of a solenoid. Let 2, h be a solenoid with smooth, oriented

elementary presentation K, g. Let K= V" kit and let k¡ be the homotopy class of

kj rel. the branch point. Ux(K,p) is the free nonabelian group on the n letters

Kx,..., Kn; identify k¡ with its image under the quotient map Ylx(K,p)-+ Hx(K). By

abuse of language we will identify g with its induced homomorphism on homotopy,

because the homotopy lift identifies g up to isotopies of K which leave p fixed. Let
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g* be the induced map on homology. Since g is a surjective immersion, g*, ex-

pressed in the basis k¡, is an « x « integer matrix with no negative entries and no

row or column of zeros. Conversely, given such a matrix A we can find a g such that

A =g*, so we begin by defining a knot presentation of a matrix A.

Definition 2.1. Let A be an « x «, nonnegative integer matrix and let Nn and

Mn be fundamental neighborhoods of K0 and L0 respectively as in Proposition 1.3.

Orient the knots so the yth loop of K0, k°, links the z'th loop of L0, /?, with

linking number 8/(. In general, if K and L are simple branched knots with « loops

each, 1{K, L) is the « x « matrix whose jith entry is the linking number of the jth

loop of K with the z'th loop of L.

Now, choose simple branched knots Kx and Lj satisfying

(a) Kx c 7Vn, Lx c Mn,

(b) Kx is transversal to (SN, Lx is transversal to <$M,

(c) l(Kx,L0) = A, l(Lx, K0) = At, and

(d) there are isotopies <f> and </>' of S3 such that <f>(\, Kx) = K0 and 4>'(l, Lx)=L0.

Then, the six-tuple (Kx, L0, N, M, <$N, @M) is a knot presentation of A. The reader

may satisfy himself that, if A has no row or column of zeros, A and A1 admit knot

presentations. (Example: Figure 2.) Where no confusion results we will refer to the

knot presentation simply as (Klf L0) since these determine the other elements up to

isotopies of S3.

Definition 2.2. A knot transposition of {Kx, L0, N, M, '¡SN, @M) is an isotopy

</> of S3 such that {<f>{l, L0), K0, M, N, &M, 'SN) is a knot presentation of AK

Figure 2
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Having straightened out the notation, we are ready to particularize the concepts

of knot presentation and knot transposition to surjective immersions g of K. As

before, identify g with its induced map on homotopy; suppose that g{Kj) = wj,

j=l,...,«. Since g is an immersion no w¡is trivial, and only positive powers of the

generators occur; w¡ is called a strictly positive word, g* is a matrix as above; a

knot presentation of g is a knot presentation of g* with the additional property

(e) identify Ux{K,p) with Ux{N,p) via the embedding of A"0 into N, and so

represent Ux(N,p) as the free group on the letters k¡,j=1, ..., «. Then, if*} is the

jth loop of Kx, [kj] = Wj.

Example. The knot presentation of the preceding example is #(*!) = ^i^i.

g(K2) = Kx. If (Kx, L0, N, M, SN, SM) is a knot presentation of g, a knot trans-

position is a knot transposition of g*.

Notation. If U is an open subset of S3, a perturbation of U is an isotopy of S3

which is constant on the complement of U.

Theorem 2.3. Letg: K-> Kbe a surjective immersion ofK with knot presentation

(Kx,L0, N, M, SN, SM). Let </> be an isotopy of S3 such that </>(l, Kx) = K0 and

<£(1, 7_o) & contained in M. Then there is a perturbation </> of M such that <j> * <f> is a

knot transposition of g if and only if there is a homotopy of M which carries cp{l,L0)

to a simple branched knot L[ transversal to SM.

To clarify the assertion we have made, we include some examples of (one-

looped) branched knots satisfying the homotopy but not the isotopy condition.

(Example: Figure 3.)

Figure 3

Proof. The proof of this proposition is rather involved, and depends on a se-

quence of lemmas about knots. What we will prove about knots concerns a relation

on knots called factorization.

Definition 2.4. Let U be an open set in S3 and let *, *x and *2 be embedded

loops in U. k factors to {kx, k2} if there are distinct points x, x', y, and y' on *, a

closed, contractible set B such that B n * consists of the arcs [x, y'] and [x', y], and

arcs a and a' in B, from x to y and from x' to y', respectively, called crossing arcs,

such that {a u [y, x], a' u [y', x']} is perturbable to {klt k2}. (Example: Figure 4.)

The loops kx and *2 are called factors of *, of course, and as usual a factor of either
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Figure 4

is a factor of k. This defines a transitive relation on the family of sets of embedded

loops in U, where a factorization of a set of loops is the result of a sequence of

factorizations of the member loops. In the case that U=S3 and kx and k2 lie on

opposite sides of a two-sphere, this is factorization in the usual sense [3]; lacking

some equivalent of the latter condition, factorization is in no way unique, but we

will always be able to ignore irrelevant factorizations.

Note that we may assume without loss of generality that at every point at which

a loop k is tangent to a leaf G of ISN ('SM), the tangency is nondegenerate in the

sense that a neighborhood in k of the point lies entirely to one side of the leaf G.

Lemma 2.5. Let k and k! be embedded loops in M such that

(a) there is a free homotopy of M carrying k to k',

(h) k' A 9M,

(c) k' has no negative Unkings with loops of K0, and

(d) k has at most a finite number offangendes to leaves of'S M.

Then, k has a factorization in M to {fix, ■.., k) such that

(a*) kx A 9M,

(b*) there is a homotopy of M carrying kx to k', and

(c*) kj,j=2,..., s, is freely homotopic to a point.

The converse is also true.

Proof. If kx, ■ ■ -, ks is any factorization of k, let k~j be the arc of k contained in

the factor k¡. By the transitivity of factorization, it suffices to define a method for

factoring k2 off of k, and to check that the inductive limit satisfies the conditions

given. We may assume that every point of tangency lies in the body of M. By con-

dition (a), & is a strictly positive word in the homotopy group of M at some point

in the body. We need a way of calculating the homotopy of k which gives in some

sense a nonreduced word.

For this purpose, choose leaves H¡,j=l,...,n, of 'S M where H¡ lies on they'th

handle of M, and a leaf G2 contained in the body. Orient intersection with these

discs by stipulating that F0 intersects each in the positive direction. Perturb k so

that it intersects G2 at least once between successive intersections with the H„ and

let k n G2 = {zx, z2,..., zr}. If the arc [z¡, zi+1] intersects H¡ in the positive (nega-

tive) sense, the ith letter ofk is A/1 fa1). If [z¡, zi+1] meets no H¡, the /th letter is
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h0. The reader may check to see that in this basis the reduced word for [*] is

strictly positive.

Let x2 be a point at which * is tangent to a leaf of SM, and suppose that G2 is

this leaf. Let v2 he the maximal trivial subword of the unreduced word for [*]

defined above containing a letter which represents an arc which has x2 as an end-

point. Such a word must exist, because either the arc preceding x2 or the arc follow-

ing it is «o or one of these is a negative power of a generator.

Tentatively, let *2 be the arc of* represented by v2. Now, choose points x and y

on *2 and x' and y' on * —*2 close to the endpoints. Choose crossing arcs a2 and

a2 as shown, and let *2 be the homotopically trivial loop (i.e. containing almost all

of k2). The figure illustrates the two distinct cases, depending on whether x2 is an

endpoint of *2 or not. Now, the whole factorization is obtained by successively

factoring the homotopically nontrivial factor until all the tangencies have been

factored off (Figure 5). To see that this is possible, note that (1) * has at most a

Figure 5

finite number of tangencies and (2) if the crossing arcs are joined smoothly to * the

factors have between them the same number of tangencies as the original loop, and

(3) each trivial factor contains at least one tangency. We include an example of

factorization in the large (Figure 6). The converse to this lemma is trivially true,

since the homotopies of the factors *2,..., *s define a homotopy of* to*'. Q.E.D.

Now, we want to improve our choice of crossing arcs, under the right assump-

tions.

Lemma 2.6. Let k andk' be as above. There is a perturbation of M carrying k to *'

if and only if k has a factorization {kx, ■ ■ -, *s} such that kx is perturbable to *' and

each kj, j=2,..., s, bounds an embedded disc in M— U¡#í *(.

Proof. Sufficiency of the disc bounding property is obvious; the isotopy is taken

to contract the discs. To prove necessity we will have to be more explicit about the

choice of crossing arcs.
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Let <l> he the isotopy; <f>(l, k) = k'. As before, we will prove the proposition in

detail for k2 only. Let <j>(l, k~'2) = c2, and </>(l, G2) = G'2. G2 is not necessarily con-

tained in the body of M, but by "sliding it along" k' we may translate it into the

body. At this stage we have the following picture (Figure 7). We want to find an

Figure 6

arc w' in 3SM, smoothly joined to c2 at the endpoints, lying in an arbitrarily small

neighborhood of G2 such that w' u c2 bounds a disc in M—(k' — c2). To see that

such an arc exists, note that there is an isotopy of M which carries c2 to such an arc.

Let w be the arc in M such that <f>(l, w) = w'. At this stage we have the following

figure (Figure 7). If k2 intersects G2 between its endpoints, apply this procedure

Figure 7

successively to the subarcs of k2 disjoint from G2 with endpoints in G2. For cross-

ings arcs choose any sufficiently close approximations to w.

The result stated follows from the successive application of this procedure to the

s— 1 arcs k'j,j = 2,..., s.   Q.E.D.

Now, we must justify the hypotheses of these lemmas and apply the results to

branched knots.

Lemma 2.7. Let <f> be the isotopy defined in the statement of the theorem. If<f> is C1,

Lx = <f>(l,L0) has at most a finite number of points of tangency to leaves of'S M.

Proof. If <f> is a C1 isotopy, the embedding of L± is a C1 immersion (if F0 is C1).

Hence, we need only show that if Lx has an infinite number of tangencies, it is not

an immersion.
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Suppose that Lx has an infinite number of points of tangency and let a be the

limit of the sequence {ak} of such points. Take a neighborhood of a in M and give

it cylindrical coordinates r, 6, z so that the z coordinate is constant on leaves of

SM. Choose balls Bk in M such that Bk n Lx is an arc lying between ak and ok+1.

Perturb Lj to an embedding L[ which is equal to Lx outside the balls Bk and in each

one there is a point at which L\ is tangent to the z-axis. It suffices to show that L\

is not an immersion. If L'x(tk) = ak and L'x(sk) is a point in Bk at which L'x is parallel

to the z-axis, and L[(t) = a,

D(z ■ L'x)(t) = lira* _ . 7J>(z ■ L'x)(tk) = 0,

D(rL'x)(t) = limk^œ D(rL'x)(sk) = 0, and

Z>(0-Z.Í)(O = limfc^„ fl(0.IÍ)(ífc) = O.   Q.E.D.
Thus, in the following we need not assume that Lx has at most a finite number of

tangencies, though we will need that fact.

Definition 2.8. If M is a fundamental neighborhood and L is a simple branched

knot in M, a factorization of L is a factorization of one or more loops of K.

Lemma 2.9. Let Kx, KQ, Lx, L0, and<f> be defined as in the statement of the theorem.

Let L'x be a simple branched knot in M transversal to SM. There is a free homotopy

of M carrying Lx to L\ if and only if there is a factorization {L, k2,..., *s} of Lx,

where L is a simple branched knot transversal to S M and ambient homotopic to L'x

and the loops *2,..., *s are ambient homotopic to points. Further, Lx is perturbable

to L'x if and only if each loop *; bounds a disc in M—L u ((Jí5ü *¡).

Proof. The second conclusion follows directly from the existence of the factori-

zation and the methods of Lemma 2.6. In proving the first assertion, the methods

of Lemma 2.5 apply without change except we must insure that no trivial factor

contains the branch point.

Define arcs of Lx by the factorization, as before, and represent the homotopy

group at the branch point of Li as before (Lemma 2.5). From the homotopy con-

dition, we may assume that each loop of Lx represents in this group a strictly

positive word. We may also assume that a point of tangency x2 and the branch

point q lie in the same leaf of SM, G2.

Suppose x2 is in k\, the first loop of Lx, and let v2 be the maximal trivial subword

of [k{] containing a letter representing an arc beginning or ending with x2, and call

the arc represented by v2 k*. Ifq occurs in the interior of** it occurs at the start of

a letter of v2 and the end of the predecessor. Factor v2 to v'2 ■ v2, where v'2 ends and

v'i begins with q. Then [k{] = v'2-vv'2, but since v2 is maximal, this implies that

[*i] is not strictly positive.   Q.E.D.

This completes our characterization of transversality up to ambient homotopy

and isotopy; the general conclusion is that if Lx is perturbable to a transversal

simple branched knot, the perturbation can be taken to be constant outside a

contractible set. The proof of the theorem is completed by using the isotopy <j>

and the duality map « to compare the embeddings Kx and Lx.
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Lemma 2.10. Let U be the interior ofSSM and V be the interior ofSSN. All other

terms as defined above. There is a diffeomorphism F: U -> V such that

F(U nLx)= Vn Kx.

Proof. Let <£_1 be the isotopy inverse to </>, and let 0f1 be the diffeomorphism

defined by $_1 at 1. Let U1 = </>x~1(U). By perturbing <p if necessary we may arrange

that t/j n Ko = 0; U2 = h(Ux). We may therefore perturb </> so that </>x~\U2faN;

and necessarily <f>x 1-h-</>x1(U n Lx) is contained in Kx. Let this composite function

be g. It only remains to perturb g to a diffeomorphism which maps U onto V. This

can be done if there is no component of Kx n V which does not meet the image of

g, and that is clearly the case because Kx n V has no more components than

Lx n U.   Q.E.D.

We note that in general this diffeomorphism does not extend to M, since the

linking matrices ¡(Kx, L0) and ¡(Lx, K0) are usually not equal.

Clearly F is defined only up to perturbations of N, so in applying the lemma we

will feel free to modify F by perturbations whenever desirable.

The application of these lemmas is now rather apparent.

If Lx has a point of tangency to a leaf of ¡SM, assume it is in BSM, and let {F, k2}

be any factorization of Lx defined by the tangency. Since the crossing arcs are

contained in &M, this factorization defines via Fa factorization of Kx. Now, we

may choose crossing arcs for this factorization so that the homotopically trivial

loop bounds a disc, and we may perturb F so that its image contains this disc. This

disc defines via F"1 an isotopically trivial factorization of Fi at x2. Now, apply this

argument inductively to the tangencies of Lx.

On the basis of these knot techniques we will prove in the next section that every

surjective immersion g of an oriented, elementary branched 1-manifold admits a

knot transposable knot presentation.

3. Construction of attracting sets. To apply the theorem of the preceding

section to the problem of transposing maps, we must translate its conclusion into

an initial condition on knot presentations. This is done quite easily as follows.

With all symbols as defined before, let 2 be a family of disjoint discs D,,j= 1,...,

n, such that hD,=k), the 7th loop of Kx. Since (Klt L0) is a knot presentation of

some map, there is an isotopy </> of S3 such that </>(l, Kx) = K0; let C¡ = <f>(l, F>;).

Orient intersection of arcs with these discs by the orientation of Kx and the right-

hand rule (i.e. a loop which intersects D¡ once in the positive sense has linking

number 4-1 with k)). Lastly, let C, n M=C'¡.

Proposition 3.1. If there is a foliation ¡SM, as defined above, such that the C'¡

are leaves and if each loop ofL0, wherever it intersects each disc D¡, intersects in the

positive sense, there is a perturbation </> of M such that >fi * <f> is a knot transposition of

(Kx, F0, N, M, <SN, 'SM).
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Proof. To relate the terminology to that used in the proof of Theorem 2.3, let

C'j = Hj. Then the conclusion follows from the fact that the isotopy preserves signed

intersections and Theorem 2.3.

For clarity, we include an example of a knot presentation which admits no knot

transposition. The first picture shows that our example is a knot presentation, the

following ones how an isotopy fails irrevocably to be a knot transposition

(Figure 8). This example notwithstanding, we will prove that every surjective

Figure 8

immersion g of an elementary branched 1-manifold K admits a knot transposable

knot presentation. Before we state this result formally, we need a definition.

Definition 3.2. If g is any such map, g' is a transpose ifg^-.K-^- Kare smooth

maps and g% = (g% : HX(K) -*■ Hx(K). As before, identify g with its induced map on

homotopy, and suppose that g(KJ) = wj,gt(Kj) = wtj.

Proposition 3.3. Let g be any surjective immersion of K and let gl be any trans-

pose. There is a knot presentation (Kx, F0) of g which admits a knot transposition </>

to a knot presentation (Lx, K0) ofigK

Proof. The proof is highly pictorial, so only an outline sufficient to guide the

reader will be given. Let w' = kj1/cí2 • • ■ Kjmj,j= 1,..., n, and let m = mx+ ■ ■ ■ +mn.

Choose m disjoint loops centered at points on the unit circle in the x-y plane and

label them cn,..., clmi, c21,..., cnmn. Embed a loop in the ball of radius two

which links these loops in the following way : suppose the first letter of Wx is k;, and

suppose that kx is the rth letter of w\. Then the loop crosses the x-y plane at the

origin and next crosses the x-y plane at the center of cjr. If the second letter of Wx is

Kk, and Kx is the sth letter of wk, the loop next crosses the x-y plane at the center of
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cks. Continue until each circle is linked once. Let c¡,j=l,..., n, be a loop in the

x-y plane which contains the loops cjq, q = 1,..., m¡, in its interior and all others in

its exterior, and crosses the sphere of radius two.

Then N is a smoothing of the ball of radius two minus tubes around the loops c¡.

Kx is formed by attaching « points on the loop defined. The details of the con-

struction are left to the reader.   Q.E.D.

If </> is a knot transposition of {Ky, L0, N, M, SN, SM), let/be the diffeomor-

phism <f>x, where <f>x(x)=<p(l,x). In general/is not an Anosov-Smale diffeomor-

phism. In particular, if (Kx, L0) is a knot presentation of the identity,/cannot be

Anosov-Smale. However, the situation is different if (Kly L0) and (L1} K0) are

presentations of maps satisfying Williams' solenoidal axioms [2]. Before we state

the appropriate result, we need a lemma.

Lemma 3.4. Let g:K-^>K be an immersion satisfying the solenoidal axioms,

g has a transpose which does also.

Proof. As Williams shows [2], there is an integer m such that all entries of g% are

positive. Then, all entries of (#')!£ are also, so if gl is any transpose, (gl)m maps each

loop of K onto K. We take the axioms in order.

(a) Indecomposability will follow from proving that Per(gf) is dense in K,

because this will imply that, for each e > 0, there is a closed orbit which is an e-net.

(b) From the fact that some iterate of g* maps each loop of AT onto K, we conclude

that g* is expanding.

(c) That £2(g') = K follows directly from (b) and the fact that some iterate of g

maps each loop onto K. We might note that so far we have hardly limited the

choice of acceptable g\ except to rule out local peculiarities in (a). The last axiom

is the only one which narrows the field significantly.

(d) We must show that there is a transpose of which some power maps a neigh-

borhood of the branch point to an interval, i.e. some power starts each loop off and

ends each with the same loops. That this is true follows from the fact that if g

satisfies axiom (d), some w¡ starts with the letter k¡. This is a simple consequence of

axiom (d). Then if K has « loops, it is easy to choose a transpose for which (g')n

starts each word off with kj. A similar argument for the last letters yields the con-

clusion.

We are at last ready for the main result.

Theorem 3.5. Let 2, « be any solenoid admitting an elementary, oriented presen-

tation K, g, and let K, gl be any transpose of K, g which generates a solenoid 27, «f.

There is an Anosov-Smale diffeomorphism f of S3 such that Í2(/) is the union of two

basic sets A+ and A", and

(a) A~ (A+) is a one-dimensional sink off(f~1),

(b) A+,f~1/A+ is topologically conjugate to Z, h, and A~,//A~ is topologically

conjugate to £', A*.
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Proof. Choose a knot presentation of g which admits a knot transposition to a

knot presentation of g!, and let / be the diffeomorphism induced from the trans-

position, as above. Let A+ = C\k-i/~k(N) and A" =Dk=ifik(M). We must check

a host of properties off:

Claim 1. i2(/)cA+ u A". Let xe S3- A+ u A", and suppose that x efk(M)

—fk+1(M), for some integer (positive or negative) k. Then, there is a ball U about

x contained infik(M)-fk+1(M). For any positive integer m,fm(fk(M)-fk+1(M))

czfk + 1(M), so x is not nonwandering.

Claim 2. A+,f~1/A+ is a solenoid topologically conjugate to E, h.f'1 maps N

into itself and preserves a foliation 'SN transversal to Kx. Then N/'SN is a smooth

(not elementary) branched 1-manifold K*, and/"1 induces an immersion g* of K*

such that the following commutes :

/
N —>N

g*   *
K*±^K*

K* may be viewed as K with a neighborhood (in A') of the branch point smoothly

collapsed. Since some iterate of g collapses this neighborhood to a line segment,

K,g is shift equivalent to K*, g* (see [2]). If p is the quotient map of N to A"*,

standard arguments [2] show that A"*, g* generates the solenoid S, h and p induces

a topological conjugacy of A + ,f~1/A+ to E, h. By a similar argument, A~,//A~

is topologically conjugate to E', hK

Claim 3. ü(/)=> A+ uA". This follows immediately from Claim 2.

Claim A. fis an Anosov-Smale diffeomorphism.

Axiom A, a. The hyperbolic splitting on D(/) is obtained as follows./_1(/) is a

contraction on the leaves of ¡SN (¡SM). By our construction also/"' (/) is expand-

ing along A+ (A-), since g and gl are expanding maps.

Axiom A, b. This is proved for any solenoid in [2].

Axiom B. Let 8N= T, as before. As we noted in §1 there is a leaf G of ¡SN whose

boundary represents a generator a¡ of HX(T), if G is on they'th handle of N. Simi-

larly, there is a leaf G' of ^Af whose boundary represents another generator ß, of

Hx(T). It is clear that these leaves can be chosen so that their boundaries intersect,

since each foliation of N (M) extends to a foliation of N u T (M u T).   Q.E.D.

We note, but will not prove, that the "transpose" relationship established here

between the source and the sink of/is necessary as well as sufficient, i.e. no boarder

class of pairs of solenoids can be realized as source and sink of Anosov-Smale

diffeomorphism of S3.

4. Properties of the diffeomorphisms. In this section we will prove an interesting

fact about these diffeomorphisms, but first a more elementary fact.

Proposition 4.1. fi is not structurally stable.
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Proof. As noted above, the foliations SN and SM, derived from the foliations

of N and M by unstable and stable manifolds, respectively, can be extended to

foliations of T. Choose a patch on T where these foliations are as shown in Figure 9.

Figure 9

In a small neighborhood of the patch, perturb / so that the foliations look like

Figure 10. The foliation is not C1 structurally stable, being the same phenomena

described in [4].   Q.E.D.

Figure 10

This method is adequate but somewhat strained as a way of constructing un-

stable points of tangency of stable and unstable manifolds off. In fact, such points

occur naturally in the diffeomorphisms we have constructed. We will treat only a

special example, though the arguments clearly extend to all.

Let/be a diffeomorphism whose source and sink are solenoids admitting the

presentation : K is a one-sphere and g and gl are a double covering. This condition

defines a class of diffeomorphisms, which we call F2.

Proposition 4.2. There is a diffeomorphism, called f2, of type F2, which has the

following property: there is a loop in S3 such that at each point of the loop a stable
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manifold and an unstable manifold off2 are tangent. Furthermore, any sufficiently

close C1 approximation to f2 also has this property.

Proof. Refer to a point at which a stable and an unstable manifold of/2 are

tangent as a tangency. Then the proposition says that/2 has a stable loop of tan-

gencies.

Let A"o be the z-axis and L0 he the unit circle in the x-y plane. M is the "solid

torus" having L0 as its core, with internal radius one. SM is the family of flat

vertical discs perpendicular to L0. All this is shown in Figure 11. A leaf of SN is a

h

Figure 11

"cap" which meets the boundary of M on a circle. Let G be such a leaf;/2/G is

defined as follows. f2 stretches G and twists one end through 180°. Then/2 folds the

"loops" of G together. In particular, f2 twists G in such a way that the result,

viewed from any perspective, looks like Figure 12. The vectors u and v are not

Figure 12

parallel, and there is a straight, "vertical" path in G from the point of overpass to

the point of underpass. Then the folding is done so as to leave a vertical plane P

(shown dotted) containing this path invariant. Lastly, embed this folded disc in

S3 so that its boundary runs around the interior of M twice, the discs f2(G) n N are

leaves of SN, and the vertical plane is sent to a plane containing a leaf of SM.
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That/2(G) is tangent to a leaf of S M follows from the fact that the folded disc is

tangent to the vertical plane P. This is clearly an open condition since it requires

only that the vectors u and v lie on opposite sides of P. By general position argu-

ments we can arrange that the point of tangency be isolated.

Define a function /: K0 -> S3 which assigns to each point x of K0 a point of

tangency of f2(Gx) with a leaf of ¡SM, where Gx is the leaf of ¡SN through x. We

must show that, for the proper choice of values if more than one is available, / is

continuous. To see this, take an interval (a, b) about x in K0 and let C7(a>w be the

union of the leaves of ¡SN through (a, b). This set is in the form of a solid cylinder,

and f2 acts to twist and fold it. Continuity follows from the openness of the

condition defining a point of tangency.   Q.E.D.
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