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LOCAL BEHAVIOUR OF SOLUTIONS OF STOCHASTIC
INTEGRAL EQUATIONS

BY

WILLIAM J. ANDERSON

Abstract. Let X denote the solution process of the stochastic equation dX{t)

= a(X(t)) dt + a(X(t)) d\V{t). In this paper, conditions on a(-) and cr(-) are given

under which the sample paths of X are differentiable at t = 0 with probability one.

Variations of these results are obtained leading to a new uniqueness criterion for

solutions of stochastic equations. If a(-) is Holder continuous with exponent greater

than \ and a() satisfies a Lipschitz condition, it is shown that in the one-

dimensional case the above equation has only one continuous solution.

1. Introduction.    Consider a one-dimensional stochastic integral equation

(1) X(t) = x0+ I  a(X(s)) ds+ f a(X(s)) dW(s)
Jo Jo

where x0e R. a(-) and a(-) are continuous real-valued functions on R, and W is a

one-dimensional Brownian motion process with W(0) = 0. If a() and cx(-) satisfy

Lipschitz conditions on R, the solution of (1) is unique and we can use uniqueness

to show that the family of all such solutions as x0 ranges over R generates a

continuous strong Markov process. If furthermore o(x0) = 0, the strong Markov

property may be used to show that

(2a) if a(x0) > 0, then Pr (X(t) ^ x0, t ^ 0) = 1,

(2b) if a(x0) < 0, then Pr (X(t) g x0, t £ 0) = 1.

In the language of diffusions, x0 is called in the first case a right shunt and in the

second case a left shunt.

In this paper, we will reverse the steps of the above paragraph. Assuming that

a(-) satisfies on R a Holder condition with exponent greater than \, we will derive

some results on the local behaviour of the solution X of (1) similar to (2a) and

(2b). This will be done in the multidimensional case. Then, assuming that a(-)

satisfies a Lipschitz condition on R, we will use these results to prove that equation

(1) can have only one continuous solution.

Background material on stochastic integrals and equations may be found in the

books of K. Itô [3], H. P. McKean, Jr. [4], and A. V. Skorohod [5].
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2. Notation and definitions. (Í2, !F, P) shall represent an arbitrary probability

space on which is defined an «-dimensional Brownian motion process W with

W(0) = 0 a.e. When «a 1, we shall denote the independent component processes of

W by Wk, k= 1,..., n. (&[, t}zQ) is an increasing family of sigma-subalgebras of

IF such that W(t) is ^-measurable and such that W(t+h)-W(t) and &t are

independent for any / ̂  0, h > 0.

A Markov time is a function m: i2-> [0, oo] such that (m<t) eFt for all ?^0.

We denote by Fm the sigma-algebra of events prior to m. Fm consists of all those

AeS? such that A n (m < t) e !Ft for all / à 0. If m is a Markov time, the process

W+ defined by W+(t)=W(t + m)-W(t), t^O, is with respect to the measure

P( ■ /m < + oo) a new Brownian motion independent of Fm.

A function/: [0, oo) x D ->■ R will be called nonanticipating if

(a) /is measurable in the pair (/, co),

(b) /(/, • ) is J^-measurable for almost every t ̂  0.

We shall also add the condition that

(c) p(J'|/(j,-)la *<+«>,'£ fj) = l

although this is not usually part of the definition. We will further say that / is

continuous if for almost every w e Q. the function /( •, co) is continuous in t.

A function /: [0, oo) x Q -> Rn will be called nonanticipating if each component

fk, k=l,.. .,n, is nonanticipating. If Rn ® Rn denotes the family of all real nxn

matrices, a function/: [0, oo) x Q. -»■ Rn 0 R" will be called nonanticipating if each

component function fik( ■ ) off()=[fik(-)], /, k=l,..., n, is nonanticipating.

If/is nonanticipating and has values in either R, Rn or Rn 0 Rn, we denote by

Jó/TO dW(s) the stochastic integral off over the interval [0, t). If/has values in R,

JÓ/TO dW(s) is simply the one-dimensional Itô stochastic integral. If/has values

in Rn, J'0/(í) dW(s) is defined to be 22=i JÓ Ai«) dWk(s). If/has values in Rn 0 Rn,

then JÓ/TO dW(s) is the F"-valued random variable whose ¿th component is given

by 22=i l\fiik{s)dW\s).
Finally we make the following remark. If/ is nonanticipating and has values in

Rn, we may write

£/(*) dW(s) = e(j(t)),       t è 0,

where e is a new one-dimensional Brownian motion process with e(0) = 0 a.e. and

j is the function of (t, w) defined for each a> by 7(0 = JÓ ll/TO II2 ̂s, i^0. Here || ■ ||

denotes the Euclidean norm in Rn. We shall refer to the above as the random time

substitution property. A proof may be found in McKean's book [4].
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3. The law of the iterated logarithm for stochastic integrals.   One can use the

random time substitution property to obtain a law of the iterated logarithm for

stochastic integrals. We give a proof below which depends on the following simple

lemma: if h: [0, oo) -> [0, co) is such that h(0)=0 and the derivative h'(t) is con-

tinuous and nonnegative, then

lim/,(Qloglogl//,(0
t-.o      t log log 1/i v '

Alternate proofs of the following theorem may be found in [1] and [4].

Theorem 3.1. Let f: [0, co) x Q. -> 7?" be a continuous nonanticipating function

andputZ(t)=ft0f(s) dW(s), t^O. Then

Z(t)

^^(^loglogl//)1^11^11    ^

Proof. Definey(i)=JÓ ll/COII2 *&> f = 0- According to the random time substitu-

tion property, ¡l0f(s) dW(s) = e(j(t)), t^O, for some new Brownian motion e.

Notice also that

alisar-^ - ww "
Therefore

Z(t)

^^ log log I/O1'2

= lim S11„ e(7(0) (2/(0 log log l/7(0)1/a

t-o P (2;(0 log log l/j(t))112 '    (2t log log I/O1'2

= lim sup_UM_lim (3(0 h* log 1/7(0)"*
t-o p (2/(0 log log l/TXO)1'2 "™     (2i log log I/O1'2

= ||/(0)||    a.e.

In the last step we have used the law of the iterated logarithm for the Brownian

motion e.   Q.E.D.

4. Sample path behaviour for solutions of stochastic equations. In this section,

a: Rn -+ Rn and a : Rn -► Rn <g> Rn are continuous functions. This means that each

component ak(■ ) of a(■ ) and aik{■) of a(• ) = [aik(■)], i,k—l,...,n, is continuous.

We shall assume that X is a continuous nonanticipating function with values in Rn

such that the stochastic equation

(3) X(t) = X(0)+ Ça(X(s)) ds+ f a(X(s)) dW(s),       t ^ 0,
Jo Jo
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is satisfied. Here, X(0) is an J^-measurable random variable with values in R".

Equation (3) is equivalent to the system of n equations

Xi(t) = Zt(0)+|! ai(X(s))ds

<4> n ; °Tl        ¡* t

+ 2  f "M*)) dWk(s),       t ^ 0,
k=l Jo

1 = 1,...,». Let us define the function b: Rn -> Rn 0 Rn by b(-) = o(-)oT(-), where

ar(-) is the transpose of the matrix o-(-). Then we have the following law of the

iterated logarithm for the function X.

Theorem 4.1.

Iim _,_ (x^+x^^xM+xm
lin?J"P (2/ log log I/O1'2

= ((bu(X(0))r2 + 2bii(X(0)) + bj)(X(0)))   a.e.

for any i,j=l,...,n.

Proof. Using (4), we have

(2r log log I/O1'2

= JÓ(ai(X(5)) + aX^)))^    A foKTOl + ̂ TO^n)
(2? log log I/O1'2    "   A (2/ log log 1//)1/2

Now JÓ (a¡(X(s)) + üj(X(s))) ds is continuously differentiable in t and therefore

,.    P0(ai(X(s)) + ai(X(s)))ds
lim s--^—¡—;-, ...„- = 0   a.e.
i-o        (2/ log log I/O1'2

Thus, taking lim sup¡-.0 of both sides of the above equation, we have according to

Theorem 3.1,

1im ■lin(^,(04-AQ(f))-(^(0)4-AO(0))
]ToP (2t log log I/O1'2

[n -i 1/2

I(%W0))+^(i(0)))2J

= (bu(X(0)) + 2biJ(X(0)) + bii(X(0W12   a.e.       Q.E.D.

Consider now the case where X(0) = z e Rn. By the above theorem,

® H?-.SoUP (Jr'Stogtogr/0^^ - (W+2A^)4-A^))1/a

almost everywhere for i,j=l,..., n. In this way the solution X of equation (3)

with initial condition X(0) = z determines the matrix b(z). For example, if we set
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i=j, we can obtain the diagonal elements bü(z), i= 1,..., n, from the equation

and once these are known, we can calculate the off-diagonal elements btj(z) from

(5). A natural question is whether the solution X determines the vector a(z) in a

similar way. We shall see in Theorem 4.2 that under additional conditions on the

function b(-), the answer to this question is yes.

If bu(z)=0, then from (6) we have

,• *i(0-Zilim sup 7^-j—^—, '   1)2 = 0   a.e.
¡^o    (2t log log I/O1'2

Since one can also show that

^rf(2M™g"lV = -(W)1'2 » °   "-

we can conclude that

hm ,„,,     ,     , '   ,,„ = 0   a.e.
(-o (2t log log I/O1'2

The question is whether we can strengthen this result. In other words, is there a

function h(t) such that lim¡^0 (Xi(t)—z¡)lh(t) exists and is nonzero?

The following theorem answers the above two questions simultaneously.

Theorem 4.2. Assume that A'(0)=z e Rn and fix i between 1 and n. Suppose that

the function ¿>if() satisfies the following conditions:

(i) ba(z)=0,

(ii) there is K^O, 8>0, and a>0 such that bn(x)^K\x{-Zi\2a whenever \xt—zt\

<8.

Then

(1) lim^o(Xi(t)-zi)/t^ = 0 a.e. if X<min (1, ß),

(2) fim^o (Xi(t)-Zi)lt=ai(z) a.e. ifß> 1,

(3) limt_0 (Xt(t)-Zi)/tA = 0 a.e. ifa¡(-) = 0 and X<ß, where

ß = (1/2) f a» =  +CO if a ^  1,
p=0

= 1/2(1-a)     l/O < a < 1.

Proof. For every A e R, we have

lim *i(0-*' = Hm fi <*(*(*))* |lim ZS-i ft ««*(*(*)) <*»*(*)
t-.o      iA t-o rA t-.o iA

provided the limits on the right-hand side exist. Now

lim -A f at(X(s)) ds = 0        a.e. if A < 1,
t-O'   Jo ,x e \        i

= at(z)   a.e. if A = 1,

= 0        a.e. ifa,() = 0,
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so that the results of the theorem are mainly dependent on A and a4( ■ ). As will

become apparent from the following proof, it suffices to prove part (3), where we

assume at( ■ ) = 0.

Hence assume a¡()=0. We are then concerned with the stochastic equation

Ut)-* = 2 f ^WO) dW*(s),       t ̂  0.
k = l Jo

Let us show by induction that

lim(Xi(t)-zi)/th = 0    a.e. if A < (l+a + a2+• • •+am)/2
i-o

for some integer m^O. Because lim^o (Xi(t) - z¡)/(2t log log 1//)1,2=0 a.e., it is an

easy matter to show that our statement is true for m=0. Hence let us fix m ä 0 and

assume that lim¡^0 (^¡(0 —z()/7A=0 a.e. for any X<(l+a+ ■ ■ ■ +am)/2. Suppose

that 0<A'<(l+a+---+<xm + 1)/2. Then -l/2a<(A'-4J/a<(l+a-f- • • ■ +am)/2.

Now choose A such that (A'-£)/<x< A<(1 +a+ ■ ■ ■ +am)/2 and note that 2<xA+l

> 2A' > 0. Making use of the random time substitution property, we can write

Xi(t) — Zi = e(j(t)), t^O, where e is a new Brownian motion process and j(t)

= JÓ bn(X(s)) ds. According to the induction hypothesis there is 8' > 0 such that if

0<igS', then (A-,(/)-zt)2/i2A^ 1 and therefore (Xi(t)-Zi)2St2hS(8')2\ If we

assume as we may that (3')A < 8, then

0 £j(t) = f bu(X(s))ds ^ K f \Xi(s)-Zi\2a ds
Jo Jo

Jo

is* 2a\ +1

ArA ds=±L
2aX+l

for all t e [0, 3']. Putting K'=K/(2aX+1), we get

0 < lim/(0 log log 1/7(0 < Um K't2"^ loglogl/K't2*^
í-»0 í t-»0 I

K't2a*+ 1 log I/K't2aA + 1

= !^-w-
*'log («/*')       ( 1/88A+1)

lim     f.(2aA + l-2A')/(2aA + l)      VPul » lll )
li-> 4- co  LI

=0

by L'Hôpital's rule because (2o:A-|-1 - 2A')/(2aA +1)>0. Thus

7(0 log log l/y(Q _ n
, ™ r2A' ~   '

so that

lim alin *«(')-*'        lim S„n K/(0) (2/(0 log log luit))1"
hVoap—t^- = hr?4up (27X0 log log wo)«»-F-

lim <„n                 g(/(0)                  ,im (2/(0 log log V/XO)1
= h?4UP (27X0 log log 1/7X0)1'2"!™-F-

= 0   a.e.
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Similarly we can show that lim inft-,0 (^i(0—zi)AA'=0 a-e- The induction is

therefore complete and we have shown that limt^o(Xi(t)—z^)ltx=0 a.e. if

A<(l+a+- • +am)/2for somem^O.

The proof is finished if one notes that A < (1/2) 2"= oa" implies that

A<(1 + a+ • • • +am)/2 for some large enough integer m.   Q.E.D.

Corollary. In addition to the hypotheses of Theorem 4.2 assume that a>\.

(1) 7/a¡(z)>0, then P[X¡(t)>Zi for all sufficiently small t>0] = I.

(2) If a¡(z) < 0, then P [^¡(0 < z, for all sufficiently small t > 0] = 1.

Proof. The assumption that a > \ implies that ß > 1 and so by part (2) of Theorem

4.2,

lim *"'(*>-*' = ai(z)   a.e.
t-»o        t

Results (1) and (2) of the corollary are easily deduced from this.   Q.E.D.

If we make the extra assumption that the functions oik(-), k= 1,..., n, depend

only on the ith component x¡ of x for each x e Rn, we can strengthen the results of

the above corollary to show that z is a right shunt for Xt if ai(z) > 0 and a left

shunt if a¡(z)<0. The proof of this fact is similar to the proof of Theorem 5.2.

5. A comparison theorem for solutions of stochastic equations. In this section,

a:Rn->Rn,c:Rn-+ Rn and a : Rn -> Rn ® Rn are continuous functions. X(0) is an

.^-measurable random vector and X and Y are continuous nonanticipating

functions satisfying

X(t) = X(0)+ f a(X(s)) ds+ { a(X(s)) dW(s),       t ^ 0,
Jo Jo

7(0 = X(0)+ ( c(Y(s)) ds+ Í o(Y(s)) dW(s),       t ^ 0.
Jo Jo

Theorem 5.1. For a fixed i between 1 and n, suppose the functions a,k(-),

k= 1,..., n, satisfy the condition

M*)-*«Cv)| = *l*i-Ji|a.       x, y e R\

where K^0 and a>$.

Then

Hm XM    r'(/) = ai(X(0))-ct(X(0))   a.e.
t-»o t

Proof. Since

^.(0-^i(0 = Ç[ai(X(s))-Ci(Y(s))]ds+2 Ç [aik(X(s))-aik(Y(s))]dWk(s)
Jo fc=lJo

we get

Hm    *(0-y«(0        Q   ae
Í™(2íloglogl/01/2"0   aX-



316 W. J. ANDERSON [February

after applying Theorem 4.1. We shall only sketch the rest of the proof, since it is

similar to that of Theorem 4.2 part (2).

Let N be a nonnegative integer such that

(1 +a+ • • • +aiv)/2 g 1 < (1 +a+ ■ ■ ■ +aN + 1)/2.

We shall show that lim(_0 (A",(0- Yt(t))/tA = 0 a.e. if A<(l + a+ • ■ • +aN)/2. We

proceed by induction. Suppose for some fixed m with 0^m<N that

limt^o(Xi(t)-Yi(t))/t* = 0 a.e. if A<(1 +a+ • • • +0/2 (this is true for m = 0).

Choose A' with 0<A'<(l + a+--- +am + 1)/2. As in Theorem 4.2, we can choose A

such that (X'-^)/a<X<(l+a-i-ham)/2. Again we write

Xi(t)- Yt(t) = Ço [ai(X(s))-d(X(s))] ds + e(j(t)), t^O,

where e is a new Brownian motion and

't    n

/X0= f   2 [oik(X(s))-aik(Y(s))]2ds.
Jo k = l

By the induction hypothesis there is §>0 such that if t e [0, 8] then (X¡(t)— T¡(0)2

gí2A. Using this, it is easy to show that 0^j(t)^nKt2a* + 1/(2aX+l) if / e [0, S],

and therefore that lim(_0 (j(t) log log l/j(t))/tÁ' = 0 a.e. Hence

lim sup to-r*). lim r0M*»)-«nmds
t-o iA t-o iA

e(j(t))

+ 1TSoUP (27X0 log log 1/7X0)1'2

H    (2/(r)loglogl//(0)1/3
t-o tr

= 0   a.e.

Since also lim inft_0 (A"¡(0~ Y¡(t))/tA =0 a.e., this completes the induction.

We have shown that lim^0 (Xi(t)- Yi(t))/tK=0 a.e. if A<(l+a+ • • • +0/2.

Carrying the induction one step further shows that

,.    22-1 JÓ K(*(0)- °ik( Y(s))] dW\s)
lim---;-= 0   a.e.
t-o iA

if A<(1 +a-\-\-aN + 1)/2, in particular when A= 1. Thus

t-o t

_ Hm p0[ai(X(s))-Ci(Y(s))]ds [iim 22 = 1 JÓ K(-y(j))-q,fc(r(j))] dW\s)
i-0 t f-0 t

= ai(X(0))-d(X(0))   a.e.   Q.E.D.
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Theorem 5.2. In addition to the hypotheses of Theorem 5.1, assume that the

functions <%(•), k = 1,..., n, depend only on the ith component x¡ of xe Rn. Also

suppose that a¡(x) > c¡(x) for each x e Rn. Then

P[Xi(t) ä Yi(t)for all t ^ 0] = 1.

Proof. According to the above theorem,

Hm XM-Yi(t) = a¿x(0))-Ci(X(0)) > 0   a.e.
t->0 /

Hence we certainly have

P[Xi(t) > Yi(t) for all sufficiently small t > 0] = 1.

Define the function m: Q. -> [0, +co] by

m(oj) = inf [t > 0 | Xt(t, co)- Yit, m) < 0],

= -fco    if Xi(t, o>)- Yi(t, a>) è 0 for all t ä 0.

m is a Markov time, because if r > 0, then

(m£0- H (Xi(r)-Yi(r)^0)e^t.
r rational: r e [0,1]

Put D = (m< +cc) and assume that P(7>)>0. Then we can define the probability

measure P'(-)=P(-/D) on &'. We shall also define

W+(t) = W(t + m)- W(m),       r £ 0, o>e 7J>,

X + (t) = X(t+m), t^0,ojeD,

Y+(t) = Y(t + m), i^ 0,o> e A

&\+m = the sigma-algebra of events prior to

the Markov time t + m,       t ^ 0.

Because of the continuity of X and Y, we note that P'[X + (0)= Y + (0)]=l.

It has already been mentioned that W+ is a Brownian motion process on

(Q.,¿F,P') independent of lFm. The function a(X + (t)) is nonanticipating with

respect to the family (J^+m, tSO) and we can define in the usual way the stochastic

integrals (*0 aik(X + (s)) dW + k(s), t^O, with respect to the space (Q, J5", P')> the

Brownian motion W + , and the family (J^+m, t äO). Moreover it is not too difficult

to show that

H pt + m

oik(X+(s))dW+«(s)=\      aik(X(s)) dW\s),       t^O,
Jo Jm

almost everywhere on D with respect to P, or equivalently almost everywhere

with respect to P'. The same thing may of course be said for the integral

p0aik(Y+(s))dW+«(s).
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For any / 2:0, we can therefore write

X + (t)- Y + (t) = X(t + m)- Y(t + m)

= X(m) - Y(m) + J(     [ai(X(s)) - ct( Y(s))} ds

n     pt+m

+ 2       M^))-^^))]^)
k=lJt

= j\ai(X + (s))-Ci(Y + (s))]ds

+ 2 f h^+(0)-Mí-+(0)] dw+\s)
k=lJ 0

almost everywhere with respect to P'. Applying Theorem 5.1, we get

P'[X+(t) > Y+(t) for all sufficiently small t > 0] = 1.

But due to the continuity of X and Y we would expect this measure to be 0. The

contradiction arises from the assumption that P(D)>0, and we can therefore

conclude that P(m= +oo)=l.    Q.E.D.

6. A uniqueness theorem for solutions of stochastic equations. Theorem 5.2 can

be used to prove a uniqueness theorem for solutions of stochastic equations.

Suppose that a: R-> R and a: R-> R are continuous functions satisfying the

condition

(a(x))2 + (o(x))2SKx(l+x2),       xeR,

and let A'(O) be an ^¿-measurable random variable. By a theorem of A. V. Skorohod

[5, p. 121], there is a continuous nonanticipating function Xsuch that

(7) X(t) = X(0)+\  a(X(s))ds+¡ <j(X(s))dW(s),       t^ 0.
Jo Jo

However, continuity of the functions a() and a() is not sufficient to prove

uniqueness of the solution X, i.e. that X is the only continuous nonanticipating

function satisfying (7). Any one of the following conditions has been shown to be

sufficient to insure uniqueness of the solution X.

(i) a(-) and o-(-) satisfy Lipschitz conditions on R. See K. Itô [3].

(ii) ct()>0 and <?(•) satisfies on R a Holder condition with exponent greater

than \. See A. V. Skorohod [5].

(iii) o( ■ ) > e > 0 for some constant e, and <j( ■ ) satisfies onÄa Holder condition

with positive exponent. See I. V. Girsanov [2].

As far as the strong Markov process generated by equation (7) is concerned, the

condition <r( • ) > 0 in (ii) and (iii) rules out the existence of any interesting singu-

larities. In the following theorem, we show that if a has zeros, then condition (ii)

is still applicable provided we assume that a( ■ ) satisfies a Lipschitz condition on R.
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Theorem 6.1. Suppose the function a( ■ ) satisfies the Lipschitz condition

\a(x)-a(y)\ Ú K2\x-y\,       x, y e R,

where K2 ̂  0 and that o-( • ) satisfies the Holder condition

\°(x)-a(y)\ ^ K3\x-y\\       x,yeR,

where K3~^Q and a>\.

Then for any ^-measurable random variable X(0), equation (1) has only one

continuous nonanticipating solution.

Proof. By a remark of A. V. Skorohod [5, p. 121] it suffices to prove the theorem

under the additional assumption that a() and o-(-) are bounded, say

|a(x)| + |o-(x)| ¿ Ki,       xeR.

Let us suppose that X and Y are two continuous nonanticipating solutions of

equation (7). In other words,

X(t) = X(0)+ !   a(X(s)) ds+ f a(X(s)) dW(s),       t ^ 0,
Jo Jo

Y(t) = X(0) + f a( Y(s)) ds+ f a(Y(s)) dW(s),
Jo Jo

t > 0.

Let e>0 be arbitrary and define functions/and g by

f(.) = a(-)-e,        g(.) = a(-) + e.

Now there exist continuous nonanticipating functions U and  V satisfying the

equations

t H,

ÍT(0 = X(0)+ff(U(s))ds+¡ a(U(s)) dW(s),
Jo Jo

V(t) = X(0)+ f g(V(s)) ds+ f a(V(s)) dW(s),
Jo Jo

respectively. Because/()<a()<g(), then

(7(0 ú X(t) ^ V(t),       t ^ 0 a.e.,

U(t) ^ Y(t) ^ V(t),       t ^ 0 a.e.,

by Theorem 5.2. Consequently,

\X(t)- 7(01 ú V(t)~ U(t),   t ^ 0 a.e.

Now

KO)- U(t) = f [g(V(s))-f(U(s))] ds+ f [a(V(s))-a(U(s))] dW(s).
Jo Jo
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Because V(t)— U(t)^0 a.e for each /^0 and because the expected value of the

stochastic integral is zero, we can write

E\V(t)-U(t)\ = £ E[g(V(s))-f(U(s))] ds

á|o'jB|g(K(j))-/[ü(j))|&

^ 2eí+í F|a(F(0)-a(c/(0)| ds
Jo

g 2e*4-Ä2 i E\V(s)-U(s)\ ds.

Put h(s) = (E\V(s)-U(s)\)/2e, O^s^t, so that h(t)-¿t+¡0 h(s) ds. Using the fact

that a(-) is bounded, it is easy to show by iteration that h(t)^exp(K2t)—l.

Therefore

£|AX0- T(0| t\ E\V(t)-U(t)\ ^ 2e(exp(K2t)-l).

Since £ was arbitrary, we conclude that X(t)= Y(t) a.e. This is true for every i^O,

and since the functions X and Y are continuous,

P[X(t) = 7(0 for all? fc 0] - 1.

This completes the proof.    Q.E.D.

In a sense, the criteria for uniqueness of Theorem 6.1 might be viewed as the

best possible. The requirement a>\ cannot be appreciably weakened, as is demon-

strated by the Girsanov example (see H. P. McKean, Jr. [4])—if 0<a<^ the one-

dimensional stochastic equation X(t) = ^0 \X(s)\a dW(s), i^O, has infinitely many

continuous nonanticipating solutions. On the other hand, it seems implausible

that the Lipschitz condition on a() can be weakened. For in the extreme case

where <r(-) = 0, the stochastic equation (7) reduces to the deterministic integral

equation X(t) = X(0) + ¡0 a(X(s)) ds, /SO, and here it is required in general that

a() be Lipschitz.

It is also possible to prove a version of Theorem 6.1 for «-dimensional stochastic

equations. As is suggested by the hypothesis of Theorem 5.2, we must assume that

for each i between 1 and n, the functions o-ik(-), k= 1,..., n, depend only on the

ith component x¡ of x e R". This has the undesirable effect of reducing the n-

dimensional equation to a series of n one-dimensional equations. For this reason

we have preferred to prove Theorem 6.1 in the one-dimensional case.
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