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THE (</>*% FIELD HAMILTONIAN FOR COMPLEX
COUPLING CONSTANT^)

BY

LON ROSEN AND BARRY SIMON

Abstract. We consider hamiltonians HB = H0 + ßH1(g), where H0 is the hamil-

tonian of a free Bose field <¿(x) of mass m > 0 in two-dimensional space-time, H¡(g)

= j" g(x): P(tj>(x)): dx where g^O is a spatial cutoff and P is an arbitrary polynomial

which is bounded below, and the coupling constant ß is in the cut plane, i.e. ß^ negative

real. We show that HB generates a semigroup with hypercontractive properties and

satisfies higher order estimates of the form \\H0N'Rse\\ <<x>, where N is the number

operator, Rs = (Hß + b)~1, r a positive integer, and ß, s, and b are suitably chosen.

For any Og0<7r, Rs converges in norm to R0 as |j8| ->0 with |argj8|á®. Finally

we discuss applications of these results and establish asymptotic series and Borel

summability for various objects in the real ß theory.

1. Introduction. Let </>(x) be a free Bose field of mass m > 0 in two space-time

dimensions, and let H0 be the corresponding hamiltonian : H0 = J" p.(k)a*(k)a(k) dk,

where  p.(k) = (m2+k2)112. Define  H,(g) = $g(x): P(<f>(x)): dx,  where geC„°°(J)

is real-valued and P(y) = b2ny2n+b2n-1y2n~1-j-\-b0 is a polynomial which is

bounded below, i.e. b2n>0. It can be shown [2] that H,(g) is a selfadjoint operator

on a suitable domain. We shall also assume that g(x)^0 so that H,(g) is formally

positive. Although the Wick ordering destroys this positivity, H¡(g) has an "almost

positive" character made precise by Nelson's remark [7] that if Re/S^O then

(il0, exp (—ßH,(g))il0) is finite, where ilQ is the Fock vacuum. The hamiltonian

(1.1) H, = H0+ßH,(g)

with positive coupling constant ß plays a central role in the construction of the

P(</>)2 field theory without cutoffs. Hß has been extensively studied and proved to

be selfadjoint [1], [8], [9], [10], [13]. (See [2] for further references and a summary

of recent progress.)

Our purpose in this note is to study Hs for complex ß in the cut plane, i.e. ß not

equal to a negative real. (Even the nonrelativistic analogue, p2+x2+ßxi, is mis-

behaved when ß is a negative real [12].) Previous to our discussion the following

results have been obtained for complex coupling constant by B. Simon and R.
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(a) [13] HB is a sectorial operator with numerical range contained in a sector of

opening angle not greater than arg ß;

(h) [13] As |jS| ->0 with |arg/S|^7r/2-e, (H^-z)'1 ^(H0-z)-1 in norm, for

zeres(770);

(c) [11] In the special case of P(y)=yi, the resolvent convergence of (b) holds

for |arg/?| ■^■n-e.

We work with the two equivalent representations of the P(<j>) theory (cf. [2]).

The first is Fock space ^"=2"=o © ^n consisting of a direct sum of n-particle

spaces; on !F, H0 is a multiplication operator. The second is " ß-space" orP2(M, p)

where p is a probability measure on M; here the fields <f>(x) and hence H,(g) are

multiplication operators. Our approach is to exploit the "smoothing" properties

of H0 and 77fi in each of these representations. On &, 77= He is smoothing in the

sense that for sufficiently large b>0, (H+b)'1 maps D(Nr) into D(Nr+1),

(1.2) lNT+\H+b)-1(N+l)-r1 < oo.

Here N is the number operator : 7V=n on &rn. On L2(M, p), 770 is smoothing in the

sense that, for sufficiently large t > 0,

(1.3) exp ( - tH0) : L2(M, p) -* L\M, p)

and similarly for e~m if t is suitably chosen.

Higher order estimates, typified by (1.2), have been proved in the case of real ß

in [9]; the method of hypercontractive semigroups whose starting point is (1.3)

has been studied in [10] and [13], primarily in the case of real ß. In §2 we sketch

an extension of the latter method to the P(<f>) theory with ß in the cut plane; this

allows us in particular to obtain the result (b) above for |arg/S| ^tt—e. In §3 we

show that the higher order estimates carry over to the case of complex ß with the

most complete results being obtained for the </>* theory.

Our reason for studying the complex ß theory is not that we feel it is intrinsically

interesting but rather that it can be used to study properties of the analytic con-

tinuation of various objects in the real ß theory. For instance, properties (a)-(c)

above have already been used to prove [13] that for the P(<f) theory the ground

state energy and the equal time vacuum expectation values (VEV) of the fields

have asymptotic series in |arg ß\ ^tt/2 — e; and [11] that for the <£4 theory this series

for the ground state energy is Borel summable. In §§4 and 5 we similarly consider

applications of the results of §§2 and 3. Thus we extend the region of validity of the

various asymptotic series to |arg j8| ̂ tt-e and we prove Borel summability of the

equal time VEV's.

2. Hypercontractive semigroup techniques. We first recall the definition and

basic properties of a hypercontractive semigroup (see [13]). Let 770â0 be a self-

adjoint operator on P2(M, p) where p is a probability measure on M. The set of

operators {exp (-tH0) \ ttO} is a hypercontractive semigroup if exp (-tH0) is a
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contraction on L1(M, p.) for all i = 0 and if, for some T>0, exp (—TH0) is a con-

traction from L2(M, p.) to L\M, p.). From these two assumptions it follows by

interpolation that in fact exp ( — tH0) is a contraction on L" for all l^p^co and

t^O,

(2.1) iexpí-ftfoMIpálWlp.

Moreover for any /> > 1 and q < oo there is a r> 0 such that for t ̂  71

(2.2) ||exp(-//ro)0||, == Mr

This smoothing property holds as well for small t provided that a is not much

larger thanp in the sense that q—p = 0(t).

Consider now "complex time" z with fixed argument 6,

(2.3) 2 = teie;       t ^ 0 and |0| < ir/2.

Regarded as a semigroup in i=|zl> exp ( — zH0) also enjoys the above properties

with some slight modifications. For by applying the Stein Interpolation Theorem

to/(s)=exp ( — tH0eis"12) we find that exp (—zH0) is a contraction on V provided

that (see Stein [14])

(2.4) a-l*!/»)-1*/»*«/!»!.

Since exp(—zH0)=exp (- icos 6HQ) exp (-it sin 0Ho) we see from (2.2) that,

for any q < oo and /? = 2, there is a J such that

(2.5) llexpi-zffoWU^M,

when icos 0^7. By duality and interpolation we can extend (2.5) to the case of

arbitrary p> 1, as well as to the case of small \z\ provided that/7 satisfies (2.4) and

q is not much larger than p.

It is thus possible to apply the methods developed for the perturbation of hyper-

contractive semigroups [10], [13]: If H0 is the generator of a hypercontractive

semigroup, we consider perturbations H0+V where

(2.6) V e L?(M, p)   for all p < oo

and

(2.7) e-*v eLx(M, p)   for all t = \z\ Z 0, arg z = 6.

Define H to be the closure of the sum

(2.8) H = (H0+V)\-ä

where 3>=D(H0) O D(V). We can then prove

Theorem 2.1. Under the above assumptions on H0, V, and z, H is the generator

of a semigroup e~zH on L"(M, p.) which is strongly continuous and exponentially

bounded in \z\ provided that q is in the interval

(2.9) /(fl) = ((l-|fl|M-1,W|ff|).
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i.e. there is a constant a>0 dependent on 6 andq such that

(2.10) lle-^ll, rg fl'"|M|,.

We now specialize to the quantum field case with V=ßH,(g), where the coup-

ling constant ß is in the cut plane, |arg ß\ <-n. It is known [2] that Vsatisfies con-

ditions (2.6) and (2.7) provided that Re(zß)^0. Thus exp( —z77a) satisfies (2.10)

when z=tew lies in the cone

(2.11) C = {z\\6\< tt/2, \6 + argß\ Z tt/2}.

It follows from standard semigroup theory that the P2 spectrum of 77^ lies in the

cone C dual to C with vertex at x= —inflog a,

C = {z' | Re ((z'-x)z) > 0, for all z e C}.

This result we recognize as being essentially property (a) of §1 which was established

more directly in [13].

We collect here some additional properties of the hamiltonian 77, most of which

are also valid in the abstract hypercontractive setting (the argument 6 of z is

regarded as being fixed in ( — tt/2, tt/2)):

(i) (Smoothing property.) Suppose that p, q lie in the interval 1(6) of (2.9). Then

there is a P>0 such that if |z|^P, e~zli is a bounded operator from L" to L".

Given p, the same is true for small />0 provided that q—p = 0(t).

(ii) (Continuous dependence on V.) Suppose that {V¡\ is a sequence of functions

on M such that for each p<co and t=\z\ ^0

(2.12) lim ¡Kj-KIp = 0   and   sup ||exp (-zV,)^ < oo.

Define 77, = 770 + V¡. Then for all t ̂  0 and p,qe 1(6),

(2.13) exp ( - z77,) -> exp ( - z77)

in the sense of norm convergence as operators on Lp, and, for sufficiently large /,

as operators from L" to L".

(iii) (Definition of resolvent.) Let p e 1(6). For Re (Aei9) sufficiently negative,

R(X) = (H- A)-1 is a bounded operator from V to V.

(iv) (Resolvent convergence.) Suppose {V¡} is a sequence as in (ii) and let

pel(8). For Re (ÀeiB) sufficiently negative R,(X) = (H¡-X)~1 converges to P(A) in

the sense of norm convergence as operators on W.

(v) iZero coupling limit.) Let p e lid) and suppose that {¿8,} is a sequence in the

cut plane converging to 0 such that Re (eioßj)^0. Define 77; = 770+/S;77/(g). Then

for all t ̂  0 and Re (Xeie) sufficiently negative exp ( - zTT,) -» exp ( — z770) and

iHj — X)'1 -> (770 —A)-1 in the sense of norm convergence as operators on L".

(vi) iStability of the vacuum.) Suppose that 0< |A| <m where m is the bare mass.

Then there is a B such that (770+1877;-A)-1 is bounded if \ß\uB. This bound is

uniform for ß and A satisfying |A| =p, \ß\ Sfi, [arg/3| ^A where 0<p<m and A<tt.

In fact, any A e res (770) is also in res (77^) for \ß\ sufficiently small.
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Properties (i)-(vi) follow from hypercontractive semigroup techniques as in

[13]. (i) is a consequence of the Trotter Product Formula and the smoothing

property (2.5) of exp (-zH0). (i) leads to (ii) by means of Duhamel's formula. The

corresponding results (iii) and (iv) for the resolvent follow from taking Laplace

transforms, (v) is a special case of (ii) and (iv), and (vi) follows from (v) by general

stability theorems (cf. [4, p. 206]). We remark that the proof of (v) that we have

sketched here is very different from that used to conclude the same result in the

special case of </>*.

3. Higher order estimates. In this section we prove higher order estimates of

the form

(3.1) \\(N+iy+iRß(-b)(N+iy\\ <co.

Here TV* is the number operator, r^Oan integer, Rß(X) — (H0 + ßH,(g) — X)~1, and

¿>0 a suitably large constant. Our results are incomplete inasmuch as we can

prove (3.1) in the case of P(</>) only for |argj8| <7r/4, but in the special case of </>*

for ß in the cut plane with \ß\ small.

Define the domain

D = {Y | T = (Y0, Tx,...) € F; Tn e C0*(«");

T„ = 0 for sufficiently large n).

D provides a domain of "nice" vectors on which the following operator calcula-

tions are well defined. But in order to extend the resulting operator inequalities

to domains larger than D we should like to know that D is a core for (TV+ l)a(H- A);

here a is real and A e res (H). We have been unable to prove this (although our

original manuscript did contain a "proof" based on a misuse of Nelson's analytic

vector theorem). Consequently the proofs of Theorem 3.1 and Lemma 3.4 below

are only formally true. At the end of this section we indicate how to overcome this

difficulty by introducing a momentum cutoff in H.

Theorem 3.1. Assume that |arg j8| <tt/4, and let rSïO be an integer. Then for

b>0 sufficiently large, we have the estimates (3.1) and(3.2),

(3.2) ||(/V+l)' + %(-¿>)r+1|| < oo.

Proof. Since the proof differs only slightly from that for the case of/3>0, we

sketch the details (cf. [9, §4]). The main steps are as follows :

(i) The estimate (3.2) follows by induction from (3.1). Assuming that D is a core

for (N+ l)r(H+b), it is sufficient to take Y e D'=(H+b)D and to prove (3.1) in

the form

(3.3) ||(TV+l)'+%(-6)T|| ^ const. ||(^+1)«F||.

(ii) Since Rg¥ e D we can rewrite ||(TV"+l)r+1i?ÄY| in terms of integrals in-

volving products of annihilation operators.
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(iii) The annihilation operators are "pulled through" the resolvent Rß by means

of the Pull Through Formula [9, Proposition 4.5],

(iv) The resulting terms are estimated and are shown upon integration to be

dominated by ||(7V+l)r,F||. The basic estimate involved is of the form

(3.4) ||7701/2P,(- b)QRß(-b)H¿'21| < oo

where ß is a polynomial in the field of degree less than that of the interaction P(<f>).

We indicate the proof of (3.4). Let ß=x+iy where |j|<x. When y=0, (3.4)

follows at once from the inequalities

(3.5) \\H0ll2Rx(-b)ll2\\ < oo

and

(3.6) \\Rx(-br2QRx(-b)ll2\\ < oo

for sufficiently large b. Both (3.5) and (3.6) amount to restatements of the semi-

boundedness of H0 + xH¡ for suitable 777 of P(<f>) form and suitable real x.

When y¥=0, (3.4) remains valid since

(3.7) Rß = RX'2BRX'2

where B is a bounded operator. To prove (3.7) we note that

x77, ^ H0+xH, + b

so that

WR^-bY^yH.R^-by^W s \y\lx < 1.

Taking B=(l + Rx(-b)ll2iyHIRx(-b)112)-1, we verify (3.7) by the expansion

RB = Rx>2 | (-R^iyH.Rl'yRl'2.
1=0

Corollary 3.2. Assume that |argj8|<7r/4 and let r^O be an integer. Then for

b>0 sufficiently large

(3.8) \\H0N'Rß(-by + r\\ < oo

where 2n is the degree of the interaction P(<j>).

Remark. In the special case of P(4>)=4>i it is possible to take n= 1 in (3.8) while

in the general case this remains an open question.

Proof. By a standard A^-estimate (cf. [2])

(3.9) \\(N+l)-aH,(g)(N+l)-e\\ < oo

provided a + ß^n. It follows from (3.2) that NrH,R'¡j + r is bounded; so is

Nr(H0+ßH,)Re+1. Since HoN'Ry^N^Ho+ßHJRy-ßN'H^y, we obtain

(3.8).
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Here we have used the facts that N^const. H0, and (TV+1)'^ (TV+l)y if i£j.

Assuming that D' is a core for (TV+1)', we obtain (3.17) from (3.20) by taking

closures.

We now turn to the proof of (3.18) on Dx D. Set ß = x + iy. Then

(Ü* + 1)(TV+1)2'(Ü+1) = (H0+l)2(N+l)2r+\ß\2H,N2rH,

+ x(H,(N+ l)2T(H0 +l) + (H0+ l)(N+ l)2rH,)

+ iy[(H0 + l)(N+l)2',H,]

= \x\/\ß\(H0+ 1 + sgn x\ß\H,)(N+ l)2r(HQ+1 + sgn x\ß\H,)

+ (1 - \x\/\ß\)((H0+l)2(N+1)2'+ \ß\2H,(N+ iyH,)

+ iy[(H0+l)(N+lT,H,]

^(l- |*|/|j8|)(ff0+ W.N+ iy+iy[(H0 + l)(N+1)2\ Ht]

^ const. (H0+l)2(N+l)2r,

for sufficiently small B. In the last step we have arranged that | v| is small and

dominated the commutator by (3.10).

Corollary 3.5. Under the hypotheses of the lemma, there is a B such that

\\(H0+l)(N+ l)riW + 1|¡ <co

with the bound uniform in ß which satisfy \ß\ Si? and eS |arg/3| ¿7r — e, and X in

bounded subsets of C.

Proof. The corollary follows from the lemma by induction.

Combining Theorem 3.1 and Corollary 3.5 we can thus state for the </>* theory:

Theorem 3.6. Let H,= :<f>i(g):, Xeres(H0), and suppose that e>0 and the

integer r^O are given. There is a positive constant B such that if\ß\^B and |argj8|

^TT — e, then X e res (Hß),

(3.21) \\(N+iy^Rß(X)(N+iy\\ < oo,

(3.22) ||(TV+l)' + %(Ay + 1|| <co,

and

(3.23) ||(i/0+l)(TV+l)%(Ay + 2|| <oo

where the bounds are uniform in ß.

Proof. As noted in (vi) of §2, A e res (Hß) for B sufficiently small. Once we verify

(3.21), then (3.22) and (3.23) follow as in Theorem 3.1 and Corollary 3.2. In fact

(cf. (3.1) and (3.17)) we have already proved (3.21) except that for |argj8| f£e we

have restricted A to be a large negative real (assume e < tt/4).

It remains to extend (3.21) to any A e res (H0). To this end, we first show that,

for \ß\ small,

(3.24) ||(TV+1)%(A)(TV+1)-'|| < oo.
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If we regard ^ = £>((7V+ l)r)<=& as a Hubert space with norm ||T||r = ||(7Y+ 1)T||,

then (3.24) can be interpreted as the statement that Re(X) is bounded on #Pr. We

know that (3.24) is valid for X= —b sufficiently negative and for ß=0 since 770

commutes with N. Moreover RB(—b) -> R0( — b) in norm on Ji^ as |j3| -^-0; for

we calculate that

¡(N+\y[Re(-b)-R0(-b)](N+l)-'\\

(3.25) = |l| ||(A^+iyP/î(-i)77/Po(-è)(Ai+l)-rI

ú \ß\ KN+iyR^-bw+iy^w-iKN+iy-'HtHo+by^N+iyw.

By (3.1) and (3.9) we see that (3.25) is 0(\ß\). We conclude by the cited stability

theorem [4, p. 206] that A e res (77, [ JQ for \ß\ sufficiently small; that is, (3.24)

holds.

But

(N+iy+1R„(X)(N+l)-'

= (N+ \y+1Rß(-b)(N+ l)"r[l +(b + X)(N+ \)rRe(X)(N+1)"'].

According to this identity, (3.1) and (3.24) yield the desired conclusion.

Remarks. With a good deal more work involving the method of double com-

mutators it is possible to prove (3.23) with the power Rre+1.

We have been unable to prove these higher order estimates for the general

P(4>) theory when |arg/?| ^w/4. Perhaps we should explain why neither the "pull

through" method of Theorem 3.1 nor the commutator method of Lemma 3.4

works in this case. In the first method, operator inequalities like (3.4) could be

established even when ß is in the cut plane and R0 is not selfadjoint, provided that

we could prove that operators of the form Hjl2(R*)V2 were bounded. However

there exist sectorial operators for which A1I2(A*)~112 is not bounded [5], [6], and

we are unable to prove that 77fl with lmß¥=0 does not fall into this pathological

class. The virtue of the commutator method or the double commutator method

referred to above is that each commutator of A7 (or 770) with 77; reduces the "num-

ber singularity " of 77, by one. In the case of <f>*, 77, has a number singularity of

order only N2 and thus a commutator can be dominated by the other terms that

occur as in (3.10). This is no longer possible when deg PS: 6. Experience with the

nonrelativistic case [12] suggests one might be able to bound the commutator with

the 77,2 term but no effective way of utilizing 77,2 has been found.

We remark that the higher order estimates provide yet another proof of resolvent

convergence as |j8| -»■ 0 (at least in the region of validity in the ß plane of the

estimates). For 4>i, Re(-b)-R0(-b) = O(\ß\) by (3.25) with r = 0. We can similarly

show that, for<¿2n, R^-b)"-1 -R0(-by~1 = 0(\ß\) for |argi8| <tt/4.

Finally, we settle the domain problem that arose in the previous proofs. Let

77,>ff be a momentum cutoff version of 77,, obtained for instance by truncating the

momentum integrals (3.11) occurring in 77, to have domain of integration \kt\ f^K.

Define HKt„=H0+ßHItK.
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We now specialize to the </>4 model and extend (3.8) to ß in the cut plane (with

\ß\ small). It is a curious fact that the proof of (3.8) is easier when lmß=^0 than

when ß > 0. We first need a technical estimate similar to that used by Glimm and

Jaffein [1].

Lemma 3.3. Let H,= :(/>\g): and let r^O be an integer. Then

(3.10) ±i[(H0+ l)(N+ If, H,] ^ const. (H0+ l)2(N+1)'.

Remark. It is for convenience only that we assume H, has no terms of lower

degree or that we do not take r to be any real number.

Proof. A standard calculation (cf. [2]) shows that H, = £*. o W, where

(3.11) W, =    dk,- ■ ■ dki Wj(ku ..., ki)a*(k,)■ ■ ■ a*(k,)a(kj+,)■ ■ ■ a(k^)

creates j and destroys (4 —/) particles, and the kernel w¡ e L2(0tv). It is thus suffi-

cient to prove that, for/=0,..., 4,

a, = (H0+i)-\N+iyl2[(H0+i)(N+iy, w^Ho+iy^N+iy r/2

is bounded. We show that A, is bounded as a bilinear form on Dx D and the

desired operator extension follows by the Riesz Representation Theorem. More-

over it is sufficient to prove that for 3> e J¡rs+Í n D, and Y e &»+*-in d

(3.12) |(0), /LY)| á a||0|| ||Y||

where a is independent of s. For then, for 8,-ne D,

\(0, Añ)\ = 2 (ös> AjT)S) = 2 ("*+* Aws+t-j)

^«2 K+*ll hs+*-i\\ ==4H toll
s

by Schwarz's Inequality.

We further simplify the problem by writing A, = B, + C, and proving (3.12)

separately for B, and C,, where

B, = (N+l)~rl2[(N+iy, W^N+iyt^Ho+l)-1

and

C, = (H0+l)-\N+iy>2[H0, W,](N+iy2(HQ+l)-\

With i>, Y as above we compute that

(cp, B¡¥) = bj(<¡>, (N+ l)-íWj(H0+ 1)-"F)

where

*. = (s+j+iy-*l2[(s+j+iy-(s+5-jy](s+5-jy>2.

But bs is bounded uniformly in s, and by an TV-estimate, so is the operator

(TV+1)"1 W/(i/o+ 1)-1; hence,

(3.13) \i9,BjY)\ ¿ *||0|| IY H

where b is independent of s.
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Similarly we calculate that

(3.14) (O, C,Y) = c,(0, (770 +1)-1 W](H0 + 1)"»F)

where cs = (s+j+ \)-rl2(s+5-j)rl2 and W'¡ has the form (3.11) but with kernel

w'i(ku ...,ki)=    2 M^) -  2   ^(^i) w>(^i» • • • » ̂ 4)-
U=l i=i+l J

By an AVestimate

(3.15) |[(/70 + l)-1^;(/Po + l)-1|| ^ const. \\E(ku .. „k^-^w'lk,,.. „kjy

where E(ku ..., Ä:4) = maxi#j. p(kt)p(kv). We estimate that

P(/c1(..., ki)~ll2p(kl) Ú const. j*1/2(Jfci+ • • • +kj.

Hence the norm in (3.15) is dominated by

const. IIju.1'2^!-!-Vk^w^jci,..., fc4)|U2

which is finite provided that g(&)|/c|£ eP2 for e>0 (cf. [8, Lemma 4.1]). Since cs

is bounded uniformly in j we see from (3.14) and (3.15) that

(3.16) |(<D,QY)| gC||a»|||Y||

where c is independent of s.

Combining (3.13) and (3.16) yields (3.12) and the lemma.

We next mimic a technique of [12] when Im ß^O:

Lemma 3.4. Let HI=:</>i(g):, and suppose that e>0 and the integer r^O are

given. There is a constant B such that if \ß\ ikB, e^ |arg ß\ ^n-s, and A e res (Hß),

then

(3.17) ||(770+1)(7V+1)%(A)T|| Ï c||(7V+irF||

where the constant c is independent of ß and of X for X in bounded subsets ofC.

Proof. It is sufficient to prove that on DxD

(3.18) (H0+l)2(N+l)2r ^ a2(H* + l)(N+l)2r(H+l)

where the constant a is independent of ß in the cited region. For then if Y e D,

\\(H0 + \)(N+ Yf¥\ Ú a\\(N+17(77+ 1)T||

Ú a\\(N+\y(H-XyY\\+a\X-\\\\(N+\y¥\\

by the triangle inequality. Setting <t> = (77-A)Ye D' = (H-X)D, we obtain from

(3.19) by induction

_     \\(H0+\)(N+ l)%(A)cD|| Ú const. { %  ll(^+ l)'*ll + ll*i(A)*lll
(3.20) U=o )

Ú const. ||(7V+l)rO||.
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Lemma 3.7. Assume that ß^O. For real a and X e res (HKiß) D is a core for both

(HK,ß-Xy and(N+iy(HKtß-X).

Proof. We sketch the proof which is based on the methods of [9]. By the Pull

Through method we establish the estimate

(3.26) (H0 + l)' Ú aK(HK,ß + by

where aK and b are positive constants with aK depending on K. Actually the domain

problem arises again in the proof of (3.26); thus it is necessary to pass to a further

cutoff hamiltonian HK¡v¡e [9, §2] which is known to be essentially selfadjoint along

with its powers on a nice domain and for which (3.26) can be definitely established

with constants independent of the cutoff V. Then (3.26) is obtained by limits and

the Principle of Cutoff Independence [9].

By TV-estimates it is easy to prove a sort of inverse to (3.26):

(3.27) (HK.B + by â cK(H0 + iy.

Taken together (3.26) and (3.27) imply that

D(m\ß) a D(H$) c D(H'Ktß)

and accordingly that D(HS') is a core for H'K¡0 since D(H%[B) is. It follows at once

from (3.27) that HjKiß is essentially selfadjoint on D since HS' is.

That D is also a core for (N+l)a(HKß — A) is a consequence of (3.26) and the

fact that D is a core for (HKtß-X)a + 1 (cf. [9, Lemma 4.9]).

It remains to extend Lemma 3.7 to nonreal ß in the region of interest, namely,

{ß | |argiS| <tt/4} for ?(</>) and {ß | |arg/3| <■*, \ß\<B} for </>*. Call this region il.

For then we could prove the inequalities (3.3) and (3.17) for the cutoff theory,

that is, with Rß(X) replaced by RK,ß(X) = (HKß — A)-1 but with constants independent

of ii. When K-^ oo, RKß -» Rß in norm by (iv) of §2 and [13, Lemma III.16], and

thus we recover (3.3) and (3.17) by the Principle of Cutoff Independence.

To this end we note as in the proof of Lemma 3.7 that for P(</>) we can also

prove an estimate like (3.17),

(3.28) ||(/V+l)'(üo + l)Y|| Ú cK\\(N+iy(HK,ß+by¥l      W e D,

for ß e il, where now the constant cK depends on K but can be chosen independently

of ß for ß in compact subsets of il. It follows from (3.28) that

||(TV+1)'/SÜ,.KY|| = \\(N+iy(HKiß-H0)W\\ í dK\\(N+iy(HKiß + bW\\

where dK is independent of ß in compact subsets of il. Consequently, when \8ß\

< \ß\/dK we have

(3.29) \\8ß(N+ D'Ü^YH á a||(TV+ iy(HKtß+by¥\\,       W e D,

where a< 1. That is, 8ß(N+ l)'H[K is a small perturbation (in the sense of Kato

[4]) of (N+ l)r(HKtß + b), and if (3.29) holds on a core C for (N+ l)r(HKJ + b) then

C is also a core for (TV+ l)r(HKtß+öß + b).
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It is now clear how to extend Lemma 3.7 by induction to any ß e D. We reach

ß by a sequence of points ßj = \ß\emi, j=0, 1,..., m, where 90 = 0, 6m = arg ß, and

\ewi+i-etei\ < l/dK. By Lemma 3.7, D is a core for (N+l)a(HKyßo + b) and so by

(3.29) it is also a core for (N+l)a(HKtßl + b). Repeating this procedure completes

the proofs of this section.

4. Asymptotic expansions. In this section we consider the asymptotic expansions

of various stationary objects in terms of ß in the cut plane. For ß > 0 it is known

[2] that Hs = H0+ßH,(g) has a unique ground state Q,, normalized by 110,11 = 1

and (Q,, fí0)>0. Let P, = (íí,, 77,fí,) be the ground state energy and Pß the pro-

jection onto Q,. We shall also be concerned with equal time vacuum expectation

values of products of fields,

(4.1) w„ = (ah^h1y--<KK)^,\

where h} e L2(3/t), and </>(h) = ¡ <f>(x, 0)h(x) dx is the time zero field.

For a fuller discussion of the following material see [13, §IV.3]. There it is shown

that, by virtue of property (a) in the introduction, the operators 77, form an

analytic family of operators for ß in the cut plane. Here "analytic" means that the

resolvents P, are norm difierentiable in ß; in fact, the family 77, forms a self-

adjoint analytic family of type (P0) in the sense of T. Kato [4, Chapter VII]. It

follows that Q, and P, have an analytic continuation to a neighborhood of the

positive real ß-axis. Actually, we have analyticity in a larger region :

Theorem 4.1. Let e>0. Then there isa B>0 such that P,, Q,, and Wß are analytic

in{ß\\argß\UTT-e,\ß\uB}.

Proof. The analyticity of P, and Q, follows from the general theory of analytic

families [4] and the norm resolvent convergence as |j3| -> 0 of §2. As for Wß, we see

from

A-ß{Wa-wß) = lçjqf> <Kh> • ■ W,)".) + (¿ft)- • -*0r)û* %qr)

that the analyticity of Wß follows from that of Í2, and the strong continuity in ß

of <bß = <f>(h))- ■ -<l>(hT)Q-ß. This latter fact can be seen either (incompletely) from

higher order estimates, or from (iv)-(vi) of §2. For by (vi) the projection onto Q,

is given for small |j8| by the integral

(4.2) P, = ~ <j^ _^ P,(A) dX

with 0<p<m. Í2,=P,Q0/(Q0,P,Q0)1/2. By (iv), P, is V norm continuous in ß

where peI(tt/2 — e) of (2.9). But the product ^(h^- • -<l>(hr) is a multiplication

operator which is in all L",q<co. Hence fl>, is V continuous.
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As in the above theorem we take ß in the sector |arg j8| ̂ tt — e and p e I(tt/2 — e)

where e > 0. Consider the expansion

N

,.„     W>Y = 2 i-miHo-kyWiHo-X)-1*
(4.3) n = o

+i-ßy^RßiX)[H,iH0-xyT+lxr-

According to general asymptotic theory (cf. [4, p. 439-451]), the expansion (4.3)

is asymptotic in Lp provided all the terms [(770-A)"177,]n(770-A)_1Y make sense

and A is in

■I A   lim sup |P,(A)||p < oo
I. B-0

By the results of §2 this is certainly the case when Y is in L™(M) and Re (Xew) is

sufficiently negative for z = teie in the cone (2.11).

By using the norm resolvent convergence (v) of §2 and the consequent stability

of P0, we obtain a somewhat stronger result :

Theorem 4.2. Let e>0 and suppose that \argß\^tT—e and p e I(tr/2 — e). For

some q>p,letx¥ e P"(M) and X e res (770 [ L") n res (770 \ Lq). Then for sufficiently

small \ß\, X e res (77, \ LP) and the series (4.3) for P,(A)Y is asymptotic in Lv as

ß -> 0. The series obtained for P,, Q,, P,, and Wß by inserting (4.3) into (4.2) are all

asymptotic as ß -> 0.

Remarks. 1. The asymptotic series obtained for P, and O, are just the Rayleigh-

Schrödinger series, and the series for P, can be expressed by a set of Feynman

diagrams.

2. In particular we can take Y e D which is contained in Lq{M) for all q < oo

[13, Theorem III.9]. For/? = 2 we can also choose Y e C°°(7V).

Proof. The fact that A e res (77, \ Lv) for sufficiently small ß follows from stan-

dard theory (cf. [4, p. 206]) and the norm resolvent convergence (v) of §2. To prove

that the remainder term in (4.3) is Pp-bounded we note that, by interpolation,

(770 - A) -1 is a bounded operator on V for r e [p, q]. Moreover, since 77, e Ls for all

s < oo we see by Holder's inequality that H, maps Pr into U~6 for any 8>0. Hence

[(/70-A)-177,]'l(77o-A)-1Y e L" for all n. The rest of the theorem is immediate.

We have been unable to apply our methods satisfactorily to time-dependent

quantities such as the fields

(4.4) 4>e(h, t) = exp iitHß)<l>ih) exp (- itHß).

The difficulty is that the operator exp(-z77,) is well defined for z in the cone

(2.11) which does not include z=±it when ß is nonreal. In fact, as argß^-tr,

exp(-z77,) is defined only for z=-/r+0, and, as argß^ —w, for z=*Y+0,

where t > 0. Accordingly, we see that our methods could be applied to objects of

the form

(4.5) P, = (Q,-, tihj exp iiHßih + iei))<l>ih2) exp (/77,(¡2 + íe2)) ■ ■ ̂(/ir)0,)
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where ex,..., er>0 and tlt ■ ■ -, *r^0 depending on whether argjS^O. T0 can be

regarded as a time-ordered VEV continued to the forward tube. However, at the

present stage of the real ß theory, only the time-ordered VEV's with r = 4 are

known to exist as tempered distributions [9].

5. Borel summability. In this final section, we prove that for the (<p*)2 theory

the functions Wß introduced by (4.1) can be recovered from their perturbation

series by the method of Borel summability. Specifically, let h,,-..,hr in L\M)

be given along with e>0. Let Wß have 2™= o anßn as asymptotic series. Then there

exist a B > 0 and a > 0 such that

(i) g(z) = 2"= o (ajn!)zn converges if |z|<a and has an analytic continuation

to the sector |arg z| <w/2;

(ii) if |arg ß\ <tr/2-e, \ß\ <B, then J" g(xß)e~x dx exists;

(iii) Wß = ftgixß)e-'dx.
The Borel summability (i)-(iii) of We complements that of the ground state

energy, Ee, proven in [11]. It brings us one step closer to the scattering matrix

which is expressed in terms of time-ordered unequal time vacuum expectation

values.

By Watson's Theorem [3], to prove (i)-(iii) above, it is sufficient to prove that

the remainder \rn(ß)\^Aonn\\ß\n for all ß with \ß\<B, |arg/3| <ir-e where A and

B are (e-dependent) constants and rn(ß) —Wß-2m=o amßm- As usual we treat the

remainders of the numerator and denominator of

Wß = (ilQ,Pß$(hu---$(huPßil*)/(il*,Pßila)

separately. Since the denominator has already been discussed in [11], we need

only deal with the numerator. Finally, by (4.2), it is enough to bound the re-

mainder of

(5.1) (iio, *i(A'#(Ai)- • -^^Rß(X)Ho)

uniformly in A, A' with |A| = |A'| =p..

By using (4.3), one finds the remainder term for (5.1) is given by rn(ß)

= (-ß)n2l = oCk where

ck = (il0, [RoWHtf-XRM'Mh,)- ■ ■<KhT)R¿X)[H1R¿Áy]¡'Clo).

Since Aon(n + l)\^A(2o)nn\, it is enough to obtain a bound of the form Aann\ on

each ck. By (3.21), in the sector of interest in ß, (N+ l)sRe(X)(N+ l)~s + 1 is bounded

uniformly in A. Taking s= [(r+1)/2] we see that

\ck\ ï \\Rß(X')\\ |^(/i1)--^(//r)(TV+l)-s¡ ||(TV+l)si?,(A)(TV+l)-s + 1||

x lirÄÄciA')]""'^! ||(tf+l)'-1[#/Äo(A)],eßo||.

The first three terms on the right side of (5.2) are independent of« and are bounded

uniformly in A, A' and ß with |/S| small, |arg/3| <ir-e. As in [11], the next terms are
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bounded by Aan~k(n—k)\ and Aak(k+s)\ where A and a are independent of

A, A', n and k. Since

(k+s)\(n-k)\ Ú (n+s)\ = ("+S\n\s\ g, 2n+sn\s\

we see the right-hand side of (5.2) is bounded by C(2o)nn ! where C is independent

of A, A' and ß satisfying the required conditions. This completes the proof of the

bound on the remainder term for Wß. We have thus proved

Theorem 5.1. Let 77,= :<¿4(g):. For hu .. .,hreL\M) let

wB = (Cih<KhY'-¥hrW

where Í2, is for ß>0 the vacuum vector for H0+ßH, normalized by |£2,|| = 1,

<ß,, Q0>>0. Then the asymptotic series for Wß is Borel summable to Wß.
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