A CLASS OF COMPLETE ORTHOGONAL SEQUENCES OF BROKEN LINE FUNCTIONS

BY J. L. SOX, JR.

Abstract. A class of orthonormal sets of continuous broken line functions is defined. Each member is shown to be complete in $L_2(0, 1)$ and pointwise convergence theorems are obtained for the Fourier expansions relative to these sets.

- 1. **Introduction.** It was shown in [2] that each sequence of points which is dense in [0, 1] determines a complete orthonormal set of step functions in $L_2(0, 1)$. In this paper we prove that each such sequence of points also determines a complete orthonormal set of continuous broken line functions similar to that constructed by Franklin [1]. The Fourier expansion of a function $f \in L_2(0, 1)$ relative to a set of this class is found to converge at each point of continuity of f and is shown to converge uniformly on [0, 1] when f is continuous on this interval.
- 2. **Definitions.** Suppose that $A = \{a_n\}_{n=1}^{\infty}$ is a sequence of distinct points in (0, 1) which is dense in [0, 1] and let $\{h_n\}_{n=0}^{\infty}$ be the set of linear functions defined by

$$h_0(x) \equiv 1,$$
 $h_1(x) = x,$ $x \in [0, 1];$
 $h_{n+1}(x) = 0,$ $x \in [0, a_n),$
 $= x - a_n,$ $x \in [a_n, 1].$

Since it is evident that no h_i is a linear combination of the other functions in the set, we see that the h_i are linearly independent on [0, 1]. Thus, one can employ the Gram-Schmidt process to construct an orthonormal sequence $\{u_n(x)\}$ such that each u_n is a linear combination of the h_i , $i \le n$. Because of the triangular nature of this construction, each h_n can also be expressed as a linear combination of the u_i , $i \le n$.

3. Completeness of $\{u_n\}$. To prove that the sequence of functions $\{u_n\}$ is complete in $L_2(0, 1)$, one needs an obvious property of the sequence A which is given in Lemma 1. In this lemma and throughout this paper the term "adjacent points" of a finite subset $A_N \subset A$ will be used to denote successive elements of the subset when its elements are arranged in order of magnitude; i.e. a_m and a_n are adjacent points of A_N if and only if there is no $a_k \in A_N$ such that $a_m < a_k < a_n$ or $a_n < a_k < a_m$.

Received by the editors July 6, 1971.

AMS 1969 subject classifications. Primary 4211, 4215, 4216, 4217; Secondary 4020.

Key words and phrases. Franklin functions, Fourier series, orthonormal set of functions, complete in $L_2(0, 1)$, pointwise convergence.

LEMMA 1. Let $A = \{a_1, a_2, \ldots\}$ be a sequence of distinct points of (0, 1) which is dense in [0, 1]. Then for each $\delta > 0$ there is an integer N_{δ} such that if $N > N_{\delta}$, (i) any pair of adjacent points a_m and a_n in the subset $A_N = \{a_1, a_2, \ldots, a_N\}$ satisfy $|a_m - a_n| < \delta$; (ii) $d(x, A_N) < \delta$ for $x \in [0, 1]$. $(d(x, A_N))$ is the distance from x to the A_N defined in the usual manner.)

THEOREM 1. The orthonormal sequence of functions $\{u_n\}$ is complete in $L_2(0, 1)$.

Proof. Let $0 < a_{i_1} < a_{i_2} < \cdots < a_{i_N} < 1$ be the points of $\{0, a_1, a_2, \ldots, a_N, 1\}$ arranged in order of magnitude. If P_N is any continuous polygonal function (broken line function) which is linear on each subinterval $[a_{i_{k-1}}, a_{i_k}]$ of the partition of [0, 1] determined by these points, it is clear that P_N can be expressed as a linear combination of the h_i , $i \le N$. Thus since each h_i , $i \le N$, is a linear combination of the u_i , $i \le N$, any such P_N is a linear combination of the u_i , $i \le N$.

Now suppose that F is any continuous function on [0, 1] and let δ be a positive number such that $|F(x_1) - F(x_2)| < \varepsilon/2$ when $x_1, x_2 \in [0, 1]$ and $|x_1 - x_2| < \delta$. By Lemma 1 we can choose an integer N_{δ} such that if $N > N_{\delta}$, the norm of the partition of [0, 1] determined by the points of A_N is less than δ . Therefore, the broken line function P_N which equals F at each point of this partition and is linear elsewhere in [0, 1] satisfies $|P_N(x) - F(x)| < \varepsilon$ for $x \in [0, 1]$. It follows from the preceding remarks that there is a linear combination of u_i , $i \le N$, say T_N , such that $|T_N(x) - F(x)| < \varepsilon$ if $x \in [0, 1]$ or such that

$$||T_N - F||_2^2 = \int_0^1 [T_N - F]^2 dx < \varepsilon^2.$$

Since the set of continuous functions on [0, 1] is dense in $L_2(0, 1)$, we conclude from the last inequality that the set of linear combinations of the u_i is also dense in this space. This statement, of course, implies that the sequence $\{u_n\}$ is complete in $L_2(0, 1)$.

4. Convergence of the Fourier $\{u_n\}$ expansion. Since $\{u_n\}$ is a complete orthonormal sequence in $L_2(0, 1)$, each $f \in L_2(0, 1)$ has the norm-convergent Fourier expansion

$$f(x) \sim \sum c_k u_k(x)$$

where

$$c_k = \int_0^1 f u_k \, dx.$$

We next investigate the pointwise convergence of this expansion.

THEOREM 2. The Fourier $-u_n$ expansion of $f \in L_2(0, 1)$ converges to f(x) at each point $x \in [0, 1]$ at which f is continuous.

Proof. Let $S_N(x, f)$ denote the Nth partial sum of (1). Since each u_i is a linear

combination of the h_k , $k \le i$, S_N itself is a linear combination of the h_i , $i \le N$, and thus is a continuous broken line function which is linear on each subinterval of the partition of [0, 1] determined by the points of $A_N = \{a_1, a_2, \ldots, a_N\}$. Suppose $0 < a_{i_1} < a_{i_2} < \cdots < a_{i_N} < 1$ are the points of A_N arranged in order of magnitude and let K_0, K_1, \ldots, K_N denote the characteristic functions of the intervals $[0, a_{i_1})$, $[a_{i_1}, a_{i_2}), \ldots, [a_{i_N}, 1]$. Then

$$S_N(x,f) = \sum_{i=0}^{N} c_i u_i = \sum_{i=0}^{N} (\alpha_i + \beta_i h_i) K_i$$

where the α 's and β 's are constants. To determine α_i and β_i we use the well-known fact that if T_N is any linear combination of the u_i , $i \le N$, $\int_0^1 (f - T_N)^2 dx$ assumes its minimum value when $T_N = S_N$. Thus α_i and β_i must have values which minimize

$$\int_0^1 \left[f - \sum_{i=0}^N (\alpha_i + \beta_i h_i) K_i \right]^2 dx$$

and when the partial derivatives of this integral with respect to α_m and β_m are equated to 0, one has for each $m=0, 1, 2, \ldots, N$,

(2)
$$\int_0^1 \left[f - \sum_{i=0}^N (\alpha_i + \beta_i h_i) K_i \right] K_m dx = 0,$$

(3)
$$\int_0^1 \left[f - \sum_{i=0}^N (\alpha_i + \beta_i h_i) K_i \right] K_m h_m \ dx = 0.$$

Now if $I = [a_{i_m}, a_{i_{m+1}})$, we obtain from (2) and (3) respectively

(4)
$$\int_{I} f dx = \alpha_{m} |I| + \beta_{m} \frac{|I|^{2}}{2}$$

and

Thus

$$\alpha_m = \frac{2}{|I|^2} \int_I (2|I| - 3h_m) f \, dx$$

and

$$\beta_m = \frac{6}{|I|^3} \int_I (2h_m - |I|) f \, dx.$$

Since

$$\int_{I} (2|I| - 3h_m) \ dx = \frac{|I|^2}{2}$$

and

$$\int_{I} (2h_m - |I|) dx = 0,$$

we have if $x_0 \in I$,

$$|S_{N}(x_{0}, f) - f(x_{0})| = |\alpha_{m} + \beta_{m} h_{m}(x_{0}) - f(x_{0})|$$

$$= \left| \frac{2}{|I|^{2}} \int_{I} [2|I| - 3h_{m}(x)] [f(x) - f(x_{0})] dx \right|$$

$$+ \frac{6h_{m}(x_{0})}{|I|^{3}} \int_{I} [2h_{m}(x) - |I|] [f(x) - f(x_{0})] dx \right|.$$
(6)

If x_0 is a point of continuity of f, there exists a positive number δ such that $|f(x)-f(x_0)| < \varepsilon$ when $x \in I$ and $|I| < \delta$. By Lemma 1 there is an integer N_{δ} such that if $N > N_{\delta}$, $|I| < \delta$ and since $|h_m(x)| \le |I|$ when $x \in I$, we find from (6) if $N > N_{\delta}$,

$$|S_N(x_0, f) - f(x_0)| < 10\varepsilon + 18\varepsilon = 28\varepsilon.$$

THEOREM 3. If f is continuous on [0, 1], the Fourier $-u_n$ expansion (1) converges uniformly to f(x) on [0, 1].

Proof. If $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x_1) - f(x_2)| < \varepsilon/28$ when $x_1, x_2 \in [0, 1]$ and $|x_1 - x_2| < \delta$. By Lemma 1 we can choose an integer N_δ such that if $N > N_\delta$, the norm of the partition of [0, 1] determined by A_N is less than δ . Then from equation (6) of the preceding proof we see that $|S_N(x_0, f) - f(x_0)| < \varepsilon$ for any $x_0 \in [0, 1]$.

In closing it should be pointed out that if the set A involved in the definition of $\{u_n\}$ is taken to be the particular set described in §7(B) of [2], the resulting $\{u_n\}$ is the orthonormal sequence of functions defined by Franklin [1].

REFERENCES

- 1. P. Franklin, A set of continuous orthogonal functions, Math. Ann. 100 (1928), 522-529.
- 2. J. L. Sox and W. J. Harrington, A class of complete orthogonal sequences of step functions, Trans. Amer. Math. Soc. 157 (1971), 129-135.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27607