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ON THE RANK OF A SPACE

BY

CHRISTOPHER ALLDAY

Abstract. The rank of a space is defined as the dimension of the highest dimen-

sional torus which can act almost-freely on the space. (By an almost-free action is

meant one for which all the isotropy subgroups are finite.) This definition is shown to

extend the classical definition of the rank of a Lie group. A conjecture giving an

upper bound for the rank of a space in terms of its rational homotopy is investigated.

1. Introduction. Various attempts have been made to define the rank of a

space. The motive for these definitions has been a desire to extend the classical

definition of the rank of a compact Lie group. The latter is the dimension of a

maximal torus in the group, and it finds algebraic expression in the following

results of Hopf and Serre (Serre [12]).

Theorem (Hopf). If G is a compact connected Lie group of rank k, then the rational

cohomology of G is an exterior algebra on k generators of odd degree.

Corollary (Serre). If G is a compact connected Lie group of rank k, then

k = — xniG), where xn denotes the rational homotopy Euler characteristic, defined

explicitly in §1.1 below.

A prominent attempt to generalize the definition of rank has been that of Milnor

and Smale, which is the following.

Definition. If M is a differentiable manifold, then rank (M) = the maximal

number of linearly independent commuting vector fields on Af=the maximal

number k such that the additive group Rk acts differentiably on M, with each orbit

of dimension k.

This definition has proved to be difficult to work with, mainly because relatively

little is known about the actions of noncompact groups. Most of the results have

concerned only three-dimensional manifolds. For example, there is the work of

Lima [9], in which he proves that the rank of S3 is equal to one.

This paper is concerned with the rank of a space, as defined by Wu-Yi Hsiang.

This definition, given in §1.1 below, is based on compact group actions, namely

torus actions, and the actions are not required to be differentiable. The rank is thus

defined for all topological spaces. We prove that the Hsiang rank of a compact
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Lie group is equal to its rank as a Lie group. Some results are obtained also for

certain homogeneous spaces. These are particularly interesting for, if G is a compact

Lie group, and if H is a closed subgroup of G, then

-XTtiGIH) = -X7r(G) + Y7r(77) = rank (G)- rank (27).

These results were obtained as part of my doctoral dissertation at the University

of California, Berkeley, written under the direction of Professor Wu-Yi Hsiang.

I would like to express my sincere gratitude to Dr. Hsiang for his encouragement

and his guidance, and for the perspicacity of his conjecture.

1.1. Definitions. Let G be a torus, let I be a topological space, and let

<$: GxX^ Xbe a continuous action of G on X having finitely many orbit types.

Then Hsiang, in [7], makes the following definitions.

Definition. Let Gx denote the isotropy subgroup of G at x, and let iGx)0

denote the identity component of Gx. Then set

rk0i$>) = min {corankHGX)0) : xe X}

= min {rank (GI(GX)0) : x e X}.

(Since G is a torus, rank and dimension are synonymous.)

Definition. rk0iX) = max {rk0(®)}, where $ ranges over all continuous torus

actions on X, having finitely many orbit types.

rk0 may be called the zero-rank, the connected rank, the toric rank, or, when

there is no source of confusion, just the rank. In [7], Hsiang defines simultaneously

the y>rank of an action and of a space ; this is done analogously to the above using

actions of elementary /7-groups for prime p.

By the rational homotopy groups of X, we shall mean, as usual, the groups

77^) (g> Q, fè 1, where Q denotes the rationals, and where tt^X) has been made

abelian, if necessary. Then the rank of tt¡(X) as an abelian group, rank (77^)), is

equal to the dimension of tt^X) ® Q as a rational vector space, dim faiX) 0 Q).

Definition. If X has finitely generated homotopy groups, which are purely

torsional except in finitely many dimensions, then we shall say that X has finitely

generated rational homotopy (FGRH), and we shall define the homotopy (Euler)

characteristic of X as

XTriX)= 2 (-1)' dim (n¿X) ®Q).
fêi

(This is -xL*iX), where L+(X) is the rational homotopy Lie algebra of X, with its

usual grading.)

Let F-> E-¥ B he a fibration with base space B, total space E, and fibre F, all

three being connected. By considering the rational homotopy exact sequence of the

fibration, it is clear that, if any two of F, E and B have FGRH, then so does the

third, and x7T(E)=xtt(F) + xtt(B).

In the following we shall use sheaf theoretic cohomology (Bredon [3]). Later we

shall restrict our attention to a class of spaces on which sheaf theoretic cohomology

and singular cohomology are equivalent. We consider closed supports only.
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If X has cohomology of finite type over the integers, let P0iX, 0 denote the

rational Poincaré series of X in indeterminate t. That is,

P0iX, t)= 2 dim (77"(^; Q))t\
TlëO

By P0i Y, t)^P0iX, t), we mean that dim (77"( Y; Q)) ̂  dim iH\X; Q)), for each n.

Definition. If X has integral cohomology of finite type, then we define p0iX)

to be the order of the pole of P0iX, t) at /= 1. Specifically

PoiX) = inf {a : (1 -tyPoiX, f)-*0 as rUl-}.

(/ tends to one from below through real values, and poiX) is defined only if the

radius of convergence of P0iX, t) is at least one.)

For example, consider C7"°, infinite complex projective space. P0iCPm,t)

= 2nèo t2n = il-t2y\ Thus PoiCP«) = 1.

If poiX) is defined and if P0iY, t)úP0iX, t), then PoiY) is defined, and PoiY)

^poiX). Furthermore, if F-^- £-> 7? is a fibration, oriented in the sense of Spanier

[13], and p0iF) and p0iB) are defined, then so is p0iE), and p0iE) = p0iB) + p0iF).

To see this, let Ef'q denote the rational cohomology Leray-Serre spectral sequence

of the fibration, and let E? = ZP+q=n Ef-V.

Then

PoiE, t)= 2 dim (£»)/»
71È0

^ 2 dim(£2")i« = P0iB, t)P0iF, t).
ngO

Hence p0iE) exists, and p0iE) ^ p0iB) + p0iF).

1.2. Propositions. Let G be a compact topological group which acts on X. Then,

as in [2], we have an N-universal bundle for G, G -> EG -* BG; a universal bundle

for G,G->EG-*BG; and the induced spaces X^ = iXx E%)/G and XG = iXx EG)/G

together with the associated bundles X -> XG -*■ 7?£ and X^- Xa ->■ Ba.

Following Bredon [4], we set

H*iBa; Q) = proj lim H*iB£; Q)

and

H*iXG; Q) = proi lim H*iXg;Q).

Suppose that G is a torus, and let O : G x X -> X denote the action of G on X.

Suppose, furthermore, that X is compact, that X has finite-dimensional rational

cohomology, and that dim0 iX) is finite, in the sense of Cohen [5]. Then in [7]

Hsiang proves the following crucial theorem.

Theorem 1.2.1 (Hsiang). If í> has a finite number of orbit types, then rkQi<!>)

= PoÍBg)-PoÍXg).
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A similar result for y?-rank is included in [7]. Of course, in our case, p0(BG)

= dim G.

With the same restrictions on X, in [7], Hsiang also notes the following.

Proposition 1.2.2. Ifx(X)¿0, then rko(X)=0. The corresponding result holds

for p-rank, when x(X)^0 modulo p.

The proof is by Floyd's formula, that, if <I> is an elementary /?-group action on

such a space X, with finitely many orbit types, and with fixed point set F, then

x(X)=x(F) modulo p, and x(X) = x(F) when/? = 0.

1.3. Conjectures. Let K denote the class of compact connected finite-dimensional

metrizable locally contractible topological spaces. Then K coincides with the class

of compact connected finite-dimensional metrizable absolute neighborhood

retracts, and K contains the class of compact connected CW-complexes. Further-

more, any space in K is dominated by a finite CW-complex, and, hence, any

simply-connected space in K has the homotopy type of a finite CW-complex (viz.

Hu [8]).

The class K has two properties which are very useful to us. First, from Bredon

[3], it follows that sheaf theoretic cohomology and singular cohomology coincide

on K. Secondly, if X is in K and if G is a torus acting on X with finitely many

orbit types, then the orbit space X/G is in K. The compactness and connectedness

of X/G are obvious, and the metrizability is easy and is known under more general

conditions (Palais in [2]). The finite dimensionality of X/G is also true more

generally (Montgomery and Yang [11], Palais [2]). Finally, the local contractibility

of X/G in these circumstances is a result of Conner [6].

The following three conjectures play an important role in the study of rank.

The first is owing to Hsiang [7].

Conjecture (*). If X is in K, and if X has FGRH, then rk0(X) ^ -x"(X).

Conjecture (**). If X is a path-connected topological space, with FGRH, then

Po(X) ^ xn(X). (In this case p0(X) is defined in terms of singular cohomology.)

Conjecture (***). If X is in K, and if X has FGRH, then x"(X) ^0.

It is clear that (**) implies (***), and that (*) implies (***). We shall show that

(*) and (***) are equivalent for simply-connected spaces.

2. Relations between the conjectures. In this section, we establish the equivalence

of the first and third conjectures, and make some definitions suited to the study of

the second.

2.1. Canonical actions. By an almost-free action of a compact Lie group on a

space is meant an action for which all the isotropy subgroups are finite.

Observation (Hsiang). If X has rank r, then we can find an action, 3>, of the

r-torus on X, which is almost free. That is, 30: T'x Z-> X such that rfc0(O)

=rk0(X) = r.

Proof. Let f:rkxl^l,¿§r, have rank r. Since there are only finitely many
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orbit types, there are only finitely many isotropy subgroups T^Tk; and for each i,

dim Tfsk — r. It is now easy to find a connected closed subgroup of Tk, say 77, of

dimension r, such that H intersects the identity component of each Tt in the identity

alone.

Definition. If X has rank r, and if $ is an almost-free action of the r-torus on

X, then we shall say that $ is a canonical action on X.

In general we shall denote the fibre bundle X -»■ XG -»■ BG by £($>), and the fibre

bundle G -» Xx EG -> XG by -qi^>). If O is canonical we shall write $(X) and ry(A')

for £(0) and ^(«t), respectively. There will be no loss of generality through failing

to indicate the particular canonical action giving rise to £(X) or r¡iX).

By Theorem 1.2.1, if 0 is canonical, then p0iXG) = 0.

Theorem 2.1.1. (*) is true for simply-connected spaces if and only //(***) is true

for simply-connected spaces.

Proof. Since, by definition, rko(X)^0, the implication (*) => (***) is clear.

To show the reverse implication, let X be a simply-connected space in K, with

FGRH, whose rank is r, and consider a canonical r-torus action on X.

Let q denote the projection XG -> X', where X' = X/G is the orbit space. Then,

for any y e X', q~1(y) = BGy is g-acyclic, as Gy is finite. By the Vietoris-Begle

Mapping Theorem, therefore, q*:H*iX'; Q) -> H*iXa; Q) is an isomorphism.

X' is in K, and so the cohomology can be singular. Hence q*: H*(XG; Q)

-> 77*(A"; ß) is an isomorphism; and by the Whitehead-Serre Theorem, modulo

the class of torsional abelian groups, XG and X' have isomorphic rational homo-

topy groups. Thus, from £(X), X' has FGRH, and by assumption of (***), vw(A")

5^0; and so x7Ti^a) = 0, too.

From èiX), xniXG) = XniX) + XniBG) = xniX) + r. Hence rk0(X) = rú -J^W-

Remarks. (1) A", above, is simply-connected as a result of Montgomery and

Yang [11].

(2) The Vietoris-Begle isomorphism was obtained as a limit from the maps

qN: XG'^~ X', which give rise to isomorphisms, (qN)*, in degrees less than TV.

(3) If rk0(X) = -Xn(X) for all one-connected finite CW-complexes with FGRH,

then rk0(X)^ ~xn(X) for all simply-connected spaces in K with FGRH; that is,

(*) is true for simply-connected spaces. For our premise implies that xniX) = 0 for

all one-connected finite CW-complexes with FGRH, and hence xHX)^0 for all

spaces having the homotopy type of a one-connected finite CW-complex with

FGRH. In particular, then, (***) is true for simply-connected spaces.

For convenience we introduce the following definitions.

Definitions, (i) A space Zhas form I if n¡(X) ® Q^O => i is odd.

(ii) A space X has form II if nt(X) ® Q + 0 => / is even.

(iii) A space X has form III if nt(X) ® Q j=0 and n,(X) ® g /0 and j is even and

j is odd => i <j.
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(iv) A space X has form IV if ir^X)® Q + 0 and w/X) <g> Q ̂ 0 and i is even and

y is odd =>j<t

(v) A space X has form V if irt(X) <g> Q + 0 and tt/JT) ® ß ^ 0 and 77^^) <g> Q ¿ 0

and / is even and k is even and i^j^k => j is even.

Clearly a space having form I, II, III or IV also has form V.

The following proposition enables us to deduce results about the rank of a space

having a certain form from results about the homotopy characteristic of a space

having a related form.

Proposition 2.1.2. Given a torus action, $:GxJ->J, on a one-connected

space X, then we have the following.

(a) X has form I => Xa has form III.

(b) X has form II => XG has form II.

(c) X has form III => Xa has form III.

Proof. Consider the homotopy exact sequence of f(<l>). If G = Tm, then 2?0

= 7v(Zm, 2), and so tt^X^^tt^X) for f^3. Also XG is one-connected, and finally

we have the short exact sequence

0 -> tt2(X) -> tt2(Zg) -> Zm -> 0.

This completes the proof.

Corollary 2.1.3. If (**) ¿y true for one-connected spaces with FGRH of form

II <?/- III, ¡Tie« (*) is true for simply-connected spaces of form I, II or III.

Proof. Let X be in 2C, simply-connected with FGRH of form I, II or III. Con-

sider a canonical r-torus action on X, where rk0(X) = r.

From Ç(X), Xa is one-connected with FGRH. By Proposition 2.1.2, Xa has form

II or III, and by Theorem 1.2.1, p0(XG)=0. p0 is with respect to singular cohomology

since X, and hence all XG, are in K.

By our assumption of (**), therefore, x^X^^O.

The result now follows from £(X).

2.2. An upper bound for rk0(X). In this section we obtain an upper bound for the

rank of a space, X, in K. In the case when X has finitely generated rational homo-

topy, this upper bound is, in general, far less stringent than the upper bound

conjectured in (*).

By m(X; Q)=k, for k a nonnegative integer, we mean that Hk(X; 0^0, but

that Hn(X; 0=0 whenever n is greater than k.

Proposition 2.2.1. Let X be a space in K. Suppose that rk0(X) = r, and that Xa

is obtained from a canonical r-torus action on X (G = TT). Suppose further that

m(X; Q) = n, and that m(XG; Q) = k. Then k + r = n.

Proof. Since r¡(X) is induced from the fibration G-+EG^>- Ba, it is orientable
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in the sense of Spanier [13]. Hence we may apply the Serre spectral sequence in

rational cohomology to r¡(X),

Ek-' S H\XG; Q) ® Hr(G; Q) # 0,

and clearly Ek'r = Ek0,r. The result is now immediate, since 777(G; Q) = r.

Corollary 2.2.2. rk0(X) g m(X; Q).

Proposition 2.2.3. Suppose that X is in K, that m(X; Q)=n, and that X is

2k-connected or (2k—l)-connected. Then rk0iX)^n — 2k.

Proof. In the spectral sequence of £iX) we see that either connectivity condition

implies that E2k-° = E%k-°¿0.

Hence miXG; Q)^2k, and the result follows from Proposition 2.2.1.

Remark. In the statement of the above proposition we could replace the

conditions "X is 2&-connected or (2&-l)-connected" by "ñ\X; ß)=0 for

0gig2k or 2k-1 " respectively.

By X~ Y over ß we mean that H*iX; Q) and H*iY; Q) are isomorphic as

graded rational vector spaces.

Corollary 2.2.4. Let N={n¡ : l^igk} be a finite nondecreasing sequence of

positive integers. Let N {even) be the number of even integers in N, and let N iodd) be

the number of odd integers in N. Suppose that X~\/k=1 Sn< over Q, where Ví^i Sn¡

is the pointed sum of the spheres, Sn>, and suppose that X is in K.

Then

(i) ifnx is even, rk0iX)gnk-nu

(ii) i/«j is odd, rk0iX)gnk — n1 + l, and

(iii) if N iodd) ±Nieven) +1, rÄ:0(^) = 0.

Proof, (i) and (ii) are immediate from Proposition 2.2.3. (iii) follows from

Proposition 1.2.2.

It is worth noting that, if k~¿2, the space X of Corollary 2.2.4 does not have

finitely generated rational homotopy.

The procedure of comparing the spectral sequence of ÜX) with that of r¡iX)

may be continued to provide more detailed strictures on the size of the rank than

those of Proposition 2.2.3. For example, it is easy to show that, if X~ S2W S3V S5

over ß, and if X is in K, then rk0iX) ^ 1. The referee has pointed out that there

exists such an X with rank one. Let X he the result of joining an S3 to an S5 along

an S1. Then X has the homotopy type of S2 V S3 V S6, and rk0iX) = 1.

3. On the Conjecture (**). The purpose of this section is to prove the truth of

(**) for one-connected spaces having form V. The proof will follow from a Post-

nikov resolution of the space in question.

3.1. Orders of pole in principal fibrations. Let 7r be a finitely generated abelian

group of rank k, and let 2v(t7, «), n>\, be the Eilenberg-Mac Lane space. Let
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£ = (E, B, p) be a principal fibration with base space B, total space E, induced from

the path-loop fibration over K(n, ri). Then we have the following proposition.

Proposition 3.1.1. (i) Ifnis even, then p0(B)^pQ(E)~zp0(B)—k.

(ii) Ifn is odd, then Po(B) + k^p0(E)^Po(B).

Proof. We have the following fibre square :

OK  =   Í27C= K(n,n-l)

I      I
E->PK

I      i
B->K(n,ri)

Up to homotopy type, E -* B -> K(n, n) is a fibration.

From the Serre spectral sequence in rational cohomology of the fibration

QK -> E -=► B, it follows that Po(E) S p0(B) + Poi^K)- If « is even, then p0(ÜK) = 0,

and if« is odd, then p0(QK)=k.

From the Serre spectral sequence in rational cohomology of the fibration

E -+ B -> K(n, ri), it follows that p0(B) = p0(E) + p0(K(n, ri)). If n is even, then

Po(K(n, ri))=k, and if« is odd, then p0(K(n, ri)) = 0.

This completes the proof.

Remark. If n is odd, if B is one-connected, and if K(n, ri) -> E -> B is a fibration,

which is not necessarily principal, then we can still deduce that p0(B)^ p0(E)

^p0(B)—k. The first inequality is clear, and the second inequality may be inferred

by applying a spherical class resolution (Mahowald [10] or Thomas [14]) and using

the Serre spectral sequence at each stage.

3.2. (**) For spaces of form V. First we prove (**) for spaces of form IV.

Lemma 3.2.1. Let X be a one-connected space with finitely generated rational

homotopy and having form IV. Then p0(K) = yw(^0-

Proof. Let n2n + ,(X) be the highest homotopy group of X of odd dimension and

nonzero rank ; and let n2m(X) be the highest homotopy group of X of nonzero rank

(m = H + l).

Let

271+1 2m

b =   2  T&n^ ("i W)   and   a =    2    ran'c (7Ti(^))'
1 = 1 1 = 271 + 2

so that x"-(Ar)=a-¿).

Let F-> X2n+1-> X be a (2n+l)-connective fibration over X. Then, by the

exact sequence of rational homotopy, both F and X2n +, have form II, and xniF)

=b, and x"(^2n+i)=a.
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Now, if y is a space having finitely generated rational homotopy and having

form II, and if xniY) = c, then let us consider the Postnikov resolution of Y. If we

look at the Serre spectral sequence in rational cohomology at each stage of the

resolution, then it becomes clear that H*(Y; Q) is a polynomial algebra on c

generators of even degree. Hence p0( Y) = c.

Thus po(X2n+,)=a and p0(F) = b. But from the Serre spectral sequence of

F-> X2n+, -> X, it is clear that p0(X2n +,) = />„(X) + Po(F). Therefore, p0(X) ̂ a-b,

which completes the proof.

Remark. If Y has finitely generated rational homotopy, if Y is one-connected,

and if F has form I, then, by considering the Postnikov resolution of Y, it follows

that />„( 7)=0=M Y).

Proposition 3.2.2. Let X be a one-connected space having finitely generated

rational homotopy and having form V. Then p0(X)'^x'n'(^)-

Proof. Suppose that the nonzero rational homotopy groups of X, nt(X) ® Q,

are odd dimensional for i^2m + l, even dimensional for 2m+2^i^2n, and odd

dimensional for /=2k + 1 (form V).

Let

a=     2    rank MJO),       *-       2      rank (*•,(*)),
iá2m + l 2m + 2á¡S2n

and

c =    2   rank (*,(.¥)).
ië2n + l

ThusxT(Y)=-a + 6-c-.

Consider the Postnikov resolution of X, and let 7i2n be the space at the stage

where the first 2n homotopy groups of X have been taken into account. There is a

fibration F -> X -s- E2n. E2n has form IV, and xn(E2n) = — a + b. F has form I, and

Xn(F)=-c.

Each stage of the resolution of F -> X -> 7s2n is a principal fibration of the form

K(nr - ,(F), r — 1) -> 7s -> 7i, induced from the path loop fibration over A"(7rr _ X(F), r).

Since F has form I, and since X has FGRH, nr_,(F)<& Q is zero, except for

finitely many even values of r, and 2r dim (nr(F) ® Q) = c. By Proposition 3.1. l(i),

Po(E) ^ Po(B)-dim(nr_,(F)® Q),

and so, after all relevant stages have been taken into account, we have that p0(X)

^Po(E2n)-c.

But, by Lemma 3.2.1, p0(E2n)^: —a + b.

Remark. The situation p0(X) > xn(X) is possible. For example, if X= K(Z, 3)

xK(Z, 4), then p0(X)=l, but X^W=0.

Corollary 3.2.3. If X is in K, simply-connected with FGRH of form I or III,

thenrk0(X)ú-x<X).
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Proof. Immediate from Corollary 2.1.3.

We conclude this section by considering a space X, whose rational homotopy

groups fall into a stable range. That is, if nniX) ® ß is the nonzero rational homo-

topy group of lowest dimension, and if 77m(A') ® ß is the one of highest dimension,

then m^2n — 2. The following proposition is a trivial consequence of the Postnikov

resolution.

Proposition 3.2.4. If X is a one-connected space with FGRH, whose rational

homotopy groups fall into a stable range, then

PoiX) =   2  dim MX) <g> Q).
i even

4. Applications. In this section we use the above results to study the rank of

certain interesting spaces.

4.1. Lie groups and H-spaces.

Theorem 4.1.1. Let X be an H-space in K. Then rk0iX)g -xHX).

Proof. Since X is dominated by a finite CW-complex, it has finitely generated

rational cohomology groups. By the Leray structure theorem for Hopf algebras,

then, H*iX; Q) is an exterior algebra on finitely many generators of odd degree.

Now, by Serre [12], there is a one-to-one correspondence between the generators

of H*iX; Q) and the generators of the rational homotopy groups of X, which

preserves degree.

If X were simply-connected, then the result would follow immediately from

Corollary 3.2.3. In general, however, X is homotopy simple; that is, tt^X) acts

trivially on all homotopy groups of X. Thus, if O is a given torus action on X, there

exists a Moore-Postnikov resolution of ^(O). The result now follows from Proposi-

tion 3.1.1 and Theorem 1.2.1.

Theorem 4.1.2. Let G be a compact connected Lie group of rank k. Then

rk0iG) = k.

Proof. By Serre [12], k= -yt7(G). By Theorem 4.1.1, therefore, rk0iG)gk.

But a maximal torus of G, Tk acts freely on G by left or right translations, and so

rk0(G)Zk.
4.2. Some homogeneous spaces. Homogeneous spaces make excellent testing

spaces for the conjecture (*). For, if G is a compact Lie group of rank k, and if U

is a closed subgroup of rank r, then a maximal torus of G acts on G/U with rank

k — r. Thus rk0iG/U)^k — r. At the same time, from the homotopy exact sequence

of the fibre bundle U^G^G/U, we have that -x"(G¡U)= -x"(G)+X"(U),

and hence, -xTr(G/U)=k — r.

We exhibit below some elementary homogeneous spaces to which Corollary

3.2.3 is applicable.
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First, however, we note that if k = r, then rk0(G/U)=0. Borel shows in [1] that,

under such circumstances, H'(G/U; Q) is zero for all odd /. The result then follows

from Proposition 1.2.2. Thus, for example, the toric rank is zero for real, complex

or quaternionic Grassmann manifolds.

Proposition 4.2.1. If G is a compact one-connected Lie group of rank k, and ifT

is a toric subgroup of G of rank r, then rk0(G/T) = k — r.

Proof. Clearly G/T has form III.

Proposition 4.2.2. For lgkgn-m, rko(U(n)/(U(m)x U(k))) = n-m-k.

Proof. U(n)/(U(m) x U(k)) is one-connected with form III.

Likewise, where SGn¡k(C) = U(rí)/(rJ(n-k)xSU(k)) is the variety of oriented

A>planes in complex «-space, rk0(SGn¡k(C)) = 1. Similar considerations apply to

the real and quaternionic cases.

The following also is inferred by an easy Moore-Postnikov resolution argument,

using Theorem 1.2.1 directly.

Proposition 4.2.3. If G is a compact one-connected Lie group of rank k, and if

U is a closed connected subgroup of rank 1 (i.e. U is isomorphic to S1, SO (3) or

Sp (1)), then rk0(G/U)=k-l.

The remainder of this section will be devoted to Stiefel manifolds. Vntk(F), for

F=R, C or H, will denote the Stiefel manifold of ^-frames in real, complex or

quaternionic «-space, respectively.

Theorem 4.2.4. (a) 7/«S3, and Ogkgn-3, then rk0(Vn,k(R)) = [kß] + l, if n

is even and k is odd, and rk0(Vn¡k(R)) = [k/2], otherwise. ([x]= greatest integer less

than or equal to x.)

(h) IfOgkgn, then rk0(Vn,k(C)) = k.

(c) If 0 S k g «, then rk0( Vn,k(H)) = k.

Proof, (a) SinceA:<«, Vn¡k(R) = SO (n)/SO (n-k), and, since «^3 and «-Ara3,

Vn.kiR) is one-connected.

Now, by the homotopy exact sequence, we have that Vn¡kiR) has form I if n-k

is odd, and Vn¡kiR) has form III if « — A: is even.

Hence, in either case,

rkoiVn,kiR)) ú -X"(Vn¡kiR)) = [n/2]-[in-k)/2].

(b) Vn<kiC)= Uin)/Uin-k). This has form I, and the result follows.

(c) Vn.ÂH) = Sp («)/Sp («-&), and again the results follow at once.

4.3. Products of spheres.
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Theorem 4.3.1. Let m,,...,mk be a nondecreasing sequence of positive even

integers with mk^2m, — 2. Let n„...,n, be positive odd integers, and let

n = min {n,,..., nr}. Suppose that n>mk and let X= Smi x ■ ■ ■ x Sm* x Sni x ■ ■ ■

xSV Thenrk0(X) = r.

Proof. Under the given conditions J is a one-connected CW-complex with

FGRH of form III; or, in the event that no even integers are given, Xis a homotopy

simple CW-complex with FGRH of form I. In either case, Y7r(Y)= — r.

When there are even integers, then, by Corollary 3.2.3, rk0(X)^r.

When there are no even integers (and n may be one), rkQ(X) = r by a Moore-

Postnikov resolution of £(0) for any torus action OonI and Theorem 1.2.1.

Now if S2n_1 is an odd-dimensional sphere, viewing it as the unit sphere in

complex «-space, the circle group acts freely on it in the obvious way. Hence

rk0(X)^r.

Remark. If no odd integers are given, then the condition that mk^2m, — 2 may

be dropped; for, rk0(Smi x ■■■ xSm")=0 by Proposition 1.2.2.

The rank of complex or quaternionic projective space is zero by Proposition

1.2.2. For the same reason, the rank of even dimensional real projective space is

zero. We conclude with the following.

Theorem 4.3.2. Let RPn denote real projective n-space, and let n,,..., nr be

positive odd integers. Let X=RPni x • • • x RPnr. Then rk0(X) = r.

Proof. X is homotopy simple, X has FGRH of form I, and xniX) = —r- As

before, therefore, rk0(X) = r.

But the free action of S1 on 52n_1 induces an almost-free action (every isotropy

subgroup is Z2) on RP2n~1. Hence rk0(X)^r.
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