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CURRENT VALUED MEASURES AND GEOCZE AREA(%)

BY
RONALD GARIEPY

Abstract. If fis a continuous mapping of finite Gedcze area from a polyhedral
region X< R* into R", 2<k =n, then, under suitable hypotheses, one can associate
with f, by means of the Cesari-Weierstrass integral, a current valued measure T over
the middle space of f. In particular, if either k=2 or the & + 1-dimensional Hausdorff
measure of f(X) is zero, then T is essentially the same as a current valued measure
defined by H. Federer and hence serves to describe the tangential properties of f and
the multiplicities with which f assumes its values. Further, the total variation of T is
equal to the Geocze area of f.

1. Introduction. Suppose f is a continuous mapping of finite Gedcze area,
V(f), from a polyhedral region X< R* into R", 2<k <n. If f belongs to the class
T *(k, n) defined by T. Nishiura [13], then (Theorem 1) we can associate with f,
by means of the Cesari-Weierstrass integral, a current valued measure T over the
middle space of f.

Suppose { f;} is a sequence of quasi-linear maps of X into R" converging uniformly
to f with bounded areas and let f=/o m be the monotone-light factorization of f
with middle space M. With each f; we associate a current valued measure T; over
M defined by letting

T(2)9) = fulX A (g m)g) = f (g - m)f¥(g)

whenever g is a continuous real valued function on M and ¢ is a differential k-form
of class co on R".

If fe T*(k, n) and there is a sequence {f;} of quasi-linear maps as above such
that the sequence {T;} converges weakly to 7, then we show in Theorem 3 that T
is essentially the same as the current valued measure considered by H. Federer [7]
and, in particular, shares its representation as the indefinite integral with respect
to k-dimensional Hausdorff measure over M of a k-vector valued density » which
describes the tangential properties of f and the multiplicity with which f assumes
its values. Further, the total variation measure |T'|| of T, taken with respect to
mass, is equal to the Gedcze area measure p induced on M by f.
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Let A(k, n) denote the set of all k-tuples A=(A,, ..., A,) of integers such that
1SA; <A;<---<A:sn. With each Ae A(k, n) associate the projection p*: R
— R* defined by

PY)=ap--n) fory=(y,...,y)€R

In Theorem 4 we show that, if fe I *(k, n) and {f;} is any sequence of quasi-
linear maps of X into R" converging uniformly to f and such that

Vphof) = lim V(p*of) for Ae Ak, n),

then the sequence {T}} of associated current valued measures converges weakly
to T.

If V(f)<oo and either k=2 or H¥*'(f(X))=0, where H! is m-dimensional
Hausdorff measure in R", we note (Theorem 5) that the hypotheses of Theorem 3
are satisfied. In a subsequent paper we will show that, if either k=2 or H¥*(f(X))
=0, then the Lebesgue area and the Ge4cze area of f coincide. From this one
infers readily that T coincides with the current valued measure defined in [10] and
that Theorem 4 represents a strengthening of the main result of [10].

In Theorem 2 we show that the current valued measure T associated with
fe€ T *(k, n) possesses a representation as the indefinite integral with respect to
Gedcze area measure over M of a k-vector valued function 6. In case either k=2
or H¥*!(f(X))=0, we show in Theorem 7 that 6(z) =v(z)/|v(z)| for u almost every
z € M. Here |v(z)| denotes the Euclidean norm of the k-vector v(z).

2. The current valued measure 7. Suppose k and n are integers, 2<k=<n. Let
A(k, n) denote the set of all k-tuples A=(Ay, ..., A,) of integers suchthat 1 <A, < - - -
<A.=n.Lete,, ..., e, be the usual basis in R". Then, denoting exterior multiplica-
tion by A, the k-vectors ey=e, A --- Ae,,, A€ A(k, n), form the usual basis for
the space A, (R™ of k-vectors in R™.

For each A € A(k, n), let p*: R* — R* be defined by

PPO) =) fory=,..., ) eR™

Consider each p* as projecting R™ onto the k-dimensional coordinate hyperspace
of R" determined by e, , .. ., €,,.

Suppose fis a continuous mapping of finite Gedcze area V' (f) from a polyhedral
region X< R* into R". With each simple polyhedral region #< X we associate the
k-vector

u(f; 77) = z u(.f)\) ")e)\
A€A(ic,n)
where u(f*, m)= [ O(f*, m, ) dy for X e A(k, n). Here f*=p* o f and O(f*, =, y)
denotes the topological index of y € R* with respect to the mapping f*|w: # — R*
if y € R*—fX(Bdry =) and O(f*, A, y)=0 if y e f*(Bdry =).
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Let ¢ denote the set of all finite collections G of nonoverlapping simple poly-
hedral regions #< X. Define on ¥ a real valued function 8 by

8(G) = max {diam f(=) : = € G} +max {V(f")—’ga |u(f*, )| : Ae Ack, n)}-

If fe T*(k, n), that is, if inf {8(G) : G € ¥}=0, then, according to [13, §5.9],
u(f, =) is quasi-additive with respect to 8 and mass (|| - |) in A (R").

Let f=1o m denote the monotone-light factorization of f with middle space M.
Let d; denote the usual metric induced on M by fand let C(M) denote the space
of continuous real valued functions on M.

THEOREM 1. If fe T *(k, n), then, for each g € C(M) and continuous differential
k-form ¢ in R",

. 1

™) T(g)e) = lim > —f g(m(x)e(f(x))-u(f, ) dx
a0 7e6 |7 Jz

exists. Here |m| denotes k-dimensional Lebesgue measure of = and ¢(f(x))-u(f, =)

denotes evaluation of the k-covector ¢(f(x)) at u(f, =).

Proof. The essential elements of a proof of the above statement can be found in
[13] and [3]. We will give a complete proof here in our present notation.

Suppose g € C(M), ¢ is a continuous k-form on R*, and ¢>0.

For any pair of simple polyhedral regions »', w< X let s(#’, m)=1 if #’<# and
s(n', m)=0 otherwise. According to [13, §5.9] there is a 8 >0 such that, if Ge ¥
with 8(G) < 8, then there is a y >0 such that

2

neG

u(f, m— Z s(my, mu(f, m)

n1€G1

<e&

and

3 13 st m| el <o

neG

whenever G, € ¢ with §(G,) <y.

Suppose G and G, are as above. Since, for any simple polyhedral region =< X,
the diameter of m(w) relative to d,; does not exceed the diameter of f(=), we can
assume that 8(G) is so small that

sup {| g(m(x)e(f(x)) —g(MxNe(f(x))| : x, x" €7} < &
for all 7 € G. Here |- || denotes comass in the space A¥ (R") of k-covectors in R".
Letting ’
M(g) = sup{|g(2)| : ze M}
and

M(pof) = sup {|le(f())] : x € X},
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we have

3 |‘1‘| [ gnnosce)-uth m di- 3 |_1| [ etnepotrn-uts = dx|

o7 ], eIy s m) s

ueG

-3 e [ g -t |

7161 l" I

+Zg [1 - 2,5 ")] g f gm(x)e(f(x)-u(f, m) dxl

7 || s {utsim— 3, stos, muts, - dxl

n1€G1

Iﬂl

+ z S s(my, ) [ o [ st uts m as

neG meGy

~ 1 | e ucs m d |
+ MM N 3 [1-3 stm, w)]llu(f, m)

n1€Gy

= M(g)M(pf) ga u(f, ﬂ)—”zc $(my, Mu(f, m)

+e > |u(f, m)|+eM(g)M(p e f)

n1€G1

< [2M @M@+ (Z) V(f)] &
because

> luhml s (7) 3 uthml s (i) v

neGy n1€G1

Since the above holds for any G, € ¢ with 6(G,) <y, the theorem follows.

The formula (*) above defines a linear mapping of C(M) into the space E,(R™)
of k-dimensional currents in R™. (The notation concerning forms and currents is
that of [9].)

Since, for g € C(M) and ¢ € E¥(R"),

7@ 5 () M@M@ NV

this mapping possesses a unique extension, also denoted by T, to the class of all
bounded Borel measurable real valued functions on M such that Lebesgue’s
bounded convergence theorem holds. In particular, one obtains a countably
additive current valued function T on the class of all Borel subsets of M which
will be referred to as the current valued measure associated with f.
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Assume throughout the remainder of this section that fe J *(k, n) so that the
current valued measure T is defined.
For each simple polyhedral region #< X and A € A(k, n) let

“+(f)" ") = %[lu(fh’ ")I +u(f}" 77)]
and
u-(f)\’ 77) = %[lu(f)\’ ")l _—u(.f)" ‘”)]

For each set U open in X let

VEAU) = sup 3 ut(f* )

nes

where the supremum is taken over all finite collections, S, of nonoverlapping simple
polyhedral regions =< U.
According to [13, §6] the function defined for all Borel sets B< M by

w(B) = inf {V(f|m~*(A4)) : Aopenin M and 4 > B}

is a finite Borel measure over M, and finite Borel measures u*, p} over M can be
defined analogously using the functions V' (f*|-) and V*(f?|-).
We note from [13, §6] that

M) = V(f) = ﬁ(lgno 2, [u(f,ml,

-0 neG
pr = ph +pr for xe Ak,n), p(m(Bdry X)) =0
and that
wm(m) = p([m(m)]°) = V(f|m)

for each simple polyhedral region w< X. Here [m(m)]° denotes interior of m(w)
relative to M.

For A € A(k, n), let v»=p} —p? and define a k-vector valued measure over M by
v=">,eac.m V"€ Then, for any simple polyhedral region w< X,

|u(f*, m) = Nm(m)| < [u*(f, m)—ph (m@@)| +|u=(f, m)—pk (m(m))|
< pNm(m) = |u(f*, ).

Let 6* denote the Radon-Nikodym derivative of »* with respect to p for
de Ak, n) and let =1 ,caq.n) ex. Then, by [3, 5iil, |8(z)| =1 for p almost every
z € M, where |-| denotes the Euclidean norm on A, (R").

THEOREM 2. For g e C(M) and ¢ € E¥(R"),
TQO® = [ 8@o1)06) du

Proof. The essential elements of a proof of this statement can be found in [3]
and [13]. Because of the difference in viewpoint and notation, a short proof is
included here.
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Suppose g € C(M), ¢ € E¥(R"™), and ¢>0. Let $(z)=g(z)e(I(z)) for ze M. Then
Y is a continuous k-covector valued function on M. Since, for any polyhedral
region =< X, the diameter of m(w) does not exceed the diameter of f(w) we have

max sup {|$(m(x))—d(m(x)| : ', xen} < e

for G € ¢ with 8(G) sufficiently small.
For such a G consider

A=

L[ oyt my dx= [ 400)-06) |

neGI I

Since p(m(w))=p([m(m)]°) for = € G we have

A=

o [ #omey sty = [ -0 |

860

+

[ w0
M ~Ugeam(n)
<o 3 [l mI+ M) 3 [ulf, )=t

+e 3, Iomte)+ MO (oM~ U i)
< 2(}) YO+ MG) S S s m =)

A€eA(k,n) neG

+M@)([) [0~ 3, wimtey]

s2(5) vip+mw 3 [vom-3, o

AeA(k,n)
+u()[r0- 3 s |

and the theorem follows.
By Lebesgue’s bounded convergence theorem the conclusion of the above
theorem remains valid if g is any bounded Borel measurable function on M.

COROLLARY. p=|T| S (@p.
Proof. If B is a Borel set in M and ¢ € E¥(R"), then

@)@ = | [ #)-06) ds |

s M@ [ 166)] du < M@)(;) WD)

Thus |T| < G)p-
Suppose A is open in M. For each Ge ¢ let

GA) =GN {m: 7<= m Y A)}.
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Then, by [13, §5.7],
pAd) = lim 3 ulf; ).

&G@)—0 neG(A)
Since

”ZG |uf, m)—v(m(m)| = > 2 lu(f, M= (m(m)|

€A(k,n) neG

and u(m(m))=p([m(=)]°) for = € G, we have
wAd) = lim > [|W(m()| < limsup > )M(T ([m(™]1°) = |T(A).

(@)—+0 neG(4) (@)-+0 neG(A

If Bis a Borel set in M and A is open with B< A4 then

WB)=TI(B) S )~ ITI(B) S IT(A~B) < ;) A B).
3. Representation.
THEOREM 3. Suppose fe€ T *(k, n) and T is the current valued measure associated
with f.
If there is a sequence {f}} of quasi-linear maps f;: X — R converging uniformly to f
with bounded areas and such that
T(g)g) = lim fylX A (g > m)I(p)

for all g e C(M) and ¢ € E¥(R"™), then
1. T is rectifiable current valued.

2. There is a Baire function v: M — A\, (R") such that, for |T| almost every
z € M, v(2) is a simple k-vector, |v(2)| is an integer,

#I@)-02) = lim Ti—i—f(’k)’,—li‘” for p € E¥(RY),

and

[o(2)| = 'Egr:- "L[L((;:__)(:;_’D,

where o(k) is the k-dimensional Lebesgue measure of {x € R* : |x| <1} and, for r>0,
A(z, r) is the component of | ~Y({y : |y—1(z)| <r}) that contains z.
3. For each Borel set B M,

T@® = |, #1@)-0) di}

- J;n q’(y)-{zel -Z(y)nav(z)} dii for g EX(R),



140 RONALD GARIEPY [April

and

i@ = [ @lam = (3 ) e

2el~ 1(y)NB

where H¥ and HY denote k-dimensional Hausdor(f measure in M and R respectively.

Proof. Let F denote the class of Borel sets B< M for which T(B) is rectifiable.
Then F is closed under countable disjoint union and proper subtraction.

Using the arguments of [7, §§3.2 and 3.4] one shows that 4 € F whenever 4 is
an open subset of M with A " m(Bdry X)=g. Since

IT|en(Bdry X)) < (,’;) w(m(Bdry X)) = 0,

statement 1 follows.

From the hypothesis that, for ge C(M), T(g) is the weak limit of the
Jfi[X A (g o m)] it follows readily that, for any open V<M with ¥V N m(Bdry X)
=g, we have spt 0T (V)< /(Bdry V). This condition, together with || T ||(m(Bdry X))
=0 allows one to use, with obvious modifications, the arguments of [7, §§2.1 and
2.2] to prove statements 2 and 3.

We now investigate conditions under which the hypotheses of Theorem 3 are
satisfied.

Suppose that f is a continuous mapping from a polyhedral region X< R* into
R¥ with V(f)<oo.

For each polyhedral region o< X and y € R¥ let

N¢f, 0,y) = sup ZS |O(f; =, y)|
nE
and
N*(f,0,y) = sup > O*(f, =)
nes
where the suprema are taken over all finite collections .S of nonoverlapping simple
polyhedral regions m#<o. Then for each o the functions N(f, o,y), N*(f, o, y)
are nonnegative, integer valued, lower semicontinuous functions on R¥, V(f|o)

= [z N(f, 0, ) dy and N(f, o, y)=N*(f, 0, )+ N ~(f;, 0, y) for almost all y € R .
For each o let

n(f,0,y) = N*(f,0,y)—-N~(f,0,y) if N(f,0,y) < o0,
=0 otherwise.

For each simple polyhedral region =< X let

ofym) = [ 10Gi 7).

LEMMA. Supposef: X — R* as above and { f;} is a sequence of continuous mappings
fi: X — R¥ converging uniformly to f with V(f)<oo for i=1,2,....
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If G is any finite collection of nonoverlapping simple polyhedral regions n< X, then
lim sup ZG |[u(f; m)—u(f;, m)|
RE

(a) {00 '
= o[- 3 o7 m)] +21im sup V(- V()

and

® limsup [V()= 3 o(fm)] S V()= 3 o, m)+lim sup V(D - V(]
Proof. For 7 € G, consider

s =ulhy | $ lf, )= i) |

+ UBk o, m y)—n(f,, m, y)) d.V|

+ URk n(f,, n, y) dy—u(f;, =) l
We have

whim)=[ whm ) d| =| [ Omy)-nim ) o]

§ J;!" (N"'(f; T, y)"‘0+(f’ , y)) dy+Lk (N-(f; m, y)-—o-(f; m, y)) dy
= V(.fl‘”)_v(f; ’T)’

and, similarly,

whom)= 1) dy | 3 VCfilm) =0l ).

Let
B*(m i) ={yeR*: N*(f,m y) > N*(f;, m, y)}.
Then

[, ot m»-ntum ) |
< Lk IN*(f, m, y)=N*(fi, m y)| dy+Lk IN=(f, m, )= N~(f;, m, y)| dy
éf N*(f,my) dy+f N-=(f, =, y)dy
B+(a,i) B-(z,1)
+ f N+ oo m 9)=N*(fym, y)) dy
Rk -B+(n,1)
o Gm)-N- G
Rk —~B=(n,{)

<2 N'Gmy) dy+2J;_(” | NG m D+ V(i) =V .

B+ (z,{)
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Thus

’g’lu(f, m)—u(f, M| = V(ﬂ)—gov(f, m)+ V(ﬁ)—%v(ﬁ, )

w23 {[ wGmnsr[  NGimn s}
€@ \JB*(n,1) B—(n,1)

By [12, §2.2], o(f, ) Slim inf,_, , v(f;, ) and N*(f, =, y) Slim inf,_, , N*(f;, =, y)
for 7 € G and y € R*. Thus, given >0, we have 3 ..q 0(f, 7) —&< D zq U(fi, m) for i
sufficiently large. Hence

V(f,)—’g; o(fi,m) < V(H-V(NH+ V(f)—uz o(f,m)+e

e

and (b) is proved.
Now, for each 7 € G, the functions N *(f, =, y) and N ~(f, =, y) are integrable,
the k-dimensional Lebesgue measure of | J2; B*(w, i) is finite and

‘ﬂl !L_J‘B*(vr,j) c{y:N*(f,my) = oo}
Thus, since G is finite,

timsup 3. ulf;m)—uCh | < 2[V()= 3 olfim)| +21lim sup VD~ VD)

i
and (a) is proved.

THEOREM 4. Suppose f is a continuous mapping of a polyhedral region X< R* into
R" with fe T *(k, n) and let T denote the current valued measure associated with f.
If {f} is a sequence of quasi-linear maps f;: X — R" converging uniformly to f with
V(Y =lim,,, V() for A€ Ak, n), then

T(g)(e) = ‘ljrg Sl X A (gom)(e)
for all g e C(M) and ¢ € E¥(R™).
Proof. Suppose g e C(M), p € E¥(R"), and £>0. Note that

FalX A (gom))(@) = j g(m()e(fi()-Jfi(x) dx

where Jfi(X) = Saeac.n Jfi(x)er. Here Jf} denotes the ordinary Jacobian of f. Also,
from [1, 8.9iii] we have u(f}, m)=, Jf}(x) dx whenever = is a simple polyhedral
region in X.

Let G € ¢ with 8(G) so small that

T(g)@)— S Ii,,I j g ) ulf, ) dx | < &,

neG@

and

max {| g(m(x))e(f(x)) —g(mxNe(f(x))] : x, x' € n} < e
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for w € G. Then

st

= f g(m(x))e(f(x))-u(f, =) dx— f g(m(x))e(fi(x))-Jfi(x) dx|

<3 | or [ e s m) =, w3 |
ot [T g7 |

+aZc f _ 8mCDIp(f) = p(iN]- JAilx) dx I

+

[ stmtaymtsiconn Jrco ax|

< MeM(pef) 3, [0 —ulhy i+ > {juthy i+ [ 1700}
+M@OM@of—p=f) 3, V(fim+ME©MG SV (£1X-U )
S MOM@=H 3 > Ju(fm)-ul, 7]+ 2 ()

AeA(k,n) neG
+ME@OM S9NV +MOM@-) > [V 3 st )]
By the preceding lemma we have

lim sup Z u(f*, m)—u(f), )| < 2[V(M—- Z lu(f, m|] < 28(G),

{—-®

and
lim sup [ V(- 3 oA ,,)] S VU= 3 () < §6)
for A€ A(k, n).

Since {f;} converges uniformly to f we have
lim M(pof-9f) =0

and the theorem follows.
ReMARK. Theorem 4 was originally proved under the hypothesis that given any
e>0 there is a G € ¢ such that

8(G) + max {-%(f"( U Bdry w)) : Ae Ak, n)} <e
neq@
Here %, denotes k-dimensional Lebesgue measure in R¥. It was shown in [11, §3]
that this hypothesis is satisfied if either k=2 or H¥*(f(X))=0.
The proof of Theorem 4 under the weaker hypothesis f € J *(k, n) was suggested
by T. Nishiura.
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THEOREM 5. If f is a continuous mapping from a polyhedral region X< R* into
R* 25k<n, V(f)<oo, and either k=2 or H**1(f(X))=O0, then f€ I *(k, n) and
there is a sequence {f}} of quasi-linear mappings f;: X — R" converging uniformly to f
with V(fN)=1lim,_, , V(f}) for X e A(k, n).

Proof. That, under these conditions, f € 7 *(k, n) was proved in [11]. The proofs
of [4, Theorems 3.16 and 5.7] consist of constructions, under the given conditions,
of sequences of quasi-linear maps having the desired properties.

4. Densities. Throughout this section assume that f: X — R" satisfies the
hypotheses of Theorem 3. We will show that p=|T| and describe the relation
between the functions v and 6.

For each z e M, let

o A
W) = lim sup = e

It is readily shown that p’ is Borel measurable.
THEOREM 6. For each Borel set B= M, [, u'(z) dH} < u(B).

Proof. Using the arguments of [5, Lemma 6.1] and the definition of p we find
that, if A is a Borel subset of M and A<{z : p'(z)>c}, ¢>0, then u(4) = cHF(A).
Adapting the proof of [5, Theorem 6.2], the theorem follows.

According to Theorem 3, for ||T| almost every z € M, there is a simple k-
covector w with |w|=1 such that

o@)] = w-o@) = lim %&)

For r>0,

T(A(z, r))(w) = f ) w-0(z)dp £ J;(z N |w| |0(2)| dp = w(A(z, r)).

Az,
Thus, for |T|| almost every ze€ M, |v(z)| Sp'(z) and, hence, for any Borel set
B< M,
ITI(B) = [ 1oa)| aB 5 || w2 dH S ).
By the corollary to Theorem 2, u=|T]|.
Thus, by Theorem 3,

. A(z,

for p almost every z € M, and, hence

WG, 57)
Jim S aG =

< ©

for p almost every z € M.
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For ze M and r>0, let ¢(z, r) denote the closure of A(z, r) in M and let
V=A{clz,r):ze M,0 < r < 1, u(Bdry c(z, r)) = 0,
and p(c(z, 5r)) < (54 Dr(A(z, )}

Note that inf {r : ¢(z, r) € V}=0 for p almost every z € M.
For S<= M, let diam, (S) denote the diameter of S in M, and, for Se V, let

S=U{S':5€eV,8 NS # o, and diam, () < % diam, (S)}.
If S=c(z,r), S'=c(z', 1), SN S'#@, and diam, (S’) <% diam, (S), then, for any
z" e c(z', r'), we have
|I(z")—1(z)| < diam, (S")+diam, (S) < (1+H(2r) < 5r,
and hence, since S’ is connected, S'<c(z, 5r).
Thus, for S € V, we have u(S) <(55+ 1)u(S). Referring to [8, Theorem 2.8.7] we
have the following

LEMMA. Suppose A is a Borel set in M, W is open in M, F< V, and
inf{r:c(z,r)eF} =0
Jor all z € A. Then there exists a countable disjointed subfamily G of F such that

US< W and p,(Ar\W—US)=0.

SeG SeG

In view of this lemma and [8, Theorem 2.9.7] we find that, for A € A(k, n),

en o A P)
va(@) = lm =G )

exists and is finite for x almost every z € M, and since p} Sp,

@ = [ @ da

for each Borel set B< M.
Thus,

e
@) = A@-71@) = lim —rees

for p almost every z € M.
We summarize the results of this section in
THEOREM 7. If f: X — R" satisfies the hypotheses of Theorem 3, then p=||T | and
v(z)=p'(2)0(z) for n almost every z € M.
Proof. Let {e* : A € A(k, n)} denote the basis of A* (R™) dual to {e, : A€ A(k, n)}.
For each A € A(k, n),
_ 1 T(AGz, )X
= I el

for p almost every z € M.
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Now, by Theorem 2,
TG @) = |

Az,

e 0(2) du = W(A(z, r)),
9]

and, hence,

&) = lim W — W20,
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