
transactions of the
american mathematical society
Volume 166, April 1972

CURRENT VALUED MEASURES AND GEÖCZE AREAC)

BY

RONALD GARIEPY

Abstract. If / is a continuous mapping of finite Geöcze area from a polyhedral

region Ki1 into Rn, l^k^n, then, under suitable hypotheses, one can associate

with /, by means of the Cesari-Weierstrass integral, a current valued measure T over

the middle space of/. In particular, if either k = 2 or the A:+ 1-dimensional Hausdorff

measure of f(X) is zero, then T is essentially the same as a current valued measure

defined by H. Fédérer and hence serves to describe the tangential properties of/and

the multiplicities with which/assumes its values. Further, the total variation of T is

equal to the Geöcze area of/.

1. Introduction. Suppose / is a continuous mapping of finite Geöcze area,

Vif), from a polyhedral region Jfc Rk into 7?", 2 á k = n. Iff belongs to the class

!T*ifi, n) defined by T. Nishiura [13], then (Theorem 1) we can associate with/,

by means of the Cesari-Weierstrass integral, a current valued measure T over the

middle space off.

Suppose {/j} is a sequence of quasi-linear maps of X into Rn converging uniformly

to/with bounded areas and let/=/° m be the monotone-light factorization of/

with middle space M. With each /( we associate a current valued measure T¡ over

M defined by letting

Tiig)i<p) = MX A ig o i»)](9) = £ ig o m)fifi<p)

whenever g is a continuous real valued function on M and <p is a differential ¿-form

of class oo on 7?".

If fie 3~*ifi, n) and there is a sequence {/¡} of quasi-linear maps as above such

that the sequence {Tt} converges weakly to T, then we show in Theorem 3 that T

is essentially the same as the current valued measure considered by H. Fédérer [7]

and, in particular, shares its representation as the indefinite integral with respect

to ¿-dimensional Hausdorff measure over M of a ¿-vector valued density v which

describes the tangential properties off and the multiplicity with which / assumes

its values. Further, the total variation measure ||7'|] of T, taken with respect to

mass, is equal to the Geöcze area measure p. induced on M by f.
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Let A(k, n) denote the set of all A>tuples A = (Alt..., Xk) of integers such that

1 gA1<A2< • • • < Xk^n. With each XeA(k,n) associate the projection px: Rn

-> Rk defined by

p\y) = Ov ■■■, y*k)  for y = (yu..., yn) e r\

In Theorem 4 we show that, if fe ¿T*(k, n) and {/} is any sequence of quasi-

linear maps of X into 7?" converging uniformly to/and such that

V(px of) = lim V(px of)   for A e A(A:, n),
i-oo

then the sequence {JJ of associated current valued measures converges weakly

toJ.

If K(/)<co and either A: = 2 or Hk+ x(f(X)) = 0, where H% is /w-dimensional

Hausdorff measure in Rn, we note (Theorem 5) that the hypotheses of Theorem 3

are satisfied. In a subsequent paper we will show that, if either A:=2 or Hk + 1(f(X))

=0, then the Lebesgue area and the Geöcze area of/coincide. From this one

infers readily that T coincides with the current valued measure defined in [10] and

that Theorem 4 represents a strengthening of the main result of [10].

In Theorem 2 we show that the current valued measure T associated with

fe 3~*(k, n) possesses a representation as the indefinite integral with respect to

Geöcze area measure over M of a A> vector valued function 6. In case either k=2

or Hk + 1(f(X)) = 0, we show in Theorem 7 that 6(z) = v(z)¡\v(z)\ for p almost every

zeM. Here |i>(z)| denotes the Euclidean norm of the A:-vector v(z).

2. The current valued measure T. Suppose k and « are integers, 2^kSn. Let

A(k, n) denote the set of all A>tuples A = (Alf..., Xk) of integers such that 1 ̂  Aj < • • •

<Xk¿n. Let ex,..., en be the usual basis in 7?". Then, denoting exterior multiplica-

tion by A, the A>vectors eA = ehl A • • ■ A ehk, X e A(k, n), form the usual basis for

the space /\k (Rn) of Ä>vectors in Rn.

For each A e A(A:, n), let pA: i?n -► Rk be defined by

p\y) = (>v ■ • • > jAk)   for y = (yx, • • -, y») e Bn-

Consider each ph as projecting Rn onto the Ä>dimensional coordinate hyperspace

of Rn determined by eXl,..., eXlc.

Suppose/is a continuous mapping of finite Geöcze area V(f) from a polyhedral

region X<^Rk into Rn. With each simple polyhedral region 7r<= X we associate the

AVvector

"(/»=  2  «C/"\ »to
AeA(/c,n)

where u(f\ rr) = jRk 0(J\ w, y) dy for A e A(fc, n). Here /»=/>* »f and 0<J\ n, y)

denotes the topological index of y e R" with respect to the mapping/A|7r: tt-> Rk

if ye Rk-f*iBdry tr) and 0(/\ A, j)=0 if y e/A(Bdry rr).
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Let â? denote the set of all finite collections G of nonoverlapping simple poly-

hedral regions tt<= X. Define on <3 a real valued function 8 by

S(G) = max {diam /(tt) : tt e G} + max jV(/*)- 2 i"(/\ "01 : A e A(¿, n)\-

If/e^"*(A:,/i), that is, if inf{S(G) : Ge^}=0, then, according to [13, §5.9],

uifi tt) is quasi-additive with respect to 8 and mass (|| • ¡) in f\k iRn).

Let/= l°m denote the monotone-light factorization of/with middle space M.

Let d, denote the usual metric induced on M by / and let C(A7) denote the space

of continuous real valued functions on M.

Theorem 1. 7//e !F*ik, n), then, for each g e CiM) and continuous differential

k-fiorm <p in Rn,

(*) Tig)icp) =   lim   2 A Í *(*(*MA*)) ■«(/>)<&
6(G)->0 xeG   \~\ Jx

exists. Here \tt\ denotes k-dimensional Lebesgue measure of tt and cpifix))u(fi, n)

denotes evaluation of the k-covector cpifiix)) at u(J, tt).

Proof. The essential elements of a proof of the above statement can be found in

[13] and [3]. We will give a complete proof here in our present notation.

Suppose g e CiM), <p is a continuous ¿-form on Rn, and e>0.

For any pair of simple polyhedral regions tt', 77c A'let sfV, 7r) = l if tt'^tt and

sin, 77)=0 otherwise. According to [13, §5.9] there is a S>0 such that, if Ge 'S

with S(G) < 8, then there is a y > 0 such that

xeG

and

2 "(/> *)- 2 '(**> *■)"(/> «i)
iiieGi

< e

2 Íi-2*("i,")1k/>i)H <«
meGi   L xeG J

whenever G, e S with 8iG,) < y.

Suppose G and G, are as above. Since, for any simple polyhedral region 7r<= X,

the diameter of mirr) relative to d, does not exceed the diameter of firr), we can

assume that 8(G) is so small that

sup{\\gimix))cpifix))-gimix'))cpifix'))\\ :x,x'eTr}<e

for all tt e G. Here || • || denotes comass in the space f\k (7?n) of ¿-covectors in 7?".

Letting

Mig) = sup{|£(z)| :zeM)

and

Mi9 of) = sup {\Wix))\\ :xeX},
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we have

2 O f gím{x))<pifix))-uif,Tr)dx- 2   tK í   gimix))<pifix))-uif,Tr1)dx
IteG   1^1   Jjl Jl!6Gl   l^ll   Ja!

= 2 lo í g(m(x))9(f(x))-u(f,Tr)dx

- 2 s-^rr- í c?(*(*MA*))-«(/>i)«k
JijeGí      I   ll      J»i

+ 2 í1 - 2 »(»i. »)11 üTT í sM'M/iMW. *i) <&
JiieGí L        JieG J   I  l^ll Jjjj

= 2 Im í ¿k^ww«) •{</>)- 2 *(»i.")«(/>»i)j«**
neG I \~\ Jji 1. "teGí J

I    1     f
+ 22  ^""i' ̂    Tí     S(m(x))qo(f(x))-u(f, ttj) í£c

JieG JiieGí I \7T\ Jn

~ÜT\      g(m(x))(pif(x))-uif,Tr1)dx

+Af(g)A/(çpo/) 2 Íi-2íK")1 |[«C/>i)ll
"l^Gi   L JI6G J

^ M(g)A/(ç> o/) 21 «(/, »)- 2 *(»i. »)«(/> *i)
neG II nieGí

+ e   2    Hf,"i)\\+eM(g)M(<pof)

ú [2M(g)M(9of)+(£jV(f)]e,

because

2 ll»t/>i)ll = (?) 2 k/>»i)l = ßn/).

Since the above holds for any Gxe^ with èiGx) < y, the theorem follows.

The formula (*) above defines a linear mapping of C(Af ) into the space EkiRn)

of Ä>dimensional currents in 7?". (The notation concerning forms and currents is

that of [9].)

Since, for g e C(Af ) and <p e EkiRn),

\T(g)fo)\ s(£)Mig)Mi<pof)Vif),

this mapping possesses a unique extension, also denoted by T, to the class of all

bounded Borel measurable real valued functions on Af such that Lebesgue's

bounded convergence theorem holds. In particular, one obtains a countably

additive current valued function T on the class of all Borel subsets of Af which

will be referred to as the current valued measure associated with/.
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Assume throughout the remainder of this section that/e^"*(¿, ri) so that the

current valued measure T is defined.

For each simple polyhedral region na X and A e A(¿, n) let

U + if\n) = i[\uif\n)\+uif\n)]

and

U~if\n) = \[\uif\n)\-uif\n)\.

For each set U open in X let

V±if*\U) = sup 2 «*(/"*, *)
xeS

where the supremum is taken over all finite collections, S, of nonoverlapping simple

polyhedral regions nc u.

According to [13, §6] the function defined for all Borel sets B^M by

p(B) = inf {Viflm-^A)) : A open in M and A => B}

is a finite Borel measure over M, and finite Borel measures p.*-, /x± over M can be

defined analogously using the functions F(/Ä| •) and F*(/A| •).

We note from [13, §6] that

p.(M) = V(J)=   lim   2I"C/»I>
6(G)-0 xeG

p* = p\ +p\   for A e A(¿, ri),       /¿(m(Bdry *)) = 0

and that

p(m(n)) = K[min)]°) =  Vif\n)

for each simple polyhedral region n<= X. Here [w(7r)]° denotes interior of min)

relative to M.

For A e A(¿, ri), let vA=/¿+ -/xA and define a ¿-vector valued measure over M by

v = ZAeA(fc,n) "*£*. Then, for any simple polyhedral region n<^X,

\u(f\n)-^(m(n))\  =  \u + (f\n)-p\(m(n))\ + \u-(f\n)-p\(m(n))\

< p.\min))-\uifi\n)\.

Let ÖA denote the Radon-Nikodym derivative of vK with respect to p for

A e A(¿, ri) and let 0 = 2*eA(k,n) 0^a- Then, by [3, 5ii], |ö(z)| = 1 for p. almost every

z e M, where | • | denotes the Euclidean norm on f\k iRn).

Theorem 2. For g e CiM) and <p e EkiRn),

Tig)i<p)= f  giz)<piliz))-8iz)dp.
JM

Proof. The essential elements of a proof of this statement can be found in [3]

and [13]. Because of the difference in viewpoint and notation, a short proof is

included here.
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Suppose g e C(M), <p e Ek(Rn), and e>0. Let >fi(z)=g(z)cp(l(z)) for zeM. Then

0 is a continuous ¿-covector valued function on M. Since, for any polyhedral

region ncz X, the diameter of m(n) does not exceed the diameter off(n) we have

maxsup{||0(m(x))-^(m(*'))ll : x',xen} < e
xeG

for G e 0 with 8(G) sufficiently small.

For such a G consider

A =    2 A Í M™ (*)> • <f> «)dx-[ ftz) ■ 8(z) dp
xeG  M J„ Jm

Since p(m(n))=p([m(n)]°) fox neG we have

A = 2 I ¿r f Km(x)) ■ u(f, n)dx-\     <A(z) • 8(z) dp
xeG I I'M Jx JmW

+ \( t/,iz)-8(z)dp\
I Jjf-U,e(i«(j) I

s «2 K/»ii+w)2 ii«c/»-k»i(t))||
neG neG

+ e 2   K»«W)II+^(0)(Ï)/*(m- U ni(n))
xeG \K/     \ neG /

= 2«(?) F(/) + M(0)    2     2 \u(f\n)-Am(n))\
\K/ AeA(k,n) neG

+Miiïfâ} [km) - 2 k«(t))]

^ 2£(") v(j)+M(4>) 2   k(/A)-2 l«CMll
W AeA(k,n) L neG J

+M(^)Q[F(/)-2i"a-)i]>
and the theorem follows.

By Lebesgue's bounded convergence theorem the conclusion of the above

theorem remains valid if g is any bounded Borel measurable function on M.

Corollary. ¿i= ||r|| á(2)/¿.

Proof. If 7i is a Borel set in M and y e Ek(Rn), then

\T(B)(<p)\ = 1 f <p(l(z))-8(z)dp

= M(y) £ ||0(z)|| d> = M(,>)Q M5).

Thus|r||áGV.
Suppose A is open in Ai. For each G e ^ let

G(A) = Gr\{n:n^m-\A)}.
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Then, by [13, §5.7],

Since

PÍA)=   lim     2   l«*t/»l-
6(G) ->0 xsG(A)

Z\uif,Tr)-vimÍTr))\í    2    2 W\")-v\m{"))\
jteG AeA((c,n) neG

á  2   [n/"A)-2 l«c/"\»)ll áñs(G),
AeAOc.n)   L neG J VV

and /a(/7i(7r))=/a( [m(7r)]°) for 77 e G, we have

M04) =   lim    2    IK«W)I = "rn sup   2   ^(T(M*)]0)) Í \\T\\iA).
i(G)-»0 neG(A) <XG)-.0    neGa)

If 5 is a Borel set in Af and A is open with B<^A then

,419-171(20 <l ̂ )-¡r||(2í) ^ ||r¡u-2í) s (£)tf¿-*).

3. Representation.

Theorem 3. Suppose fe J~*ik, n) and T is the current valued measure associated

with f
If there is a sequence {/} of quasi-linear mapsfi : X —> Rn converging uniformly tof

with bounded areas and such that

T(g)(9) = lim f#[X A (go m)](9)
Í-> 00

for all g e C(M) and <p e Ek(Rn), then

1. T is rectifiable current valued.

2. There is a Baire function v. M -> /\k (Rn) such that, for \\T\\ almost every

z e M, v(z) is a simple k-vector, \v(z)\ is an integer,

tim  T(A(z,r))(9)

r

and

<p(l(z))-v(z) =  lim ^  \L'r     for<peEk(R«),
r_0+        a(K)r

....       ..      l|7l(A(z, r))

where a(k) is the k-dimensional Lebesgue measure of{xeRk : \x\S 1} and, for r > 0,

A(z, r) is the component ofl~\{y : \y—l(z)\<r}) that contains z.

3. For each Borel set 2?<= Af,

T(B)(<p)=jg<p(l(z)yv(z)dH?

= f   9>O0-{     2      v(z)\dHk   for<peEk(R»),
JR" ^S6l-i(y)nB )
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and

\\T\\(B) = f  |t,(z)| 0-77; = Í    (     2       W)\) dm
JB Jr«   \«el->(y)oB /

where Hk and Hk denote k-dimensional Hausdorff measure in M and Rn respectively.

Proof. Let F denote the class of Borel sets ßc M for which T(B) is rectifiable.

Then F is closed under countable disjoint union and proper subtraction.

Using the arguments of [7, §§3.2 and 3.4] one shows that A e F whenever A is

an open subset of M with A n w(Bdry X) = 0. Since

«rllMBdry X)) = (¡J) ,x(m(Bdry X)) = 0,

statement 1 follows.

From the hypothesis that, for g e C(M), T(g) is the weak limit of the

fi#[Xh(g ° m)] it follows readily that, for any open V^M with V c\ ?n(Bdry X)

= 0, we have spt dT(V)^l(Bdry V). This condition, together with ||r||(»i(Bdry X))

=0 allows one to use, with obvious modifications, the arguments of [7, §§2.1 and

2.2] to prove statements 2 and 3.

We now investigate conditions under which the hypotheses of Theorem 3 are

satisfied.

Suppose that/is a continuous mapping from a polyhedral region X<=-Rk into

7c* with F(/)<co.

For each polyhedral region o<=X and y e Rk let

N(fi<j,y) = SupZ \0(fi,n,y)\
xes

arid

Ar±(/>,j) = sup2 0*ift1r,y)
neS

where the suprema are taken over all finite collections S of nonoverlapping simple

polyhedral regions n<=o. Then for each o the functions N(fio,y), N±(f,o,y)

are nonnegative, integer valued, lower semicontinuous functions on 7?", F(/|ct)

=J> Nif, o, y) dy and Nifi o, y)=N+ifi o, y) + N~if, a, y) for almost all y e Rk.

For each a let

nifi o,y) = N + ifio,y)-N-ifio,y)   if Nif, o, y) < oo,

= 0 otherwise.

For each simple polyhedral region n<^ X let

vifi,n)= f   \Oifi,n,y)\dy.
Jr"

Lemma. Suppose f: X^- Rk as above and{fi} is a sequence of continuous mappings

fi: X-+ Rk converging uniformly to f with F(/,) < oo for i = 1, 2,-
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If G is any finite collection of nonoverlapping simple polyhedral regions ttcz X, then

lim sup 2 W(f *)-u(ft, 7r)|

(a)

and

i-K»     jieG

S2\v(f)-I v(f 7r)l +2 lim sup [V(ft)- V(f)],
L neG J (-»»

(b)   lim sup \v(f)- 2 v(f, 7r)l ï V(f)- 2 vifi 7r) + lim sup [V(fd~ V(f)].
(-•oo      L xeG J neG ¡-»oo

Proof. For neG, consider

!«(/»-«(/.. »)l = k/»-f   «if,«, y)4y
JR*

("W, -*,y)- fifi, *. jO) ify
|Jtj*

nifi,TT,y)dy-uifi,Tr)
Wr*

+

+

We have

«(/ t) -      nif,TT,y)dy   = (0(/, »r, j) -«(/, w, j)) dy
Jr." I Ja*

áf   iN+if,TT,y)-0 + if,Tr,y))dy+í   (N-(f,n,y)-0-(f,nty))dy
Jr* Jr*

= Vif\Ti)-vif,Tr),

and, similarly,

"(/,"■)-      nifi,TT,y)dy
Jr*

Let

Then

á K(/j|ff)-»ü;,7r).

BH", 0     {yeRk: N±(J, n, y) > N*(ft, tt, j;)}.

(«(/, T, y)-n(Ji, TT, y)) dy
\JR"

SÍ    |Af+(/;T,J')-^ + (/;,»r,J')l4'+f    |Ar-(/,'r,>')-Ar-(ÁT,j)|úr>'
Jb* Jb*

áí A^i/^jOrfy+f N-if,Tr,y)dy
JB + ln.t) jB-(n,()

+ f (N+(fi,^y)-N+(f,^y))dy
JRk-B + {n,i)

+ f (N-ift,Tr,y)-N-if,Tr,y))dy
JRk-B-(.n,i)

á 2 f 7V + (/ 77, J) ify + 2 f /V-(/ 77, 0+ KfJîlir)- V(f\n).
Jfl + (n,() J/J-(n,()
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Thus

2 w> »)-«</;. *)i ¡s n/D- 2 «</; •)+ n/a- 2 */"«. *)
neG

+2 2 { Í N+if> WÎ y) dy+ f N-ifi n, y) dy
xeG   Ufl + (n,f) Jb-(»,0

By [12, §2.2], vij, n)glim inf^. »(/„ tt) and A^f/, tt, y)álira inf^«, N*ifu n, y)

for 7T e G and y e Rk. Thus, given e > 0, we have J,,«^ f(/, w)—« < 2neo fC/t, n) for i

sufficiently large. Hence

vifù-2 *¿»■) < vifù-vif)+vi/)-2 »a,*)+*
xeG xeG

and (b) is proved.

Now, for each n e G, the functions N+ifi n, y) and 7V"(/, ir, y) are integrable,

the ¿-dimensional Lebesgue measure of U¡°°=i B±(n, i) is finite and

Ó Ü B*i"J) c (J : N*if, n, y) = co}.
i=iy=i

Thus, since G is finite,

lim sup 2 Wf, ")-uifu ir)| = 2ÍF(/)- 2 vif, n)} +2 lim sup [F(/¡)- F(/)]
i-»oo    neG L neG J i-toa

and (a) is proved.

Theorem 4. Suppose fis a continuous mapping of a polyhedral region XcRk into

Rn with fie $~*(fi, ri) and ¡et T denote the current valued measure associated with f.

If {ft} is a sequence of quasi-linear mapsfi: X^- Rn converging uniformly to f with

F(/A) = limi.00 ViJ}-) for X e A(¿, n), then

Tig)i<p) = \imfi#[X A igom)M
(-.to

for all g e CiM) and <p e EkiRn).

Proof. Suppose g e CiM), <p e EkiRn), and e>0. Note that

MX A (g o m)]i9) = j g(míxMMx))-Jf¿x) dx

where Jfiix) = 2jt«A<k,n) Jfi\x)eÁ. Here Jf? denotes the ordinary Jacobian of ft. Also,

from [1, 8.9iii] we have uif}, n)=jnJfl\x) dx whenever tt is a simple polyhedral

region in X.

Let G e 0 with 8(G) so small that

Tig)Í9)-2 TI f Simix))cpif(x))u(f,n)dx
xTg Fl Jx

< e.

and

max{\g(m(x))cp(f(x))-g(m(x'))<p(f(x'))\ :x,x'en}<e
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for 7T e G. Then

2 TT     g(mix))<pifix))uif,Tr)dx-\   g(m(x))(p(flx))-Jfi(x)dx
neG Fl Jn JX

= 2 I o Í gWxMf(*))-W> ^)-"(/(. »)] <&
neG I l"1 Jn

+ 2 IÍ «(w(*))vCA*))-[îî¥îr-^wl
nto I Jn L     F] J

143

dx

+ 2       g(mix))[<pifix))-9ifiix))]Jfix)dx
neG I Jn

+ \ gimix))<pifiix))Jfix)dx
JX-KJneO"

Ï   Mig)Mi9 of)  2    W, T^-UiJ,, 7r)|| + S 2   i|«C/„ 77)| + Í     \Jfix)\ dX
neG neG   v Jn

M(g)M(çp C/-ÇP o/) 2 F(/|7r) +Af(i)Af(çp °/)k(/|JT- (J ")
neG \ neG    /

+

Ú Mig)Mi9 of)    2     2 l"</A> ")-"(/i\ "•)! +2eViJi)
AeA(fc,n) neG

+ Mig)Mi9of-9ofi)Vifi) + Mig)Mi9of)    2     \v(f,A)-Zv(fi\")].
AeA(k.n)  L TieG J

By the preceding lemma we have

lim sup 2 \uif\Tr)-uift,rr)\ ï 2[V(J*)- 2 |«(/\ n)\] < 28(G),
i-»oo      neG neG

and

lim sup in/?)-2 K/?,»)l = ^(/A)-2 KZ7»! < 8(G)
i-»oo       L neG J jreG

for A e A(k, n).

Since {/} converges uniformly to/we have

lim Af(<p of— tp of) = 0
¡-»oo

and the theorem follows.

Remark. Theorem 4 was originally proved under the hypothesis that given any

e>0 there isaGe'S such that

8(G)+max{^fc(/*(lJBdry^ : XeA(k,n)\ < e.

Here ¿ifk denotes A>dimensional Lebesgue measure in Rk. It was shown in [11, §3]

that this hypothesis is satisfied if either k=2 or Hk + 1(f(X))=0.

The proof of Theorem 4 under the weaker hypothesis/e &~*(k, n) was suggested

by T. Nishiura.
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Theorem 5. If f is a continuous mapping from a polyhedral region X<^Rk into

Rn,2ekún, F(/)<co, and either k = 2 or Hk + 1(f(X)) = 0, then fie 3T*(k,n) and

there is a sequence {/¡} of quasi-linear mappings fi: X —> Rn converging uniformly to f

with Vif >-) = lim^m Vif}) for X e A(¿, ri).

Proof. That, under these conditions,/e 3~*ifi, ri) was proved in [11]. The proofs

of [4, Theorems 3.16 and 5.7] consist of constructions, under the given conditions,

of sequences of quasi-linear maps having the desired properties.

4. Densities. Throughout this section assume that f:X->Rn satisfies the

hypotheses of Theorem 3. We will show that p. = | T\\ and describe the relation

between the functions v and 8.

For each zeM, let

// n       r /*(A(z, r))

It is readily shown that p! is Borel measurable.

Theorem 6. For each Borel set Be M, fB p'(z) dHf ^ piB).

Proof. Using the arguments of [5, Lemma 6.1 ] and the definition of p. we find

that, if A is a Borel subset of M and A<={z : p'iz)>c}, c>0, then p(A)^cHk(A).

Adapting the proof of [5, Theorem 6.2], the theorem follows.

According to Theorem 3, for |[T*|| almost every zeM, there is a simple ¿-

co vector to with |<u| = 1 such that

i u w t\      i-     TiAiz, OX«)
\viz)\ = co-viz) = Inn    \{k>[     •

For r > 0,

HA(z, /•))(«,) = f       oi• 8iz) dpuï       H 10(z)| dp = MA(z, /•)).
JA(a.r) JA(a.r)

Thus, for ||T\\ almost every zeM, \v(z)\ ̂ /x'(z) and, hence, for any Borel set

B^M,

171(7?) = f  \viz)\ dHf = f p\z)dHf = piB).
Jb Jb

By the corollary to Theorem 2, p= \\T\\.

Thus, by Theorem 3,

1 *„'(*) = lim ̂fe# <

for p almost every zeM, and, hence

oo
r->0 + a(k)rk

lim MA(z,5r))     5fc
r^0+ MA(z,r))

for p. almost every zeM.
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For z e M and r>0, let ciz, r) denote the closure of A(z, r) in Af and let

V = {ciz, r) : z e M, 0 < r < 1, /x(Bdry ciz, r)) = 0,

andpidz,5r))<i5k+l)piAiz,r))}.

Note that inf {r : c(z, r) e V}=0 for p almost every zeM.

For S<^ M, let diam, (5) denote the diameter of S in M, and, for S e V, let

S = U {S' : S' e V, S' n S ¿ 0, and diam, (S") ú í diam, (S)}.

If ,S;=c(z, r), S'=c(z', r'), 5 n 5^0, and diam, (S')Sí diam, (5), then, for any

z" g c(z', r')s we have

|/(z")-/(z)| ^ diam, (S') + diam, (S) g (l+f)(2r) < 5r,

and hence, since 5" is connected, iS"cc(z, 5r).

Thus, for S e V, we have /*(£) < (5k + l)p(S). Referring to [8, Theorem 2.8.7] we

have the following

Lemma. Suppose A is a Borel set in M, W is open in M, F<= V, and

inf{r : c(z,r)eF} = 0

for all z e A. Then there exists a countable disjointed subfamily G of F such that

U S <=■ W   and   Ja nW-(Js) =0.
SeG \ SeG      I

In view of this lemma and [8, Theorem 2.9.7] we find that, for A e A(A:, n),

y±(z) - rLT+   piAiz, r))

exists and is finite for p almost every zeM, and since p. ± ̂  p.,

p\iB)=^y\iz)dp

for each Borel set 2?<= Af.

Thus,

6\z) = y\(z)-y1(z) =  lim ^''»
r-.o+ MA(z, r))

for /i almost every zeM.

We summarize the results of this section in

Theorem 7. Iff: X -y Rn satisfies the hypotheses of Theorem 3, then p= \\T\\ and

v(z) = p!(z)6(z)for p. almost every zeM.

Proof. Let {eA : A e A(k, n)} denote the basis of A" (Rn) dual to {ex : A e A(jt, n)}.

For each A e A(k, n),

T(A(z, r))(e*)

•^"Ä       «Gfc)r"
for /x almost every zeM.
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Now, by Theorem 2,

7YA(z, r))(e*) = f       e». 8(z) dp = v*(A(z, /•)),
JA(z,r)

and, hence,

^•t;(z)=lim   *%*¡)) » ^)nO-
r->o+     ct^/c;r
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