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COBORDISM MASSEY PRODUCTS
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J. C. ALEXANDER

Abstract. The structure of Massey products is introduced into the bordism ring

i)s of manifolds with structure 5 and machinery is developed to investigate it. The

product is changed to one in homotopy via the Pontrjagin-Thom map and methods

for computation via the Adams spectral sequence are developed. To illustrate the

methods, some products in Qsu and QSp are computed.

1. Introduction. In [18] and [8], W. Massey introduced secondary products

into the cohomology ring of a space. The construction works for any associative

differential ring and such products exist in many contexts. Secondary products

have also been introduced by H. Toda in stable homotopy theory [17] and in a

more general context by E. Spanier [15]. In the situation of cobordism of manifolds,

we almost have a differential ring. Products do not exist (they have corners) and

there is no notion of subtraction. However, as might be guessed from the existence

of this paper, the obstructions to defining a meaningful secondary product are

not insurmountable. In this paper, we develop such products.

The idea of secondary cobordism products has been in the air for some time.

They have been mentioned by various workers in the field, but not really used as

such. Also, G. Porter has developed secondary products in generalized cohomolo-

gies [12]; cobordism is of course a special case. The point of view in this paper is

somewhat different than Porter's in that we consider Massey products as a way of

constructing, in some sense, manifolds to represent cobordism classes.

We are particularly interested in ordinary triple products and limit ourselves to

discussing them. The construction immediately generalizes to matric products [9],

and presumably at least some of it generalizes to higher products [6]. The cost of

doing so explicitly is, at the least, more complex notation. We leave it to the reader

to pursue these if he wishes. Matric products enter unbidden in §5 ; we briefly discuss

them there.

In §2, we isolate the algebraic structure we want to study. Here we set up the

notation and properties of secondary products. In §3 we define cobordism Massey

products. In place of subtraction we have glueing, and we must carefully develop

the notion of structured manifold so we may glue them together. We also define
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products and some other auxiliary constructions. Thus we do not get to the basic

definition until 3.7.

The idea is simple. If we have closed manifolds L, Af, N such that LM=8A,

MN=8B, we glue AN and LB along their common boundary LMN to get X. The

classes of such X are the Massey product.

In §4 we change the problem into one of homotopy. We define a secondary

structure on the homotopy of the Thorn spectrum [Definition 4.1] and show that

the Pontrjagin-Thom map is a map of secondary structures [Theorem 4.3]. Again

the definition is simple. If we have maps / g, « representing homotopy elements

such that /a g, g Ah represent zero, we put cones FonfAg and G on g Ah and

glue F Ah and/A G together along /a g Ah. The resulting map 27 determines a

homotopy element and the set of such 27 determines the secondary product. We

remark that matric and higher products could be defined here and they would have

the obvious properties.

In §5 we develop our main computational tool—the Adams spectral sequence.

The results we get are analogous to those of May [9] and Moss [10].

The secondary structure on unoriented and complex cobordism is nonexistent

since these rings are polynomial. In oriented cobordism, most, if not all, of the

secondary products are trivial. In §6, we compute some of the secondary structures

for SU and Sp cobordism.

2. Secondary products. In this section we make explicit the algebraic structure

we want to consider. Let R = {Rn} be a graded associative ring with unit. Let

k= ±1. Let a, b, c, d, e be homogeneous elements of R of gradings a, ß, y, 8, e

respectively.

2.1. Definition. R has a secondary (or Massey) product structure (of degree k)

if there is assigned to any a, b, c satisfying ab = 0, be = 0, a set of elements, denoted

<c7, b, c>, <^Ra + e + y + k. This set of elements is called the secondary product of a, b, c

(in that order). It is to be a coset of the group a-RB + Y + k + Ra + e + k-c, which is called

the indeterminacy of {a, b, c}, denoted indet (a, b, c>. The structure is to be governed

by the following axioms.

1. If any of a, b, c is zero, {a, b, c> = indet (a, b, c>.

2. {a, b, c> is linear. That is, if <a, b, c), <c7, b, c> are defined and a = 8, then

<[a+d,b,c} is defined and (a + d, b, c}<^(a,b, c} + (d, b, c>. Similar equations

hold for the second and third entries.

3. If (a, b, c> w defined, d(a, b, c}^(-l)ä(da, b, c>, {a, b, c}d<={a, b, cd}.

4. If {ad, b, c> is defined, {ad, b, c}<={a, db, c>. If {a, b, dc} is defined, {a, b, dc}

<= <a, bd, c>.

5. 7/a/7 terms below are defined, 0 e <a, b, c}d+(— l)aa(b, c, cf>.

6. If there exists a choice of y e (b, c, d} so that {a, y, e} is defined, there exist

(by 2.1.5) choices x e {a, b, c>, z e <[c, d, e> so that all terms below are defined and

Oe(-l)\x,d,e) + <:a,y,e) + (-iy<a,b,zy.
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The structure is said to be commutative if R is commutative as a ring and

1. If (a, b, c> is defined, (a, b, c} = i-l)ae + ey + ya(c, b, a}.

8. Ifiab = bc = ca = 0,Oei-iy\a, b, c> + (- l)B\b, c, a> + (- l)y\c, a, b>.

A ring map fi: R -> R' of degree 0 is a map of secondary structures if, whenever

<a, b, c> is defined, f(a, b, cy^(fa,fb,fc}.
If 7? is bigraded, we assume that a, b, c, d, e are bihomogeneous. k becomes

ik', k") with k'+k"= ± 1. a, ß, y, 8, e are total degrees. The product <a, b, c> is

contained in a bihomogeneous component.

We thus have categories of rings with secondary structures. An isomorphism is a

map which is an isomorphism on the underlying sets. Note, however, that these

categories do not have sub or quotient objects.

It is clear that we could have an external secondary product. Thus suppose we

have six graded abelian groups R,,..., RB and maps p,2: 7?,. (g) 7?2 ->■ 7?4, p23:

R2 ® 7?3 -^ 7?5, p,5: R, (g> 7?5 -> R6, pt3: 7?4 <8> R3 -> Re satisfying

^43(^12 <8> 1) = Misil <8> p-2s)- Ri <8> R2 <8> -^3 -* Re-

For elements ae R,, be R2, ce R3 satisfying p,2ia <g) b) = 0, p23ib <g> c)=0, there

will be assigned a set of elements <a, b, c><=7?6. These will satisfy the analogues of

2.1.1 through 2.1.6. We will pursue the geometric analogue of this situation in

§5.
We finish this section by listing the standard examples.

2.2. Examples. 1. The trivial secondary structure. For any a, b, c with ab=0,

bc=0, let <a, b, c> = indet (a, b, c>.

2. The negative of a structure. If <a, b, c><=7în, let <a, b, c>' = (-l)n<a, b, c>.

Then < , , >' is a secondary product, called the negative of < , , >.

3. Massey product. See [18]. This works for any associative differential ring.

4. Toda bracket. See [17] and more generally [10].

In the next section, we put such a structure on cobordism rings.

3. Cobordism Massey products. Before we can make our definition, we must

collect some machinery. We recall the notion of structured manifolds, how to form

their products and how to glue them together. All of this is fairly standard. For

example, see [16].

Let BOiri) be a classifying space (say a Grassmannian) for O(n), the orthogonal

group on «-dimensional Euclidean space E". Let/n: 7?(w) -> 7iO(«) be a fibration.

We suppose we have a sequence of inclusions in: Bin)^ 7?(«+l), jn: BOiri)

-> BOin+l) such thatfn+,in=jnfn. Let 77+ (resp. H~)={t eE1 | / = 0 (resp. g0)}

denote a half-line.

3.1. Definition. A B-structured manifold is a class of triples (Af, t, $) where M

is a compact smooth manifold of dimension m,i: M —> H + xEm+k~1 is an embedding

such that

(1) t\8M: dM-+ Em+k~1=0xEm + k-\
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(2) there exists a tubular neighborhood of 8M, 8Mx [0, e)<=M such that t(x, t)

= (t, ix) for t e [0, e)c77 + , x e 8M,

and $: M —»■ B(k) is a map such that fn£ = v, the normal bundle of i. We identify

various (M, i, f ) gotten by varying k and using ik, jk.

The boundary of(M, i, £) is (8M, i\8M, Ç\8M).

We often drop some of the notation and refer to the B manifold M. For Af

closed, we let —M denote Af with the "opposite" structure. M and Af' are co-

bordant if M u — M' = 8N for some N.

In the usual way, we form the cobordism groups Q_£ of 5-manifolds. [Af] e Q£

denotes the class of Af. — [M] = [ — M].

3.2. Definition. If B' = {B'(n),i'n,fll} is another structure, a map F:B^-B'

is a sequence of maps Fn: B(ri)-> B'(n) such that f'nFn=fn, i'nFn = Fnin. Such an F

induces a homomorphism F* : Q£ -*■ Í2£'.

There   exist   standard   maps   pBO: BO(k)xBO(k')-> BO(k+k')   such   that

H-noUk* 1)=Mbo(1 ><À)=À + Jc'/*B-

3.3. Definition. B is multiplicative if there exists pB: B(k)x B(k') -» B(k+k')

such that MBo(/kx./!c)=A- + /cAtB> Ms('fcx l) = Ats(l xiV) = 4 + k^s- B is associative

(commutative) if pB is associative (commutative).

If B is multiplicative, Q.B = {Q.%} has the structure of a graded ring; it is associative

or commutative if B is. Henceforth we assume that B is associatively multiplicative.

(We will also proceed to modify this assumption in 3.9.) We suppose all maps F

are compatible with the multiplication.

We can now turn to the question of products. Suppose M=(M, i, £),

M' = (M', i, £') are 2?-manifolds, both possibly with boundary. Then

i: M->H+ xEm + k-1,       i: M' -^ H+xEm' + k'~1,

ixi: MxM' -+H+ xEm + k~1xH+ xEm'+k'-1 = H+xH+ xEm + m' + k + k'-2.

In polar coordinates 27+ x H+ ={(r, 6) \ 0^6^tt/2}. We define X:H+xH +

^~H+xE1 by X(r, 6) = (r, 26). A is a homeomorphism and a diffeomorphism

except at the origin. (Ax l)(ixi'): AfxAf'->-7/+x£m + m'+'c + 'c'"1 is an embedding;

let M he M x Af ' with the induced differentiable structure.

3.4. Definition. The product MM' is the triple (M, (A x l)(t x i'), p.B(£xi;')).

MM' is a B-manifold.

We now consider glueing. We make two definitions. The first is the straightforward

definition we will use in constructing secondary products; the second is a more

intricate definition we will need in auxiliary constructions. (It is used to "undo"

the effects of 3.4.)

Suppose M=(M, i, 0,M' = (M', i, £') are two 2?-manifolds such that 8M=8M'.

By this we mean there exists a diffeomorphism r¡: 8M^-8M' such that i' = ir¡,

£' = £). Let k:H+ ^ H~ be the map K(t)=-t.

3.5. Definition. Af u„ Af'   (or   M u¿M Af')   is   the   triple   (A?, i", £)   where
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M=M VJ M' with the identifications r¡x=x for x e 8M, ¡ = iUki', !=|uf'.

M has the differentiable structure induced by ï. M \Jn M' is a closed B-manifold. It is

M, M' glued along 8M=8M'.

Note that if M, M' are as in 3.4, d(MM') = dM-M' u8M.gM. M-dM'.

To define the more complicated glueing we need a map. Let

77+ x E1 = {(r, 8) | 0 = 8 = n),       H~ xE1 = {(r, f?) | 77 ̂  ö ^ 2tt}.

Let

(tf+xT^U'tTf-xTi1)

be the disjoint union. Let

A' : (77 + x E*) u' (77 - x EJ) -> 77 + x E1

be given by A'(r, 8) = (r, 0/2).

3.6. Definition. Suppose we are given the following data:

(1) B-manifolds (M, t, £), (M', t', £') of dimension m.

(2) y4 smooth manifold L of dimension m— 1 ipossibly with boundary) and diffeo-

morphisms g:L-> Tv'c8M, g':L^N'<=-dM', such that

(a) *=i'g', &=£'*';

(b) ifdL^0, there exist tubular neighborhoods igdL)xi — e, e)<=dM and ig'dL)

x( — e, e)<=8M' such that, for xegôL, x' eg'dL, t e( — e, e)^E1,

(i) (x, t) e N if t^O; (x', t) e N' if t^O.
(ii) i(x, 0 = 0, íx)<=£1x7ím + '£-1 = 0x7i1x7ím + 'c-1c77+x£'1x7im + k-1.

Le/ M=MV) M'   with  identification gx=g'x' for  xeL.  ï=(X' x l)(i u /«').

f =£ U I'. (M, r, |) is a B-manifold denoted M\JLM'.

líN=dM, N' = dM', 3.6 reduces to 3.5.

d(Af Ut AT) = (8M-N) uaL (dM'-N').

We are now ready to make our main construction. Let L, M, N be three B-

manifolds such that LM=8A, MN=8C. Let X=AN kjlmnLB (according to 3.5).

X is what we want to call the secondary product; we must check how well defined

it is.

SupposeLM=8A' and X' = A'N\JLMN LB. Ä=A' ULM A is closed and X' u -X

= ÄN. Thus [X'] = [X] + [ÄN]. Conversely, if Ä is closed and A' = A ul, LM

= 8A'. If X' = A'NvLMNLC, [X'] = [X] + [ÄN]. Changing B causes a similar

effect. Thus we know the indeterminacy.

Now suppose we change L by a cobordism. Let 7/ u -L=8D. Then if A'

= AuLMDM, 8A'=L'M. Let X' = A'NuL.MNL'B. Let F=7)7i u (Jfx7) with

glueing (by 3.6) along AN^SDB and AN<= XxO<=8(XxI). Here 7=[0, 1] and the

structure maps (t, £) on Ix 7 are the projections onto X followed by the structure

maps of X. If the codimension is large enough, we can approximate the map

Y -> Ek by an embedding and, if X is identified with X x 1, 8 Y= X' u - X. Thus

X', X are cobordant. A cobordism of TV is handled similarly.
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Suppose Af' u -M=8D. Let A' = A uLMLD, B'=B ULM DN. Then 8A'=LM',

8B' = M'N. Hence A" = A'NuLM.NLB'. Let Y=(ANx I) u (LBxI) u (LDNx7;i

u (LDNxI)2 u(Xx I), with the following glueings:

(1) LMN x 2c a(^7Y x 2) with LA/TV x 2c a(Z,Z)Af x 2)1;

(2) LMN x 2c ô(L2)Af x 2)2 with LA/TV x fc 8(LB x I),

(3) LDNx la8(LDNxI\ with LDNxl^8(LDNxI)2,

(4) LM 'N x 7c 8(LDN x iy with LM 'TV x 2c g(L2)TV x 2)2,

(5) A'=A'x0ca(A'x2) with

X= ANULMNLB = (ANxl)uLMNxl(LBxl) c 8(AN x I) U 8(LB x I).

Then if the map y->£k is approximated by an embedding, ST=A" u — Z

where A' = (,47V x 0) u (LB x 0) u (L2)7Vx 0)! u (LDNx 0)2 with appropriate

glueings and X=Xx 1.

Thus we have shown that the following is well defined and has the proper

indeterminacy.

3.7. Definition. Let the set of[X] = ([L], [Af], [NY).

3.8. Theorem. 3.7 defines a secondary product structure of degree +1 on QB.

If B is commutative, so is the secondary structure. A multiplicative map induces a

map of rings with secondary products.

To prove the theorem it is necessary to establish 2.1.1 through 2.1.8. These proofs

consist of more glueings similar to those preceding the definition. We leave them

to the reader.

3.9. Remarks on generalizations. The construction given here works equally

well for other types of manifolds. In fact, it works even better in the piecewise-linear

or topological category, since the problems with corners do not enter. We could

also, with a small amount of extra work, consider manifolds with groups acting on

them [4].

Furthermore, in some of the more interesting cases, such as symplectic cobordism,

the structure B is not associative, but only homotopy associative. In this case,

before we glue A TV and LB along LMN, we must choose a homotopy between our

two structures on LMN. Thus we actually glue a copy of LMN x 2 in between AN

and LB. A priori, the choice of homotopy could affect the value of the Massey

product. In all interesting cases (in particular for symplectic cobordism), B will have

enough "higher homotopies" that the choice will not matter.

4. The Pontrjagin-Thom map. In this section we investigate how the Massey

product behaves in the Pontrjagin-Thom theorem. We put a secondary structure

on 77*(A/2?) and show that the Pontrjagin-Thom map <I> : DB ->■ tt*(MB) is a map of

secondary structures. This result holds even in categories of manifolds where 0 is

not an isomorphism (it does not use transversality), but if O is an isomorphism, it

changes the computation of secondary products into a homotopy problem.
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Let MB={MB(ri)} denote the Thorn spectrum of B. (See for example [16, Chapter

II].) pB: B(ri) x B(ri) -> B(n + ri) induces a pairing pB: MB x MB-> MB. Let/, g, h

represent elements of n¡(MB), nm(MB), nn(MB) respectively. Thus, e.g.,/: S' -> MB

is a sequence of maps fi: S'+r -> MB(r) commuting with the various connecting

maps. Suppose

/ a g: sl+m = Sl A Sm -> MB,       g A h: Sm+n ̂  Sm A Sn->MB

are null-homotopic. Let 7=[0, 1] and CSk = (I, 1)a(S\ *) = IxSk/lxSk u 7x*

be the cone on Sk. There exist maps F: CS'+m-+ MB, G: CSm+n -* MB such that

F(0, x) = (fiAg)x, G(0, x) = (gAh)x. Then

FA«: (7, 1) A (S'+m, *) A (Sn, *) -> (MB, *),

and if T: (I, 1) A (Sl, *) -+ (Sl, *) A (I, 1) switches factors,

(/ A G)T: (I, 1) A (Sl, *) A (Sm+\ *) -+ (MB, *).

Since(f A g) A h=f A ig Ah),

(F A h)i0, x) = if A g A h)ix) = (J A G)TiO, x)   forxeS' + m+n.

We define 77: S"+m + n + 1 = ([-l, 1], 1 u - 1) A(5"+m+n, ») -+ÍMB, *) by

Hit, x) = (F A «)(/, x)       if t = 0,

= (/A G)(-/, x)   if / = 0.

4.1. Definition. If, in n^iMB), [f] = a, [g] = b, [h] = c, let <a, b, c'y = the set of

all [77].

We leave it to the reader to verify it is well defined and also to verify the following

result.

4.2. Proposition. ( , , y is a secondary product structure on n+iMB) of degree

+ 1. If B is commutative, so is the secondary structure.

We now look at <D: QB -> n^MB).

4.3. Theorem. <I> is a map of rings with secondary products.

Proof. Let (L iL, $L), (AT, iM, £M), (TV, tjv, £N) be three closed 7?-manifolds with

LM=8A, A=iA, iA, fA), MN=8C, C=iC ic, fc). Then

-iB: C^-77" xEm + n + k2 + k3-1.

The Thorn construction (i.e., collapse of ER outside of a tubular neighborhood of

the image of an embedding) gives maps

fiL: Sl+*i -> MBik,),       gM: Sm + k* -> MBik2),       gN:Sn+k3-> MBik3).

The tubular neighborhoods of iAiA), ic(C) can be assumed to intersect

ßi + m + ki + k2 _ oxF' + m + fci+k:2 cr H+ xEl + m+ki+k2

£m + n + k2 + k3 _ Q x £m + n + k2 + k3 ^ jj + x £m + n + k2 + k3
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orthogonally and so that their intersections with El+m+ki+k2, ¡;m+n+k2+k3 are the

products of the tubular neighborhoods of iL(L), iM(Af), tjv(TV). Then we also get

fA: CSl+m + ki+k2 -> MBiki+kz),      fc: csm+n+k*+k3 -> MBik2 + k3).

Emulating the construction leading to 4.1, we get maps

fA A/w:CS'+m+n + fci+fc2 + k3^A/5(Jc-i+fc2 + A:3),

Wl /\fB)T: CS'+m + n + ki+k^k^^MBik1 + k2 + k3)

agreeing on Sl+m+n + ki+k2 + ka. We glue them together to get a map

H. si+m + n + i + kl+k2+*3 _> MBiki+kz+kJ.

It is clear that as we vary klt k2, k3, this is precisely the construction of 4.1. Hence

<P<[L], [A/], [TV]> c <(D[L], <t>[M], (D[TV]>.

5. The Adams spectral sequence. The main computational tool we develop to

handle the homotopy problem of the last section is the Adams spectra sequence.

We put secondary products in the Adams sequence and determine some of their

properties.

We briefly recall the Adams spectral sequence [1]. For each prime/?, there exists

a spectral sequence Ep* (s^O, t^s), of total grading t-s, with differentials

c7r: Ers-1 -^Ef*'-**'-1 such that

(5.1) Es2d X Extj-' iH*iMB; ZP);ZP)   iA = modp Steenrod algebra),

Er converges weakly to 7r^(A/2?)/(elements of finite order prime to p). Furthermore,

the pairing MB a MB -> MB determines a coproduct over A

(5.2) H*iMB; Zp) -> H\MB; Z„) ® H%MB; Zp)

and hence a pairing

Ext^ iH*iMB; Zp); Zp) ® ExtA iH*iMB; Zp); Zp)

( ' ' ->ExtAiH*iMB;Zp);Zp).

It also induces a pairing Ep1 ® Esr'x -»■ Esr+s'-t+t' which is consistent (at E^)

with the induced pairing tt^MB) <g> rr^MB) -> tt^MB) and which agrees with

(5.2) at E2. (There are several sign conventions. We suppose that if a¡ has bidegree

(jj, /j) for i=l, 2, the isomorphism (5.1) changes the sign of a±a2 by

(_ i)«i-»i)«2-s2>.) Also each dr is a derivation.

The copairing (5.2) induces a pairing

(5.4) Hom¿ (St, Zp) ® Hom^ (St, Zp) -> Horn,, (SI, Zp)

for a resolution ^ of H*(MB; Zp). This, of course, is what leads to (5.3). We also

have from (5.4) a Massey product structure in

(5.5) ExtA(H*(MB;ZP);Zp).
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5.6. Theorem. Each Er has a secondary product structure of degree ( — r+l,

— r + 2) with the properties

1. At E2, this structure is the same (via (5.1)) with the Massey structure on

Ext^ (H*(MB; ZP);Z„) (as in 2.2.3). 7/a( (i= 1, 2, 3) have bidegrees (s¡, tt) the sign

of (a,, a2,a3y is changed by (—Vf-h-h^h-^^a-H).

For r>2, the structure on Er is the Massey structure on Er = H(Er_,).

2. Let a, b, c be elements in Er of total degree a, ß, y, bidegrees (a, a"), iß', ß"),

(y, y"). Suppose <a, b, c> exists in Er. Then

(5.7) ***.>"-<«.*(<_£„   °). ((_£..,)>

3. Let a, b, c be as in part 2. If

(a) all elements in the groups

(5.8) Epiy_\\\\       O^n^a' + ß'-r,

(5.9) Ef'ÎP'-WW       0 è n = ß' + y'-r,

are permanent cocycles and

(b) a, b, c are permanent cocycles which in Ex  represent elements f, g, h

e n*(MB) such that </, g, «> is defined, and

(c) <a, b, c> is defined in E„

then there exist Fe </, g, Ky, p e <a, b, c> such that p is a permanent cocycle and at

Fa, represents F.

5.10. Note. For reference, we define matrix Massey products. Let (C, 8) be a

graded (resp. bigraded) associative differential ring, with 8 of degree k = ± 1

(resp. bidegree (k', k") with k' + k"= ± I). Let A = (a¡), F=(è(i), Y = (c,) be matrices

over 77(C) of sizes (1 x m), (m x ri), (nxl) resp. Let grading a( = (a,) (resp. (a,', a")),

grading ¿>y=/Sw (resp. (ß'^ß",)), grading Cj=y, (resp. (y'„y")). These matrices are

to satisfy:

1. (a) For each/, there exists an integer p., (resp. pair of integers (¡¿,, p",)) such

that al+ßij=pj for all i (resp. ip'„ f$-(o¡, J¡)+{B\¡, ßl,)).

(b) For each i, there exists an integer v¡ (resp. pair of integers (v¡', v\)) such that

ßij+yi = vi for all j (resp. (vj, v")=(r3;i, ß"u) + iy'„ y",))- (Let A=/¿,+)/, = «, + „, for any

( = all) i,j (resp. (A', X") = ip'„ p^+iy'„ /,)=(«;, «,") + W, •#).)

2. AB = 0, 7ir = 0.

Let Ä=iät), etc., where a¡ is a representative in C of a. We have £i a^^Sx,,

2,5(yc,=(-l)«i ^i for some x^, j?, e C. Let i=(x,), F=fjJ. Let <A\B\Yy be the

classes of all elements XY-AY as X, Y range over all possibilities. <[A\B\Yy

c77A+k(C) (resp. 77A.+fc-,A»+k»(C)) and is a coset of the subgroup

2af#vl+fc(C)+2tf     (C>y
i í

(resp. 2 a¡77v¡ +fc.,vf+AC)+2 Hß.+Kll.j+^iC)c}j.
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Formula (5.7) holds in the following form: Let i(bij) = ((—l)'ti c7rèu), dric¡)

= ((-l)u> drCj). Then

The analogue of part 3 holds if parts (b), (c) are replaced by their obvious

analogues and part (a) is replaced by (a') : All elements in the groups

En;uj+^+n+\       (0 ¿ n ¿ p'j-r)   for all/

pn.vi + vr+n + i        (0 < « < v'i-r)   for all i,

are permanent cocycles.

5.11. Remarks. 1. The theorem is formally like analogous theorems of May

[9] and Moss [10] although this situation is not formally contained in either of

theirs.

2. Some conditions in part 3 are necessary for convergence to hold. The counter-

example discussed in [10] may be considered to live in framed cobordism.

3. As the referee has remarked, it would be worthwhile to have more complete

analogues of [9, Theorems 4.3, 4.5]. I have not been able to push through the

details. Furthermore, our Theorem 5.6 suffices for the purposes of detecting Massey

products.

4. We consider only the classical Adams spectral sequence, although parts of

the theorem immediately go through for more general Adams sequences.

Proof of Theorem 5.6. For clarity, we work in the external situation. Suppose

we have given six spectra Xx,..., Xe and pairings p12: X^AX2^ Xit p23: X2 A X3

-> X5, p15: X1aX5^- X6, M43: Xt A X3 -> Xe such that

^43(^12 A 1) = iii5(l A pi3): Xx A X2 A X3 -> X5.

The Adams sequence is constructed as follows: by using mapping cylinders if

necessary, we may assume for each spectrum X¡, we have a sequence ai of sub-

spectra Xt(p) and inclusions

-> Xip) -* Xlp-1) ->• • -^ XM = X.

Let A'i(co) = H Xi(p). We use the notations Xt(p, q) to denote the pair (X{(p), X¡(q))

and TTn(p, q) = TTn(Xt(p, q)) ifq^p. We let k: tt{(p, q) -> ¿(p', q') be the map induced

by the inclusion if (p, q) à (p', q'). We have the exact triangles (with coefficients

Zp for p prime)

H*(X{(p,q))

8/ \ino *

H*(Xt(q))  <-r— H*(X((p))
luv*
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and the sequence

—-> H*(X.{p,p+\)) A* H*(Xt(p-l,p)) —*-► /ï*(Ai(0, 1)) -*-+ H*(Xt)

with Xp = 8 inc*, e = inc*. It is to be a resolution of H *(X¡) over the modp Steenrod

algebra A. We can assume that Pij(Xt(p) A Xj(q))<= Xk(p+q) for whatever i,j,k

make sense. We have induced

l*,¿X¿p,q) A *//>', </))-> Xk(p+p',min(p+q',p'+q)).

Let

,Z?-q = image(«::7r^_p(y7,/7 + r)->77*,_J,(j>,/> + l)),

,B>'* = imageid:Trig_p+1ip-r+l,p)->Trtq_p(p,p+l))

and

,£?•« = iZf-^B?-".

dr is induced by 8: Tr(p,p+r)-+Tr(p+r,p + r+l). (tEr, dT) is the Adams spectral

sequence.

To construct the secondary products, we emulate as closely as possible the

construction of §4. Let a e xEr, b e 2E„ c e 3Er be such that {a, b, c> is defined in Er;

suppose they are represented respectively by maps

f:(f,i')^X1(p,p + r),
g:(Im,tm)^X2(p',p'+r),

h:(I\l»)^X3(p",p"+r).

Consider the diagram

^(P,P+r)^Tr2(p',p' + r)

(5.12) **(p+p',p+p' + r)

K

Tr\p+p'-r+\,p+p')->rri(p+p',p+p'+l)-^Tri(p+p'-r+l,p+p'+l).

The bottom row is exact. Since Kp*2([f] <g> [g]) e im 8,

fAg:(Il,t') A (Im,lm)^ X^p+p' -r+\,p+p' + 1)

is homotopic to *. (Here and elsewhere we make obvious abuses of notation.)

There exists a map

(5.13) F:(I, 1) A (7',/') A iI^h)^XAj>+p'-r+\,p+p' + \)

such that

(5.14) F|0 A (7', /0 A (Im, /m) = / A g.
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Similarly

g A h:ilm,lm) A iln, In) ̂  X5ip' +p"-r+l,p'+p"+l)

is homotopic to *, so there exists

G:(7, 1) A (7m,7m) A il\ /») -+ X5ip'+P"-r+l,p' +p" +1)

such that
G|0 A (7m, tm) A (7n, in) = g A h.

LetF: (7, 1) A (7',/') ^ (7!,/') A (7, 1) switch factors. Let P=p+p'+p". Let

(/I+m+B+l/l+m+.+l) = (r_1; ^ jy.j^  (/f+*+» /!+■+«).

Define 77: (7! + m+n+1,/,+m+n + 1)^JSre(F-r+l,F+l) by

r515, 77(i, x) = (F A «)(/, x)      ifr = 0,

= (/ A G)F(i, x)   if tú 0,

for / e [ -1, 1 ], x e I1+m+n = 7' A 7m A 7\ The set of such H determines a subset of

7r%P-r+l,P-|-l) and hence a subset of 6zp-r+1-p-r+2+l+m+n. The set of classes

of such elements 77 in Fr we call <a, b, c).

We now reinterpret this construction in algebraic setting. Recall in (5.12),

«nUlñ A [*]) e ¡mage 8^\p+p', p+p' +1).
Let^:(7! + "1 + 1,;í + m + 1)^Z4(o+/,D+jp' + l)besuchthatc)m = /í/i*2([/]A^]).

This means /Ag:(7l+m,/1+m)^ ^(/»-r-p'^-r-Tj' + l) is homotopic to a map

ifAg)' such that (/Ag)'|7i+m: 7i + m -* *, and hence ifAg)' factors as in (5.16).

(/,+-,/,+")—^jr4(/»+/>',*)

\ / (/ A g)'

(S,+m, *)

Furthermore, we may choose f so that Ç\l'+m+1 = ifAg)" if we equate /i+m + 1

= 5,+m. If we patch £ and the homotopy between /A g, ifAg)' together by glueing

along £|/I + m + 1 = (/Ag)", we find we have constructed an Fas in (5.13). Conversely

any such Fis homotopic, with all stages of the homotopy satisfying (5.14), to such

a construction.

Thus if £ represents x in 4Fr_i, a similar r¡ represents y in 5Er_,, and 5, 5, c in

6Fr represent a, b, c, we immediately see that the classes 77 in 6Er are precisely those

of the form class (xc + (—1)' + Iöj0. The sign (-1)' comes from the fact that T

changes orientation by (-1)!; the other (-1) comes from the change of [0, 1] to

[-1,0] in (5.15).
Thus <a, b, c> is in fact a Massey product. It thus satisfies properties 2.1 auto-

matically.
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The observant reader will note that we have put something over on him. In

constructing our sequence of subspectra Xiip) we may have lost strict associativity

and have only homotopy associativity in our products. Thus it may be necessary

to modify (5.15) to accommodate the homotopy. This will still lead to some

Massey product in the spectral sequence and, since there is only one consistent

with the algebra, the complication makes no difference. We thus continue as if it

were not there.

Part (1) of the theorem is proved for r>2. If we note that

E1 xHomAiH*i@;Zp);Zp)

as differential rings for a judicious choice of resolution St, part (1) of the theorem

is also proved for r=2.

We turn to the proof of part (2). In general, if a e Er is represented by

/: (2!, /') -> Xip,p + r), dra is represented by

8f = f\Il :(/',*)-> X(j> + r, *) -> Xip + r, p + r +1).

Note that 3(2' x 2m) = (/' x 2m) u (2' x /">) and that

8(f Ag):iiPx7m) u (7¡x/»), *) -> Xip +p'+ r,p+p' + r+l)

breaks up so that 8ifAg)\IlxIm represents d^b and d(jAg)\I'xIm represents

(- l)"a-drb with the induced orientations. We want to consider 377: (/!+m+n+1, *)

->■ X6(P+l,P+r+l). Using (5.15), it breaks up into

(5.17) 8(F A h):(I, 1) A 8((I' + m, P + m) a (In, /"))-> X6(P+l, P + r+l),

(5.18) 8(f A G)T:(I, 1) A 8((I',i') A (Im + n,tm + n)) -» X6(P+l,P+r+l).

We break 8(FaH) into

(5.19) 8(F A h)\(lxll+m)xln,

(5.20) 8(F A h)\lxl'+mxtn.

(5.19) is a cone on a representative of dr(ab) times a representative of c. (5.20) is a

cone on a representative of ab times a representative of c7rc. (5.18) similarly breaks

up. The union corresponds to sum. Checking the signs due to orientation reversals,

we find that 8H is a representative for the matrix Massey product (5.7).

To prove part (3), consider the diagram (5.21):

(5.21)

771(/>, CO) (g) TT2(p', CO)

\0, CO)

«i

P,
^7tV+/>',00)

*5

->TTi(p+p'-r+l,oo)

^{p,P + r)^ir2(p',p' + r)JL>-7ri(j>+p',p+p'+l)J^*n*{p+p'-r+\,p+p'+i)
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The various k are induced by inclusions. Suppose fe n,ip, co), g e n2ip', oo).

Condition (3b) means that

(5.22) K4K5/M/® g) = 0.

Condition (3c) means that

(5.23) K3K5pxif® g) = 0.

If we knew that

(5.24) K^eoif® g)  = 0,

we could perform the cone construction (5.13) in X^p+p'-r+1, 00), and, with a

similar analysis for g 0 h, prove the result. To prove (5.24), we use a lemma of

Moss [10, Proposition 6.3].

5.25. Lemma. Suppose in ¡F, (5.8), (5.22), (5.23) hold and the spectral sequence is

weakly convergent. Then (5.24) is true in tE.

This completes the proof of 5.6.

6. Massey products in SU and Sp. In this section, by way of illustration and

application, we compute some of the secondary structure of Q.su, the special

unitary cobordism groups, and exhibit a certain multiplicatively indecomposable

element in symplectic cobordism as a Massey product. Qs,uxZ2 has as its non-

zero element a, represented by a framed S1. ü^uxZ2 on a2; ßf^O so a3=0. The

interesting products are those of the form <«, a2, x> or <2, a, x>. Before we proceed,

we recall some of the structure of Q.su. References are [3], [5], [16]. Let y2 e £1% be

a two dimensional generator of Q17, ( v2) the ideal generated by it.

6.1. Theorem. 1. The natural map

nsu®Z[J[]-+Clüliy2)®Z[2-]

is an isomorphism.

2. Torsion Q.su = 0 ifn^l or 2 mod 8. Torsion £2|fc + i, torsion i2ik + 2 are vector

torsion spaces over Z2 of dimension the number of partitions ofik.

3. There exist elements mBk e Q.%% such that a basis for torsion £2st7 is {a ■ monomials

in mek, a2 ■ monomials in m8k}.

4. There exists a 4-dimensional generator x4 such that xl=4m8.

We collect the results into an omnibus theorem. They are representative of the

type of results one can obtain using Massey products. Let x6 generate Q%uzZ.

6.2. Theorem. 1. <2, a, 2> = a2mod0.

2. <a,a2,2>=x4mod2i2fc/.

3. If 2x = 0, ax e <2, x, 2>. (A similar result is true in framed cobordism. See [17,

Corollary 3.7].)

4. If ax = Q, for any y e <2, a, x>, ay = 0 and {a2, a, x> n <2av>^0.
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5. If ax = 0, x4x is divisible by 2. In fact ^x4x<=<a2, a, x>. (Note that \x±x is itself

a coset of the torsion subgroup.)

6. indet <2, a, x6> = 2Q8;C7. There exists x8 e <2, a, x6> such that x8, m8 generate

&euxZ®Z.

7. indet <a2, a, x6> = torsion Dfo7 + xe • Í2fü. All elements of <a2, a, x6> are

indecomposable.

8. For a«j> xBfrom 6.2.6, ax8=0, |x4x6 n <2, a, x8>^0.

6.3. Remarks. 1. These results give a large number of elements, including

some indecomposable ones, as Massey products.

2. 6.2.5 has several interesting corollaries. It gives, for instance,

<a, a2, x4> = \x\ = 2me mod x4- Q.8,u.

Also, it may be of some academic interest to note the following. In the mod 2

Adams spectral sequence for Qsu, all group extensions at F«, are determined by

the multiplicative structure except for one collection of extensions, all similar.

6.2.5 determines those extensions. We discuss this further below.

3. N. Ray and R. M. Switzer, in [13, Lemma 4.2], have a result quite similar

to 6.2.5. In fact, it can be proved exactly as in 6.2.5. Apropos their use of their 4.2,

we refer to 6.3.2.

Now we consider symplectic cobordism. Í2f xZ2 on generator a,. Also ¿ii"xZ2

on generator o2. Since Í2fï x Í2?g £ 0, the product (o,, o\, o2y is defined in £2f?. The

group Qf ? xZ2©Z2©Z2 and o, ■ Of g + cr2 • Df g xZ2©Z2. Any element not in

this last subgroup (which is indet (a,, o\, <r2» is multiplicatively indecomposable.

From the analysis in [14], specifically Proposition 3.3(iii), we get the next result.

6.4. Theorem, (p,, a\, <r2>={A e Of? | A is multiplicatively indecomposable).

The author knows of no more explicit representatives for these A.

We now turn to the proof of 6.2.

6.2.3 follows immediately from 2.1.3, 2.1.4, 6.1.3, 6.2.1.

6.2.4 follows from 2.1.6 as follows. Note that <<x, 2, <*><= ¿21^=0. Thus for any y,

ay = o£<2, a, x> = <a, 2, a>x = 0   mod 0.

Changing y changes <2, a, y y by a2 ■ something. This follows from 2.1.2, 6.2.1.

Now we apply 2.1.6 and get

0€<a2,«,x> + <2,0,x> + <2,<x,j>

for any y. The middle term is absorbed in the indeterminacies of the others and we

get 6.2.4.

6.2.5 is similar. We have, from 6.2.2,

(6.5)
x4x = <2, a2, a>x   mod 2x-Q.lu,

= 2<a2,a,x>   mod2x-Qft/.
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Every element in the set on the right-hand side of 6.4 is divisible by 2. Hence

x4x is divisible by 2. Furthermore, x-Qf^c indet (a2, a, Xs). Therefore |x4x

c<a2, a, x}.

6.2.8 follows immediately from 6.2.4, 6.2.5, 6.2.6, 6.2.7.

Parts 1, 2, 6, 7 follow from computations in the mod 2 Adams spectral sequence.

We recall a portion of its structure. References are [3], [7].

6.6. Lemma. For t-s^ll, E24 has ring generators 1 e E2-°, q0 e El'1, hx e E\-2,

Te El-1, coT.eEt12, qi^E\-\ zxeE%-ñ, y e E%-10 with relations q0hx=0, «? = 0,

h1T = 0, h2y = 0, T2=q2w1. The only nonzero differential is d2. It is determined by

(6.7) d2z1 = hxq2.

We have the following correspondence between D.su and representatives in Ea :

asu

00

Xi x6

9»

m8 xs

9oZi

The results on Massey products we need are

6.8. Lemma. 1. In E2, (q0, hu qo)=hï mod 0.

2. In E2, {q0,hu hi) = t mod 0.

3. In E3 = H(E2), <c7o, hu c72>=c7oZi mod 0.

4. In E3 = H(E2), <«?, «!, c72> = zi mod 0, where z[ is the residue ofh\zu

Along with 5.1.3, Lemmas 6.6, 6.8 immediately prove the rest of 6.2.

6.9. Remark. To continue 6.3.2, we note that if A e 0.1% is represented by z\ in

£oo, the multiplicative structure cannot determine whether 2A=0, 2A=x4x6 (which

is represented by Tq2) or 2A = a27«8 (which is represented by «fwj). 6.2.5 and 6.8.4

immediately determine this extension ; 2A = x4x6. Furthermore, all extensions which

the primary multiplicative structure does not determine are of the same type.

See [3].

We turn to the proof of 6.8. Parts 3, 4 follow from 6.7. We leave them to the

reader. To establish parts 1, 2, we must determine Massey products in

Ext (H*(MSU; Z2);Z2). Through resolution degree 7,

Ext(22*(A/5'£/;Z2);Z2) « H*(C#;Z2).

Here C* (following Liulevicius [7]) is the sub-Hopf-algebra of the mod 2 Steenrod

algebra generated by 1, Sq2, g, (7=0, 1,2,.. .)(Q¡ are in Milnor's notation). This

isomorphism respects the primary and secondary ring structures. The dual Hopf-

algebra of C* is Z2[t,]/I, /=0,1, 2,..., where I is the ideal generated by t$, if

(i>0). T¡ is dual to Q¡, and t2. is dual to Sq2. The diagonal is given by

At, = 1® t¡ + t¡® 1,        j¿ 1,
(6.10) „

At2   =   1  ®  7-i + T2®  T0+Tt®   1.

H*(C#;Z2) is the homology of the reduced cobar construction. (See [2, §2.2].)
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We have the correspondence q0 = class [t0], q2 = class [t2], h, = class [t2,]. Hence

ft? = class [Tg|rg].

To establish 6.8.1, note that [T§|T0] = â[T1], [T0|T§] = S([T1] + [Tg]). Hence

<g0,h,,q0y = class ([t0\t,] + [t,\t0] + [4\t0]).

However

^,r0] = [t,\t0] + [t0\t,]+[t30\t0] + [t2\t2].

This is the formula which establishes 6.8.1. (It can be also proved by noting

Ai=îoUiîo. See [2, §2.2].)

To establish 6.8.2, we first note that r is the only nonzero element of 773,7(C#).

We need only show that <ft2, h,, a0> is nonzero. We have that

[tSKIt2] = o([t,\t,] + [t2\t,t0] + [t,t2\t0]).

Thus

(6.11)     <.h2,,h„q0y   =   ClaSS ([r1\r1\T0]+[Tl\r,T0\T0] + [T,Tl\T0\T0] + [Tl\Tl\T,]).

Now let </>i,..., </>k be monomials in the t3. Define a character, char hp,\ • • • \ifite]

e Z2, by

char [ ] = 1   ([ ] is the empty cochain);

char [i/ijl • ■ • \tbk] = 1    if >/>i = rh for some/¡, i = l,...,k,

= 0   otherwise.

We extend char additively to all cochains Y. In fact, it is a ring homomorphism.

6.12. Lemma. If Y is a boundary, char Y = 0. Hence char is well defined on

H*(C*;Z2).

Proof. If Y is not of the form

(6.13) [Tji\---\TfJjt + i\---\Tikl

8T contains no term [t;i| • • • |t;J and char SvF = 0. This follows from the explicit

formulae (6.10). If Y is of the form (6.13), it also follows from (6.10) that

char SY = char ([rh\ ■ ■ ■ \tu\tu + 1| • • • | r,k] + [rh \ ■ ■ ■ KJtJ • • • |ryJ)
= 0.

Thus the lemma is proved.

By (6.11), char <7z?, h,, a0> = 1 ; hence (h2, h,, o0>/0. This completes the proof

of 6.8.2 and 6.2.

6.14. Remark. One could also consider the Adams-Novikov spectral sequence

using unitary cobordism [11, p. 861]. In this case, it is the action of d3 that gives

formula 6.2.2.
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