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PRODUCTS OF COMPLEXES AND FRECHET SPACES
WHICH ARE MANIFOLDS(*)

BY
JAMES E. WEST

Abstract. It is shown that if a locally finite-dimensional simplicial complex is
given the ‘“‘barycentric” metric, then its product with any Fréchet space X of
suitably high weight is a manifold modelled on X, provided that X is homeo-
morphic to its countably infinite Cartesian power. It is then shown that if X is Banach,
all paracompact X-manifolds may be represented (topologically) by such products.

In [20] it was established that the product of a separable, infinite-dimensional,
Fréchet space and a locally finite simplicial complex is always a paracompact
manifold modelled on the Fréchet space. Previously, David Henderson had shown
(combining results of [10] and [11]) that each paracompact manifold modelled on
a separable, infinite-dimensional, Fréchet space is homeomorphic to the product
of that space with a locally finite simplicial complex, so this characterized the
products of locally finite, simplicial complexes with separable, infinite-dimensional,
Fréchet spaces as precisely the paracompact manifolds modelled on these spaces.
In this paper, attention is primarily given to simplicial complexes which are not
necessarily locally compact but are given complete metrics and to Fréchet spaces
which are not necessarily separable. It is proved (Theorems 3, 4) that if K is a
simplicial complex which is locally finite-dimensional and is given the metric
derived from barycentric coordinates (as if the complex were embedded piecewise
linearly in a Hilbert space with its vertices all mutually orthogonal and on the unit
sphere), then its product with any Fréchet space of suitably large weight which is
homeomorphic to its countably infinite Cartesian power is a manifold modelled
on that space.

In addition, it is shown, using two other results of Henderson and a suggestion
due to him and Israel Berstein, that (Theorem 5) all manifolds which are para-
compact and modelled on a Banach space which is homeomorphic to its countably
infinite Cartesian power are homeomorphic to products of that space with metric,
locally finite-dimensional, simplicial complexes. This leads in turn to a result
(Corollary 2) on the splitting of a Banach manifold into the product of a closed

Presented to the Society, January 24, 1970; received by the editors June 11, 1970 and, in
revised form, July 8, 1971.
AMS 1969 subject classifications. Primary 5755; Secondary 5525.
Key words and phrases. Fréchet manifold, Banach manifold, metric simplicial complex,
homotopy type.
(*) This research was entirely supported by NSF Grant GP-9397.
Copyright © 1972, American Mathematical Society

317



318 J. E. WEST [April

submanifold and a Fréchet space when it has the homotopy type of a complex of
less weight than the space upon which it is modelled (provided that that space is
homeomorphic to its countably infinite Cartesian power). The possibility of
obtaining Theorem 5 from something on the order of Theorem 4 was suggested
to the author by David Henderson.

Uniform approximations to complete metric spaces. Here the notions of
“interior approximation”, and ‘Y-approximation” developed in [20] for the
context of compact metric spaces, are extended to complete metric spaces. This is
achieved by the expedient of requiring all functions involved to be uniformly
continuous. The proofs of Theorems 1 and 2 here are descendants of those given
in [20] for Theorems 4.1 and 4.2, respectively.

The term “uniform isomorphism*’ will here be used to mean ‘“homeomorphism
which is uniformly continuous and has a uniformly continuous inverse.” *“ Uniform
embedding”’ will mean ‘““‘embedding which is a uniform isomorphism onto its
image.”

If X and Y are complete metric spaces, a uniform interior approximation to X by
Y is a sequence {{;};2, of uniform embeddings of Y in X satisfying

(1) for each positive number « there is a positive number z such that i >#» implies
{(Y) is e-dense in X,

(2) there is a complete metric space M and a uniform embedding « of X in M
such that

(3) for each positive number e and for each positive integer i, there is a uniform
embedding B, of X in M with d(B,:(x), «(x))=2~* for all x in X which has the
property that ’

(4) for each positive integer j, there is a uniform isomorphism y, ; ; of « o {(Y)
onto B, © &+ (Y) with d(y, ;0 20 {(y), ec{(y))Seforall yin Y.

(Here and later, all metrics will be denoted by “d”.)

If X and Y are compact, M may be taken to be the Hilbert cube. It was shown
in [20] that in this case the existence of a uniform interior approximation to X by
Y is sufficient to imply that X and Y are homeomorphic. The author does not have
an analogue to Lemma 4.1 of [20] in the present case, however, and the iterativity
condition defined next serves in its stead.

Let P denote the positive real numbers, N the positive integers, and S the set
of all sequences of members of Px N. A uniform interior approximation {to X
by Y will be said to be iterative if there is a complete metric space M and a choice,
for each (o, n) in Sx N, of a subsequence {, ,={{, .}iev of { and embeddings
%g,n> {Ba,n.c.idenep x v and {Ya,n,e.t.j}(e,l.I)erNxN in M satisfying (1)-(4) for {, , to-
gether with

(i) &,,n+1 is a subsequence of &, ,,

(ii) aa.n+1=lga,n,a(n)’ and

(iii) if o(i)=7(@) for i=1,..., n, then the choices are identical for (o, i) and
(7,i) when 1 ZiZn.
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THEOREM 1. If X and Y are complete metric spaces and there is an iterative
uniform interior approximation to X by Y, then X and Y are uniformly isomorphic.

Proof. Let { be an iterative uniform interior approximation to X by Y, and let

M and {e;,a}sxn {Bonsitsxnxpxn> 304 {Yon 64535 xnxpxnxn DE chosen to satisfy
iterativity.

Let ¢, =14, e;=1, and i; =1. Choose o, in S so that o;(1)=(3, 1). Let i3>, be a
positive integer satisfying the inequality

iy > 2—log, (inf {d(ey,,1(x), @, 1(x) | (x, X) € X; d(x, X) 2 1}).

Now select o, in S with oy(n)=(e,, i,), n=1, 2. Let j, in N be such that {;, 1 45,

= cag.z.fg'

Define inductively sequences {e,}2- 1, {in}n=15 {On}n=1, and {jn}r=2 of members of
P, N, S, and N, respectively, satisfying

(a) ey, &g, iy, iz, 0, 09, and j, are as selected above,

in+1 > im
>2- 10g2 (lnf {d(Ba,.,n,a,,(n)(x), Ba,.,n.a,.(n)(x,)) |
x,x' e X;d(x,x") 221,

(®

Epi1 = %e,,,
(C) < 27%inf {d(')'on,n.a,.(n).l,. 0% ¥5n,1,00(1),75 © ®5q,1 © §1(J’),

Yonn.0nmdn O °° Yon,1,00(1). 95 © %aq,1 ° Lo |
»,y evYd(y,y)z2"1,
(d) ons2(m)=(em, in), m=1,...,n+1, and

(e) go',,,n.i,. i1 Ca,” 1.0+ 1,00 410

Now the sequences o={(en, in)}nen and {ju}nen define sequences {fo=Bs.n.ominen
and {gn="Yo,nomtns1 ° " " Ya.lor i © %1 ° Li}ney Of embeddings of X and 7,
respectively, in M. These, in fact, converge uniformly to uniform isomorphisms
onto the same subset of M.

First, {f,}ney and {gn}ney are uniformly Cauchy because of the initial restrictions
of (b) and (c), respectively, together with (3) and (4), respectively. Hence, they
converge to uniformly continuous functions f and g from X and Y into M,
respectively. However, the second inequalities of (b) and (c) guarantee that fand g
are uniform embeddings.

Second, f(X) and g(Y) are dense in each other. This may be seen as follows:
For each ¢ in P, there is an n; in N such that n2n, implies d(f(x), fu(x)) <¢/5 and
d(g(»), g.(»)) <e/5 for each x in X and y in Y. Because f,, is a uniform embedding,
(1) gives an n, in N with n,2n, such that n2n, implies f, o {,(Y) is /5-dense in
Jn,(X). Also, there is an ng in N, ng2 ng, such that {,, = la,,.,,t,,g. Now, if x € X, then
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there is a yeY such that d(f,(x),fs, o {n(¥))<e/5, and since g,,(Y)
=fnz © Loung.in(Y), there is a y” in ¥ with g,,(y*)=fn, © {5,ny,1,,(¥)- Then

d(f(x), g(y)) = d(f(x), fo,(x)) +d([fo,(3); [, © Las())
+d(fa, © Lag(P)s Sy © Eng(¥)) +d(8ny(¥); Sy © Lni(¥))

+d(g.,(¥), 8(»")
< &/5+¢[5+2e/5+0+¢/5 = e,

so g(Y) is dense in f(X). On the other hand, as g,(Y)<f,(X) for each n and
{gnnen converges uniformly to g while {f,},cy converges uniformly to f, f(X) is
dense in g(Y).

Finally, since fand g are uniform embeddings of complete metric spaces, their
images are closed, hence equal, so f~! o g is a uniform isomorphism of Y onto X.

If X and Y are complete metric spaces, a closed subset Z of X x Y will be called
a uniform Y-approximation to X provided that there exists a complete metric space
M and, for every ¢ in P, a uniform embedding g, of Xx Yin Zx M Xx Yx M
with, for each x in X x Y, d(p; o g.(x), p1(x)) <& such that if g,=(p, ° g; o (p1, p2),
P2 © 8 ° (P1, P2)s Pas P3 © 8 © (P1, P2)): XX YXY > ZXYXMcXXYXxYXM
and if Z;=(p,,p;+1)"YZ), i=1,2, then there is a uniform isomorphism
he: g(Z5) — Z, with d((ps, p2) © ho(x), (p1, P2)(x))Se for all x in g.(Z,). (Here,
p; is the projection onto the ith factor, and Z is always regarded as a subset of
X x Y. The metric on finite products will always be the sum of the coordinate
metrics. In the following, infinite products of complete metrics appear, and it will
be convenient to make the convention that given a collection {A,},ey Of metric
spaces with uniformly bounded diameters, the metric for [T,y 4, will be given by
d(x, y)="Smexn 27171 d(pu(x), pa(»)). Also, given a space Y, the symbol Y= will
denote the product of a countably infinite set of copies of Y indexed by N.)

THEOREM 2. If X and Y are complete metric spaces and there is a uniform Y-
approximation Z to X, then X x Y and Zx Y are uniformly isomorphic.

Proof. Let M be a complete metric space as in the definition of uniform Y-
approximation. For convenience, it will be assumed that the diameters of X, Y,
and M are no greater than one. (This may be done because if 4 is any metric
space, the new metric p(x, y)=min {d(x, y), 1} gives diameter less than or equal
to one, and the identity function is a uniform isomorphism.)

Let {={{}ien, Where {;: Zx Y — X' x Y ® is given by {;=(py, (1 ° P, Pa©Pas . - +»
Pai—1° D3s Pas Pai © Pas Pai+1 © Pas - - -))- (The notation supposes Zx Y*<cXxY
x Y .) It will be shown to be an iterative uniform interior approximation.

Fix a point m in M and let « embed X x Y® in X x Y * x M * by the formula

x,y)—(x,p, (mm,m,...)).
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In order to define {B. :}pxn and {y.: }pxnxn, @ “rotation” of Xx Y® x M= is
necessary. Let k: Px N — N be a function such that k(e, i)Zi+2 and 2 —log; (¢),
and for each e in P and i in N, define ¢, ;: XX Y°xM*® - Xx Y° x M > by

(‘P’ 1) Dj° Pe,i=Dj> lf.]= L3,

(‘P’ 2) Dj°D2° ®e,i=Dj° D2 lf.]=l”219

(#,3)  Paxcey+27 © P2 © Pe,i=DPai+2; ° P2s

(®,4) Paivaj©P2° Pei=Pai+2i-1°Pa if j=1,..., k(e, i)—i, and

(®,5) Parsaj—1°P2° Pei=DPakie,p+2i-1° Pa-

For each (e, i) in P x N, define 8, ; by

(B, 1) 1o Bei=p10 g2k o (Py, P2y © Pa)s

(B,2) pjopaoBei=Pso P2 Psy for j#2i,

(B, 3) Pai© P2 o Bsi=p2 © ga-eb o (P1, Py © Pa)s

(B,4) pjopseBei=m,for j#k(e, i), and

(Bs5)  Pite.py © P3 © Ps.i=DP3 © &2~ 0 (Py, P2y © Pa)-

(That is, B;,; is @ ; o « followed by the action of g,-«e.» in the coordinates X, Yy,
and M, ;.)

For each (e, i, j) in Px N x N, define

Yeu,it @0 L(Z X Y ™) = (P, Pai © P2, P3) " NZ x{(m, m, ... )) = Xx Y*xM*
by

1) p1o Ve s=P10° ha-xe0™1 0 (P1, Pai © Pa, Pakes,y+21 © Pa)s

(79 2) DPnoP2v° 7'6,1‘.]=pn ° P2, fOI‘ n;é2[’ 2k(8, l)+2.]’

(¥, 3) PaioP2° Vei,;=P2° ho-rc0™1 0 (Py, Pai © P2s Pakce,y+2i © P2)s

(7, 4)  Dokeeiy+21 © P2 © Ye,i,1=P3 © ha-@0 ™1 0 (P1, Pay © P2, Patce,ny+25 © P2)s

(y,5) Pnopso Yess=m, n#k(e, i), and

(7, 6)  Pie,iy © P3 © Ye,1,i=Pa © ha-ke.0 ™1 o (py, Pay © Pa, Paice,ny+21 © P2)-

(That is, y, , is the action of hy-xen~1 on the X, Yy, Youe.n+2 and My
coordinates.)

These functions establish that £ is a uniform interior approximation to X'x Y ®
by Zx Y. For each (¢, i) in PxN and x in Xx Y,

d(B; i(x), a(x)) = d(p, ° g2-e(py1, Pai © P2)(X), p1(x)) +dia (1121 Y, 1) +dia (M, (s,1))
< 2-kehp -2y P-keD-1 < -i-14 -2 < _2—1.
If (e, i, j) is in Px Nx N, then for y in o o {(Z x Y ),
d(¥s1,/¥),y) S d(py o hg-ke.n™1 o (P1, Pai © P2y Pakceny+21 © P2)(¥), P1(¥))
+d(pgiopzohg-ke ™ o (P, Pai©Pa, Pakce, i + 25 ° P2)(X)s Pas © Pa(X))

+dia (Yo, +27) +dia (M1
< DK@ 4D -kED L D -KED = F.2-kED < g

(The first 2-%b term is contributed by the first two terms of the preceding part
of the inequality because of the restriction placed on hz-«e.o in the definition of
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uniform Y-approximation.) It is clear that all functions involved are uniform
isomorphisms, so there only remains to verify that y., (xo{(Zx Y*))
=Be,i° L+ (Zx Y*). The coordinates defining {;, (Zx Y*) are X and Y,,,,
however, and (@, 3) shows that ¢, ;cac i, (ZX Y®)=ao Lyeniz(Zx Y®).
Therefore, following the parenthetical remark after the definition of B, B,
o {4 (Zx Y*) is the image under the application of g,-«cn in the X and Yy
coordinates, moving into the M, ,, coordinate, of « o {gye .+ 2,(Z x Y ), which is
also the image under the application of hg-ke.o~! to the X, Yy, and Youe.4 25
coordinates, moving into the M, ;, coordinate, which function is y, , ,.

In order to demonstrate the iterativity of ¢, let ri Xx Y*xM® > Xx Y®
x{(m, m,...)} be the obvious retraction, and for i in N, let m: Xx Y*xM®
—> XxY®x[];4; M; be the projection off the M, coordinate. Now let
v: PxNxN— N and n: PxNxP — P be functions such that (1) for x and y in
a(Xx Y*) with d(x,p)S2'77C™, d(Be,m o a™(x), Bemoa Y (p))S27471, (2)
(e, m, 8)<8/2, (3) for x and y in «(Xx Y*) with d(x,y)<2v(e, m, 5),
d(Bsm © ¢ 1(X), Beom © @™ (p)) £ 8/2, and (4) k(n(e, m, 8), v(e, m, i))>k(e, m). Now
for each o in S let ¢,y =, By,1,.,i=PBs.i> and ¥5,1,6.4.,;=%.1.5» and let

— -1
Bs.2.6.4 = (Mmoo vawrin © Bocy o @~ Lo, Drniac1y, ), v 13,1 © P3)
. -
°Bawrorvern: XX Y2 — (Xx Yex Mf)
1#k(n(a(1),8), W(a(1),1)
p— ] (-]
X Myaean,ovew,y = XX YO X M®,

Also, let

— -1
Vo201 = (Mo, 0, w0ty © Baty © €™ 0 Py Prtniacry, o9, vyt © P3)
-1
° Yn(a(1),8),v(a(1),1),¥(a (1), + 1) = v(a(1),i) © & ° ﬁau)-

Then with e, =8,u, and {; o ={,sq).n}ien- this choice satisfies (1)-(4) and(i)—(iii)
(with n=1, 2). An induction completes the construction.

Since { is an iterative uniform interior approximation to Xx Y® by Zx Y=,
Theorem 1 applies to finish the proof.

Some technical lemmas. In the following, proofs are abbreviated to construc-
tions, since the verifications that the constructions do work are straightforward.
Let I° =] Tien [0, 1]; and denote by 5#5(/ ) those homeomorphisms of I® onto
itself which preserve p;*(0) for each i € N. For any space X, let #(X) be the func-
tions from X into itself; if X is a uniform space, let Z(X) denote the uniform iso-
morphisms of X onto itself. If {E},y is any countably infinite collection of Banach
spaces, let v: [ Tiew E; — [ Lien R, Where R, is the real numbers, be defined by p; o v(x)
=| p(x)| for all x in [Jiey E; and i in N. Also, let &: [T,y E; — [ Lien E, be defined
by
pie €(x) = p(M)/|p(x)| if pi(x) # O,
=0 if p(x) = 0,
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forall xin [ ey E;and iin N, and let u: [ Ticxy Ry X [ Liew Ei — [ Lien E, be coordinate-
wise multiplication. Finally, denote the closed unit ball of E; centered at the origin
by B, and define ®: F(I®) - F([Tiex E) by O(f)=p o (fxid) o (v, £).

LemMA 1. O )<Y ([ Tien B)); furthermore, the constants of uniform
continuity of ©(f) and O(f)~?* depend only on f, not {E};cy.

LeEMMA 2. There is a member A of U(] lien B;) and a collection {8;};, ,<(0, 1) such
that Mp1(S))<= Sy x[1i>1 8B, where S, is the unit sphere of B,. The collection
{8:};>1 is independent of {E}y, as are the constants of uniform continuity for A and
AL

Proof. Theorem 6.1 of [1] asserts the existence of a homeomorphism 4 of I®
onto itself with the property that A(p71(0))<{0} x[ 1>, (0, 1);. An examination of
the proof gives quickly that it may be modified to yield the following: “There is a
member 8 of H#4(I®) such that 8(p7*(1))<{1}x[T;>; [0, 1);.”> Let A= D(6).

LemMA 3. Let J be any infinite subset of N, and M, any infinite subset of J for
which J\M is also infinite. If {8;};c;<(0, 1), there is an element ¢ of U([licn B))
carrying (\ses i *(8;B;) into [(Mjes P '(esB)] O [Mmem P *(0)], for some collection
{e1}1es=(0, 1). Furthermore,  may be required to have the property that p, - p=p; if
i¢J.

Proof. This, as Lemma 2, is a generalization of a result in [1]. The proof is
analogous to that in [1] except for one or two points.

Let {/n}mem be a collection of pairwise disjoint infinite subsets of J\M, and
denote the members of J,, by j(m, i), where j(m, i) =i for all m. For each m and i
in N, let $p [0, 8mpy 11— [0,27¢-%(1—8,), 1] be the indicated orientation-
preserving piecewise-linear homeomorphism, and let yx, ;€ #(By, % Bjn.1,) be
(P1s tmi© | || © p2)-p2)- Let @y ; € %(By % Byn,1)) be defined by

Pmi = (P1, P2+ [(1=]-]) o p2]-p1, on &y,- By X Bym,,
= (p, p2a+ (L= - ) o pl[A = ) © p11/(1 = 8n)) - P,
on (Bm\smBm) X Bl(m.i)-

Now let i, ;=@ ¢ © xm.s- It has the properties that it changes the B,-coordinate of
no point, that it carries 8, By X 8;pm iy Bjm,y iNt0 8y By X £4m.iy Bym.sy (Where
eimn=2"""%1-28,)%+3,), so that the projection into B carries the image
onto €y, i* Bjm,1, and that for x and y in 8., By X 8jm,p* Byem,» With || p1(x) —p1(»)||
2274 | p2 o $mi(X)—Ps © Y (¥)|| >2771. Define € %([Ticn B,) to be that element
defined by {$n, Jim.nem < v (More precisely, let each ¢, ; be extended to a uniform
isomorphism of [y B; in the natural way, and let ¢, =limit, , ¢y 0+ -0 Py,
for each m in M. Then ¢ may be defined to be limit,_, , Y ©- - - Py, Where
M ={m(n)},ex is an enumeration of M.)
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Here, let m,: 6, By X[ Liew Biom.y = [ Lien Bim,y be the projection. As noted
above, 7y © Pn(8m* Bn X I Tien 8jim,iy* Biem,0) =1 lien €iom.1r* Bym,»y; further,

T © P | O B X I_I 8jm.ty* Biom.t>
iEN

is a uniform isomorphism. Thus,

-1
@y = Py o (77m | ‘Pm(am'Bm X H 8/(m.i)'B](m.i)))
3

is a uniformly continuous map of [Ticw &jem.iy Bjem.iy ONtO 8, B, Let p, ; be the
radial retraction of B, ;) Onto &g iy Bjm.1y, and let p, =[Ticx pjm,i- The function
@y, © pp is @ uniformly continuous map of [Tiey Bjim,iy into 8, B,. Define w, in
U(Bn % Tien Bjom,») to be (py+[(1=]-]) o p1]l-@p © pm © m, 7,) %, and extend it
naturally to a member of #(JTiy Bi). Let w=limit,_ o wpyepy o0 wya). The
composition w o ¢ is the desired function, and for j € J\[M U (Unen Jn)), €; may be
had to be §;.

LeMMA 4. If E is a Banach space with (closed) unit ball B and unit sphere S,
then for each ¢ in (0, 1) there exists a collection {H}cs, of closed, codimension one
hyperplanes of E with s ¢ H,, a collection {W s, of closed, symmetric, bounded,
convex neighborhoods of the origin in the hyperplanes, W,= H,, and a collection
{ets}ses Of homeomorphisms of B, «s: B— W,+[—1, 1]-s, such that

(1) o(S)=[W+{s, —s}] V [W\[0, 1)- Ws+[-1, 1] 5],

(2) a(£s5)=1s5,

(3) there exists a 8 in (0, 1) for which e (Wt [1—38, 1]-s)<e-B+s, and

(@) {og)ses Y {5 Yses is uniformly equicontinuous.

Proof. (Here, A+ B denotes {a+b |ac A, be B}, and C-A4 denotes {c-a|ceC,
ae A})

For each s in S select, by the Hahn-Banach Theorem, a continuous, real-valued,
linear functional f;: E — R of norm one sending s to one. Let H,=f;"'(0) and let
W,=(¢/8)-[(I—f«(-)-s)(B)}. Since W,+[—1,1]-s is a closed, convex, bounded,
symmetric neighborhood of the origin in E, the Minkowski functional x — py(x)
=inf{t>0| x e t(W,+[—1, 1]-5)} of W,+[—1,1]-5 is a norm for E which is
equivalent to the original one, |- |. In fact, (4/(4+¢))|x| < py(x) £ (8/e)|x| for all x
in E, s in S. The function «,: B— W,+[—1, 1]-s may be defined by

a(x) = (|x[/pG)x if x # 0,
=0 if x =0,

and for this choice, &/7 will do for 8.

Throughout, the phrase “metric simplicial complex” will denote a simplicial
complex with the topology generated by the Euclidean metric on the barycentric
representation of its cells. (That is, if the complex K is regarded as a piecewise
linear subset of some Hilbert space with the property that all its vertices are mem-
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bers of a collection of mutually orthogonal unit vectors, then the metric is just that
induced by the norm of the Hilbert space.) The symbol st (v, K) denotes the sub-
complex of K composed of those simplices of K containing v.

Assuming the terminology of Lemma 4, suppose that K is a finite-dimensional,
metric, simplicial complex, that A< .S, that {L,, is a collection of subcomplexes
of K indexed by A, that there is a vertex v of K such that K=st (v, K) and
L=st (v, L), for all s in A, and that {u}, is a collection, uniformly equicontinuous
when taken together with {u; 1}, 4, of homeomorphisms s Ly X [ Tiey B; = [ Tien B:-
For each sin S, let X;=L,x [p7!o oy  (W+5)U psto af (W,+5)].

LEMMA 5. If K x [ Lien Bi is uniformly isomorphic to B®, then there is a collection

{Xs}sea of homeomorphisms, xs: KX lien B; — Ly X[ Tien By, such that x| X; is the
identity and the family {xs}sea Y {xs }sca is uniformly equicontinuous.

Proof. Let p; be a uniform isomorphism of KX[Ty B; onto [ ey Bi. It is
easily seen that u, and each p; may be required to have the property that p; o p,
=p; o 1y, for « €{K} U 4 and i€ {1, 2}. This assumption gives, for each s in 4,
pr(X) S p(X)=Uf-1 pit o of (W +s). k

It is a simple matter to construct a family {£},., contained in ([ [,y B;) such
that {€Jsea U {€5 Jsea is uniformly equicontinuous and, for each s in A4,
(U2 pito ol Y (Wi+5))=pit o a; Y (W,+s5). (One chooses a homeomorphism &
of [—1,1]x[—1, 1] onto itself such that &%, pr*(1))=p7*(1) and defines &,
to be (oyixeyixidxidx:--)o(€;x€yxidxidx ) o (azxazxidxidx -- ),
where &=(I—f(+)-5) o pi+[p; o € o (f; o p1, f2 © P2)]-5, for i=1 or 2. Now for each
sin A, let H, be given the norm under which W is the unit ball (the Minkowski
functional of W), and let X be the function given by Lemma 2 for the sequence
R, Hy, E,, Es, ... of Banach spaces. Let {; € ([ ],y B;) be

(fs °ag° Py, (I—f;()S) © 05 ° Py, P2, P3s - - ‘)_1 ° As

° (f; ° &5 0Py, (I—f;()S) ° &sP1s D25 D3y - - )
The family {{}cs Y {{; }sea is uniformly equicontinuous, and there is a collection
{8}en<(0, 1) such that for x in pilooay}(W,+s), {(x) is in oy }(8;W,+s)
x[Li»1 8B.. Let J=N\{1} and M={2i},.y, and select, by Lemma 3, a uniform
isomorphism ¢ of [ [,y B; onto itself such that p, c p=p;, py; ° @(p; }(S,))=0 for
all i in N, and there is a collection {eg; 4 1}ex<(0, 1) for which py; . o ¢(p7(S1))
Ceg 41 Boyyq foralliin N. ‘

Let B e %(] Liex B;) be the function which exchanges the 2ith- and (2i—1)th-
coordinates for each i, and denote by p, and p, the projections of [,y B; onto
T Tien B2i—1 and [ [ien Bai, respectively. The same symbols barred will be used to
denote the projection followed by the injection into [ [,y B; which inserts O in each
of the other coordinates. Now let 5, be the map from [ [y B; to [ Tiex B; given by

meo=goliobopepopitofrtolitopTtoBop, o (idxartxidxidx -+ )
o (idx (id+5—£,(-)-s) xid xid x - - -) o (id x g x id X id, . . .),
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where p; is the retraction of K onto L, defined by first taking the second barycentric
subdivision K@ of K, then retracting K® onto L? by the simplicial map sending
all vertices of K@ not in L? to v and then identifying L with L,. Let 8,4, _,
=pai-1+(1= ||| o Pai—1)-Pai—1° 7 if i>1, and let 6—8,1 be

agtofoago prt(I=|-|so (id=£(-)-5) o a5 0 p1)- (a5 0 py o m(-) =),

where ||, is the norm indicated for H, under which W is the unit ball. The
function 6; in %([Tiev B) given by 6,=(0; 1, ps, 0,3, ps, . ..) carries Bogol,
o £ o px(X;) onto the graph of the function p,oBopoliofopgopstoésto St
0@ | @olioésopn(X,) so that, for x in X;, 0,00 po ;oo pu(x) = (pooe
0 fs0 & o u(x), peoBopo ;o€ oug(x)). By a strictly analogous procedure, one
may construct a family {wg,s of uniform isomorphisms of [,y B; such that
(1) po° ws=po, (2) w carries @o Lo & opu(X) onto b5 Bogolsoéopp(Xy),
and (3) {wgsea Y {ws }sea is uniformly equicontinuous. Since {O.}ees Y {05 }eea
is uniformly equicontinuous, the desired family of uniform isomorphisms may be
had by setting x,=psloflolilop lowstof,0Bopol, o oy foreach sin
A. (This sort of extension procedure is due to V. L. Klee [13] in Hilbert spaces
and has been elaborated upon by several authors, [1], [3], [8], and [18].)

Main theorems. In a metric space, a set 4 will be called uniformly separated
if there is a positive lower bound on the distances between pairs of points of A.
The symbol C(A) will denote the cardinality of 4, and if K is a simplicial complex,
c(K) will denote the least upper bound of {C(st (v, K)°) | v € K°}. The weight
wt (E) of a metric space E is the greatest lower bound of the cardinalities of dense
subsets of E. It is not difficult to show that when E is an infinite-dimensional
Hilbert space, then wt (E)=dim (E), and if E is an infinite-dimensional Banach
space, then it is of the same weight as its unit sphere. In fact, it is a theorem of
A. H. Kruse [14] that in the latter case, there is a uniformly separated subset of the
unit sphere of E which has cardinality equal to wt (E). Finally, defining a locally
finite-dimensional simplicial complex to be one in which each point lies in a finite-
dimensional neighborhood, we have that this is equivalent to the requirement that
the star of each vertex be finite dimensional.

THEOREM 3. Let K be a metric, locally finite-dimensional, simplicial complex and
E, a Banach space homeomorphic to its countably infinite Cartesian power. If
c¢(K)Swt (E), then Kx E is an E-manifold.

Proof. With B denoting the unit ball of E, it is sufficient to demonstrate that
KX Tien B; is a [ [iex Bi-manifold, for by a theorem of Bessaga and Klee [6] (see
note added in proof), each infinite-dimensional Fréchet space is homeomorphic
to each of its closed convex bodies. Thus, E is homeomorphic to B and to [,y E;,
so it is homeomorphic to [ [;cy B;. A second reduction of the problem is made by
working with the vertex-stars of K, so it is sufficient to assume that K is finite
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dimensional and the star of one of its vertices vo. The proof proceeds by induction
on the dimension of K.

The case that dim (K)=0 is trivial, since then K={v,}. Assume then that ne N
and that for any (n— I)-dimensional, metric, simplicial complex L which is the
star of one of its vertices, L x [T,y B; is uniformly isomorphic to [y B; if the
cardinality of L° is no greater than that of K°. Now for any metric, n-dimensional
simplicial complex M which is the star of one of its vertices v, and which has no
more vertices than K, there is a uniformly separated subset A of the unit sphere of
B with the cardinality of the set of n-dimensional simplices of M. (This is because
unless K is {vo}, E must be infinite dimensional, in which case if K has only finitely
many vertices, the complex under consideration has at most finitely many n-
simplices, and the unit sphere of B is not totally bounded. Otherwise, if X has
infinitely many vertices, the cardinality of the n-simplices of M cannot exceed that
of the vertices of K.) By Lemma 4 there is a collection {e},, of uniform isomor-
phisms, o: B— W,+[—1, 1]-5, where W, is a closed, symmetric, convex neighbor-
hood of the origin in a codimension one hyperplane of E, with the property that
there is a & in (0, 1) such that oy }(W,+[1 -8, 1]-5)<(¢/4)- B+s, where ¢ in (0, 1)
is chosen so that for s and 7in 4, | s—¢| 2 e. Let the n-simplices of M be indexed by
A, and define Z in M x] [,y B, to be

(st @0 M)xTT 5) vy (A"sxas‘l(W3+s)x I1 B,).

ieN i>1
The remainder of this proof consists of the showing that Z is a uniform [J;cy B:-
approximation to M.

For each { in (0, 1), construct a uniformly continuous retraction f; of
M x[len B; onto Z in the following manner: For each s in 4, let f;, project
At x (We+[—1,1]-5) onto (A" N st (vg, M"Y x (W,+[—1, 1]-5) U A x (W, +5)
from the set {b;} x [(—4/{)-s+ W] along the lines in

{[(Bs, y—(4/8)-5), (x, y+15)] | x € A" N st (vg, M™~Y), y € Wy, te [—1, 1]}

v {[(bs’ y—(4/C)s), (x, )’+S)] I X € Ans, Y€ Ws}9
where b, is the barycenter of 9(A")\st (v, M™~!). Let f; =(id x (¢! xid xid
X))o (Profeso Py Py opa), (P2 o fris © (P1s 1 © P2), P2 © P2y Pa o Pay - ..)) o (id
X (otgxid xid x - - -)), and define

Jox) = fe %) if py(x) € A",
=X if pi(x) e st (vy, M),

This function is uniformly continuous because {eg}ses U {o5 Yoes U { Jr.shsea 18
uniformly equicontinuous. Also, for any x in M, d(p,(x), p; o f(x)) L.

Define g;: M x[Tien B; — (M X[ Tien B)) X (M x [ Tiey B)) to be (f;, id). Because
J¢ is uniformly continuous and g7 '=p,, g; is a uniform embedding. Further,
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d(py o p1ogx), pr(x)) =L for each x. Letting Z, <M X[,y Bix[Tien B; be
(P1s P1+1)"H(2), i=1,2, and

g MxT]Bx[] B,-—>(M><n Bx]] B,)X(Mxl_[ B,)

iEN iEN iEN iEN ieN
be ((py o p1 ° &, P2 © P1 © &1, P3), 1d), it is necessary to construct a uniform isomor-
phism #;: g/(Z,;) — Z, such that, for x in g(Z,),
d((p1, p2) © h(x), (p1° p1, p2 o p)()) < L
AS Zz=5t (UOa Mn-l) X I_IieN Bi X HieN Bi ¥ UseA Ans X I_IieN Bi X (as- 1( Ws'l's)
x[Ti>1 B),
g_{(Zz) = gt(st (vo, Mn-l) X H Bi X I_I Bg)

ieN ieEN

vy gz(msxg B,x (a;l(Ws+s)xI_I Bi)).

seA i>1

The set

g;(st (o, M Hx[[Bix]] Bi)

ieN ieN

= {(xay’ Z, x’y) I (X,y, Z)GSt(l)o, Mn—l)xl—[thHBi}°

ieEN ieN
The set g (A" X [ Tien Bi X (g (W +5)x] Li>1 B))=Cs U D,, where

C, = {(x, »,2,x,¥)| xe Ay, zea;l(Ws+s)><H B;;

i>1

p(y) = p(y) fori > 1; o5 0 pi(y)— s 0 py(¥) € [0, 2]-5;
(', a0 p1 (V) €[(bs, (—4/L—Ds+agopi(y)), (x, as(y))]}

and
D, = {(x, Y, 2, x,¥) | x € A% N st (g, M™™Y); z € ay (W, +5) X | | B;;
i>1
ye Ii [ Bi; p(y) = p(¥') for i > 1;
€en

asopi(y)—esopi(y)€[0, 14 £ 0 a0 pi(y)]-s and
(x', a5 0 p1(¥") €[(bs, &5 0 p1(¥) = (fio a0 pa(y) +4/0) - 5), (x, opl(y))]}-

(Here, f; is the same functional as used in the proof of Lemma 4 to construct «, and
W..) Therefore, p=(py, ps © ps) | §(Z2): §(Z2) = (M X[ Tiew B x [ Tien By) X Tien B
is a uniform embedding. (It is clearly uniformly continuous. It is one-to-one because
if (x, y, z) and (', y, z’) are distinct points of Z, such that f,(x, y)=f:(x’, ), then
there must be two distinct elements s and s’ of 4 such that x € A*\st (vo, M" 1)
and x' € A" \st (v, M™~1), since f/(a, b)#(a, b) implies p, o fi(a, b)#b. Then,
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however, p;(z) € o, (W, +s) and p,(z’) € «,. ~ (W, +5’), which are disjoint by the
choice of 8. The uniform continuity of p~! may be seen by observing that on
P o Zst (v, M* )X Tiew By x[Tien B), P~ *=(p1, (P1 ° P1,p2)) and that on
P(Cs Y DY), p~=(py, (7(:)-bs+ (1 = 7,(-))-p1 © p1, P2)), Where

7 = (fyoagopropaopi—fioasopyopy)/(4/L+fsoasopopsopy)

Because {74 is uniformly equicontinuous and {p(C; U D)}, is composed of
sets which are uniformly separated from each other, p~! is uniformly continuous
if it is continuous. It is continuous because for

(x,y,2,))ep °§:(St (o, M) xT [ B;x] ] Bz) N p(Cs U D),

ieN ieN

y=y' and, thus, 7,(x, y, z, y)=0.)

The structure of p o g§(Z,) is as follows:

(1) pogilst (vo, M* ) X Tiew Bix [ Tlien B)={(x, ¥, 2, ) | (x, », z) € st (v, M™ 1)
X[ Tien By X1 Tien By},

@ p(CY={(x,y,2,¥) | x€ A y,z€ a, (W, +5)xTi>1 Bi; pi(»)=pi(¥") if
i>1; a °P1(y)—'as °P1(,V') € [Oa 2]'5}’ and

(3) p(Dy)={(x, ¥ 2, )) | x € A% N st (v, M™™1); z € a7 {(W+5) X[ i»1 Bi;
p(y)=p(y’) for i>1, and esopy(y) € oo pi(y)—fio agopi(y)-s+[—1—fi0 0
° pi(»), 0]-s}.

Let B: p o 8:(Zy) = (M X T Tien Bi X[ Tien B:) % [0, 2] be defined by

Bl(p1 o p) ™ (A%) = (py, ||| o (s © p1 © pa—e5 0 py 0 py o py))

for each s in 4 and B|(p; © p;) (st (v, M™~1))=(py, 0). (This is also a uniform iso-
morphism, for on Uses P(Cs U D) itis Usea (21, ||+ || © (@5 © p1 o pa— a5 0 py o py o py)),
the sets p(C; U D,) are uniformly separated, and on

p ogvt(st (vo, M"‘l)xg B‘le_zv[ B,) N p(Cs Y Dy),

the function p, - p, agrees with p,, which shows continuity, hence uniform con-
tinuity, of the inverse.)

An examination yields that

Bop Og;(st (o, MP ) x[ [ Bix] ] B,) = (st o M Y[ [Bx]] B‘) x {0},
ieN ieN ieN ieN
that for each s in A, Bop(Cy)=[A" x(ay (W,+s5)x[1i>1 B) x (a7 YW, +5)
X[Ti>1 B)Ix[0,2], and that Bop(D)={(x,y,z1t)|x € A" N st (vo, M™"1);
Y€llien Bi; z€ o {(Wi+5) X[ 1151 By, and 0StZ1+£, 0 o5 0 py(p)).
Let 7({) € (0, 3) be small enough that for any s in 4 and any x and y in W,
+[=1, 115 with [x—y || S0, e () - o5 1(p)] S /3, and let

7o {(s, ) e[-1,11x[0,2] | £ < 145} —[—1, 1]x[0, 2]
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be any homeomorphism which is the identity on [—1, 1]x {0} U {1} x [0, 2] and
changes no point’s first coordinate more than 7({). Let y,:Bopog(Z,)
—> (M X[ Tien BixTTien B) %[0, 2] be ((p1 © p1, (2571 o ((a5—f; © a(+))-S) o py ° P2
opy+(propro(fyoasopyopsopy, Pa)S), PaoPaoPi, P3oPaePy,-..) Ps° Pr)s
P2 ;o (fs o as0pyopyopy, p2)) on ((py © pa), p1 © ps o p1) " H(A% X g~ (W, +5))
and the identity map on p,~*(0). That y, is a uniform isomorphism follows in a
similar way to the argument for B. That for any point x in Bopo g(Z,),
d((p1 © P1> P2 ° P1) © yi(X), (D1 © P1s P2y © P1)(X)) =d(py © Py o Py © vi(%), p1 ° P p1(x))
=<{/3 is given by the choice of 5({) and the construction of 7.

Upon inspection and reference to the second paragraph back it is immediate
that

veoBop o2 = (st (o, M*)x] ] Bix[ ] B) x (0

ieN ieN

U U [ A st o, M=) T B x (as‘l(Ws+s)xH B,)] « [0, 2].

SEA

For each s in A, let i, be a homeomorphism of A" N st (v, M*~') onto
[—1, 11"~ in such a manner that {g},, U {it;"}sc4 is uniformly equicontinuous.
Select s, in A and let w:[—1,11""*x[ien Bi— [Liew B; be the function
(id xid x ozt X aggt X -+ +) o (py © pg, Pa © Pa, (i[d—Ff,(-)+5) o ps o pa+(p1 © pa(-))-s,
ooy ([ =f(-)8) © Pas1 © Pat(Pn-1 0 pr(+))-5, (1A —f(-)*5) © Prsg © Pat+(fy o Ps
° pa(-))-s, ..., (1d—=f(-)'5) © Pman-1 ° P2+ (fs o Pm o pa(-))s,...) o (id x (id xid
X gy X e X -+ +)). For each s in A4, let pg: A" N st (vg, M™ 1) X [Tien Bi X[ Lien B
~—> [ lien B; be

B (s © p1, (P1° P2 P1°Pas P2 © P2s P2 ° Pas - « -5 Pn © Pas P © P3s - - +))-
By hypothesis, st (v, M* )X [Tiex B X[ Lien B; is uniformly isomorphic to
[Tiew Bi, so by Lemma 5 there is a family {%;},s of uniform isomorphisms
Xs: st (vo, M* ") X[ Tiew Bix[Liew Bi = (A% N st (vg, M 1)) X[ Tiew By x[Lien B,
such that {¥ssea Y {¥s Jsea is uniformly equicontinuous and, for each s,
Xs|U=1 (P1, P1 o Pisn) T ([A% N st (0o, M™Y)] x o7 (W, +5)) is the identity. Each
¥s defines a uniform isomorphism, which will be called y,, of

(st (o M* Y x] ] B‘X,I;I B,) x {0}

ieN

U@ st o, a2y <[ Bx (w7~ Wot ) <[] B) | x[0.21

>1
onto

[(An, A st (oo, M) x ] Bx | B,] « {0}
iEN ieN

U [(A"s A5t (oo, MP )% Bix (a,‘l(W,+s) «I1 B,)] %[0, 2]

which is given by y, =¥, xid.
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Let 7() € (0, min {¢/8, {/20}) be small enough that for each s in A and each pair,
x and y, of points in the domain of y,~! with d(x, y) <%(0), d(xs~ (%), xs~*(»))
< min {¢/8, {/20}, and let §({) € (0, &) be small enough that for each s in 4 and each
pair x and y, of points of W +[—1, 1]-s with |[x—y|[ =8(0), e~ (x) =~ (¥)|
<7(8). Nowlet w,: [— 1, 1]1x{0} U {1} x [0, 2] —[—1, 1] x {0} be a homeomorphism
which is the identity on [—1, 1 —8({)] x {0}, and for each s in A4 let
wg [(A"s Nst(ve, M N [Bx] | B‘] x {0}

ieN ieN

U [(Ans A st (oo, M) [ By (as'l(Ws+s)xl:[1B,)] < [0, 2]

-~ [(Ans A st (0o, MP 1) x ] Bix] ] B,] x {0}
ieN ieN
be ((id xid x (e~ xid xid x - - -)) xid) o ((py © p1, P2 © P1, (P1 ° P3 o pr—(fs° P1 o Ps
° pi(+))+s+p1 o w o (fs o p1 o Ps © P1, Pa)s P2 © Pa © P1, P3 °P3° Py, - - -)), 0) o ((id x id
X (g x id xid % - - -)) x id).

Let ¢: [—1,1]x[—1,1]—[—1,1]x[—1,1] be a homeomorphism which is
the identity on [—1,1—8({)]x[—1, 1] and carries {1} X p; o w ({1} x [0, 2]) onto
{I}x[—1,1). For each s in A, let 4, be the uniform isomorphism of
[(A% N st (vo, M" ™)) X [ Tien By x I Tiew Bl % {0} onto itself given by i, .=((id
X (o™ xid X -+ ) x (o= xid X -+ ) xid) o (py © 1y (1 © P2 o pr=(fs © P © Pa
opi(*))-stpyoro(fiopiopaopy, fioPioPsopy), P2oP2oP1, P P2 Py - -)s
(Propsopr—(feopropsopi(-))s+paodho(fsopyopsopr,fiopropsepr) Pa
°© P3 o Pyy-..-)), Pa) o ((id X (e x id x - - -) X (et x id X - - -)) x id).

For each s in A4 let

£, [(A"s A st (0o, M) xT ] B (a,‘l(Ws+s) <I 1 B,)] %[0, 2]

v (st (vo, M Y[ [ Bix] | B,) x {0} — (st (vo, M Y[ Bx] | B‘) x {0}

ieN iEN ieN ieN

be y; 'ows;ox,. The £ ,’s are supported on mutually disjoint subsets of

(st @0 M*)x]] Bix]] B,) « {0}

ieN ieN

vy [(A"s N st (vg, M™~ 1)) x‘I;II B; x (as‘l(Ws+s)x]_[ Bt)] x [0, 2].

seA i>1

(This is because w,(x)#x implies that wg/(x) is in [(A"% N st (vy, M™"1))
X [ Tien By X (0" 2 (Wi +[1—8(8), 1]-5) x [ Ti»1 B)]1 x {0}, which by the choice of
8({) is within the open (¢/8)-neighborhood of (p, © ps o p;) ~*(s)—because of the
scaling-down of the metric in accordance with the convention made in the proof
of Theorem 2. Also, by the choice of 8({), there is a point y of (p; o p3 o py) ~(s)
within 7({) of w, ¢(x). This gives d(x;™*(¥), xs~*(x)) Smin {¢/8, £/20}, s0 x, Lo w(x)
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is within &/4 of some point of (p; © ps o p;) ~*(s). This establishes that the supports
of the & ’s are disjoint, for the distance between any point of (p; o p3 o p;) ~X(s)
and any point of (p; o ps o p1) "*(A\{s}) is at least &/2.) Therefore, there exists a
function

& (st @0 M) <[] BT B,) x {0}

ieN ieN

uU [(Ans A st (o0, M* ) xT T Bix (as'l(Ws+s) <[ B,)] « [0, 2]

sEA

— (st (vo, M D)< [ Bix] | Bi) x {0}
iEN ieN
defined by the formula
fl(x) = fs,((x) if £,¢(x) # x,

=x if & (x) = x for all s in 4.

The uniform equicontinuity of the family {£; }ses U {€s.c " }sca assures that & is a
uniform isomorphism. Observe that by the choice of 8(¢) and 7({),

d((p1 ° P1, P2 ° P1) © (%), (P1 ° p1, P2 ° P)(X)) = /20

for each x in the domain of &

Utilizing the functions { Jseq, let 05 =xs"" o s o xs- The supports of the
0, /s are also mutually disjoint, and there is defined a uniform isomorphism 6, of
(st (vo, M™ V) x [ Liew B: X[ Liew B:) x {0} onto itself which has the property that for
x in (st (vo, M"Y) X[ Tien By X[ Lien B) x {0},

d((p1 © P15 P2 ° P1) © 0(x), (p1 © p1, P2 o p1)(%)) < (/4.

(This is because if 6,(x)# x, there is an s in A4 for which 60,(x)=0; (x)=x;"" o s ¢
o xs(%). Since ¢ o x5(x) # xs(x), xs(x) must be within #({) of some point y in the
fixed point set of x,, so d(x, x,(x)) =7({)+£/20=Z/10. Also,

d((p © P1, P2 © PXs(X)); (1 © P1s P2 © 1) © s © xs(X)) = A(E) = {/20,

and ¥, ; © xs(x) must also lie within #({) of some point z of the fixed-point set of x;.
Thus, d(¥s ; © xs(x), 0;,:(x)) = {/10. Combining the inequalities gives the result.)
Consider now, for s in 4,

O 70 fs,;([(A"s N st (vy, M 1)) x (ax'l(Ws+s) xtljl B¢)

x(as'l(Ws+s)xl—[ B,)] « [0, 2]).

i>1

Itis [(A" N st (vg, M™ ™)) X (0, " Y (W +8) X[ 1151 B) X[ Tien Bi)] % {0}. Furthermore,

on this set, (pa, ps) o p1 © 5,8 © fs.t((x, ¥, 2), t)=(p2, p3) ° p1 © Os.t ° 63,((()‘,: »,2),t)
for each y,z € o, X(W,+5) x[ 1;1>1 Bi, £ € [0, 2], and x and x’ € A" N st (vg, M™Y.
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Thus, the function 6; o &, defined only on (p; e p;) (st (v5, M*"})) N0 Bop
o 8.(Z,), may be extended to a function o, on y; o 8 o p o g,(Z;) by setting
0r(x) = 0 0 £(x) if py © py(x) € st (vo, M™7Y),
= ((p1 ° P1(x), P2 © p1 ° O; 0 &((vo, P2 © P1(X), P5 © pa(%)), pa(x)),
P3 o P10 0 &((vo, Ps © p1(%), Ps © p1(X)), pa(%))), 0)
if py o pi(x) € g‘ Ar\st (vo, M™~1).

The desired uniform isomorphism #; is then p; o o,  y; o 8 o p. This establishes that
Z is a uniform [ [,y Bi-approximation to M, so, by Theorem 2, Z x [T,y B—which
is uniformly isomorphic to Z—is uniformly isomorphic to M x [T,y B;.

To complete the proof, all that is necessary is to observe that Z is uniformly iso-
morphic to [y B;. This is easy, for there is a family of uniform isomorphisms
7t At — [A" N st (v, M™~1)] % [0, 1] such that #(x)=(x,0) for each s in
A" N st (vg, M™~1) and such that {F}ses U {#;, " }seq is uniformly equicontinuous.
If A is a homeomorphism of [—1, 1]x{0} U {1} x [0, 1] onto [—1, 1] such that
Al[-1,1—-8]=p,|[—1, 1—38], then the function p described by

p(x) = x if foas0pyopy(x) = 136,
(P © ¥ 0 p1(x), (o5~ (a5 © py © pa(x) “f; ° &g 0 Py o pa(x)-§
+[Ao (fs o 050 py o pa, g 0 5 0 p1)(X)]-5),
P2 ° Pa(X); ps o pa(), . . .))
iffyoag0pyopy(x) 2 1-8

will be a uniform isomorphism of Z onto st (v, M* ') x [y B, Therefore
M X[ Tien B; is uniformly isomorphic to [.n B;, and the theorem follows by
induction.

THEOREM 4. If F is a Fréchet space homeomorphic to its countably infinite Car-
tesian power and K is a metric, locally finite-dimensional, simplicial complex, then
each of the following implies that K x F is an F-manifold:

(a) F is homeomorphic to a Banach space and c¢(K)<wt (F);

(b) wt (F) is not the least upper bound of a sequence of lesser cardinals, and
co(K)swt (F); '

(© C(st (v, K)°)<wt (F) for each v e K°.

Proof. (a) is just Theorem 3.

(b) If Fis not a Banach space, then by Theorem 5.4 of [17] there is a sequence
{E}ien of Banach spaces and a linear embedding T of F in [J,.y E; as a closed
subspace such that p, o T(F)=E, for each i. It is easy to see that

wt (F) = lub {wt (E) | ie N},
so for some k € N, wt (E,)=wt (F).
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The Bartle-Graves Theorem [4] shows that because p, o T is a linear map of F
onto E,, there is a homeomorphism from F to E, xker (p, o T). (Actually, the
statement and proof of this theorem in [4] have nothing to do with nonnormable
Fréchet spaces, but the simplified statement and proof of that part needed here
[15, (3.2"(a) = (b))] is easily verified for Fréchet spaces.) As F is by hypothesis
homeomorphic to its countably infinite Cartesian power, it is homeomorphic to
the product of some Fréchet spaces with countably infinitely many copies of E,.

Theorem 3 shows that the product of K with countably infinitely many copies of
E, (or F, if F is a Banach space) is a manifold modelled on the product of those
copies of E, (or F). Thus, K x F is a manifold modelled on F.

(c) Here, one proceeds as in case (b), but considers each vertex-star of K
separately. For a vertex v of K, either Fis a Banach space with wt (F) > C(st (v, K)°),
or F is not a Banach space but is homeomorphic to the product of some Fréchet
space with a Banach space E, of weight greater than C(st (v, K)°).

COROLLARY 1. If K and L are two metric, locally finite-dimensional, simplicial
complexes of the same homotopy type and E is a Banach space homeomorphic to its
countably infinite Cartesian power such that K and E and L and E each satisfy at least
one of the conditions (a), (b), and (c) of Theorem 4, then K x E is homeomorphic to
LxE.

Proof. By Theorem 4, Kx E and L x E are E-manifolds of the same homotopy
type. A theorem of David Henderson [12] shows them to be homeomorphic.

The next lemma was suggested to the author by Israel Berstein and David
Henderson.

LEMMA 6 (BERSTEIN AND HENDERSON). Every simplicial complex K with the
weak topology has the homotopy type of a metric, locally finite-dimensional simplicial
complex L such that c¢(L)=c(K).

Proof. If K is a simplicial complex with the weak topology which is not locally
finite-dimensional, then consider the space M=|J,y (K* % [n, ©0)). When tri-
angulated and given the weak topology, M is a locally finite-dimensional complex.
Furthermore, the projection p: M — K is easily seen to be a weak homotopy
equivalence and, hence, by a theorem of J. H. C. Whitehead [21], a homotopy
equivalence. Also, it is immediate that ¢(M) < c(K). The proof is completed by a
theorem of Dowker [9] which says that under the metric topology, this set, called L,
has the same homotopy type as M. Of course, if K is locally finite-dimensional,
then L may be taken to be the set K given the metric topology.

THeoREM 5. If E is a Banach space homeomorphic to its countably infinite Car-
tesian power and M is a paracompact manifold modelled on E, then M is homeo-
morphic to the product of E with a metric, locally finite-dimensional simplicial
complex.
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Proof. It is sufficient to examine the case that M is connected. Each paracompact
Banach manifold is dominated by a simplicial complex (weak topology) [16]. Also,
for any arcwise connected space, there is a simplicial complex (weak topology)
weakly homotopy-equivalent to it (namely, a triangulation of the realization of its
singular complex) [19]. Let N be a simplicial complex dominating M. It may be
assumed that C(N°) <wt (M), because all that is required is the existence of two
maps f: M — N and g: N — M such that g o f is homotopic to the identity, and
the smallest subcomplex of N containing f(M) will do. (There can then be no more
simplices of N than wt (M), and hence no more vertices than wt (M).) Also let
K; be a simplicial complex (weak topology) which has the same weak homotopy
type as M. A theorem of J. H. C. Whitehead [21] shows that K; must be homotopy-
equivalent to M. Now, the method used by Whitehead in the proof of Theorem 24
of [22] to establish that an arcwise connected space dominated by a countable
CW-complex has the homotopy type of a countable CW-complex immediately
shows that there is a subcomplex K; of K, of the homotopy type of M which has
no more than wt (M) simplices. The application of Lemma 6 gives a metric, locally
finite-dimensional, simplicial complex L of the homotopy type of M with the proper-
ty that ¢(L) < wt (M). Since M may be embedded in E as an open subset by [12],
wt (M)=wt (E). The proof is finished by applying Theorem 3.

CorOLLARY 2. If E is a Banach space homeomorphic to its countably infinite
Cartesian power and M is a paracompact manifold modelled on E which has the
homotopy type of a simplicial complex K such that ¢(K) < wt (E), then for any infinite
cardinal R with ¢(K) SR Swt (E), there is a pair, F, and F,, of Fréchet spaces and a
metric, locally finite-dimensional, simplicial complex L such that ¢(L) < c¢(K), Lx F,
is an Fy-manifold, wt (F\)=R, and M is homeomorphic to (L x F,) x F,.

Proof. If X=wt (E), then F, may be E, for i=1, 2, and the proof reduces to that
of Theorem 5.

If X<wt (E), let E’ be a closed, linear subspace of E with weight equal to X.
Now, consider a countably infinite set {E},.y of copies of E and in each let E; be
a copy of E’. Let Fy =[],y E{ and Fy=([T;en E))/F;. Then E is homeomorphic to
F, x F,.

If R is not the least upper bound of a countable set of lesser cardinals, then
L x F, is, by Theorem 4, an F;-manifold, where L is a metric, locally finite-dimen-
sional, simplicial complex of the same homotopy type as K with ¢(L)<c(K). On
the other hand, if K is the least upper bound of a countable set of cardinals less
than it, then the method used in the proof of Theorem 5 shows that L may be
chosen to satisfy (c) of Theorem 4 with respect to F;.

As Lx F, is an F;-manifold, (L x F,) x F, is an E-manifold and homeomorphic
to M by [12].

A restatement of the above is



336 J. E. WEST [April

COROLLARY 2'. Let E be a Banach space, and denote by F the countably infinite
product of E with itself. If M is a paracompact manifold modelled on F with the
homotopy type of a simplicial complex K with ¢(K)Zwt (F), then there is a closed
submanifold N of M modelled on a closed subspace F; of F such that M is homeo-
morphic to N x (F|F,) and wt (F;)=c(K).

COROLLARY 3. If E is a Banach space homeomorphic to its countably infinite
Cartesian power, then each paracompact E-manifold M with the homotopy type of a
countable simplicial complex is homeomorphic to the product of E with a closed,
separable, Hilbert submanifold of M.

Proof. By Lemma 6, there is a metric, locally finite-dimensional, countable,
simplicial complex L such that L has the homotopy type of M, and by Theorem 4,
L x E is a manifold. Henderson’s theorem [12] yields that it is homeomorphic to M.

Let F be a separable, infinite-dimensional, closed linear subspace of E. The
Bartle-Graves Theorem [4] shows that E is homeomorphic to Fx (E/F). Now, all
separable, infinite-dimensional, Fréchet spaces are homeomorphic to a Hilbert
space H [2], so E is homeomorphic to Hx (E/F). By Theorem 4, Lx H is an H-
manifold, so M is homeomorphic to (L x H) X (E[F), and this homeomorphism
identifies L x H with the inverse image of (L x H) x {0}—a closed submanifold of M.
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