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PRODUCTS OF COMPLEXES AND FRÉCHET SPACES
WHICH ARE MANIFOLDS^)

BY

JAMES E. WEST

Abstract. It is shown that if a locally finite-dimensional simplicial complex is

given the "barycentric" metric, then its product with any Fréchet space X of

suitably high weight is a manifold modelled on X, provided that X is homeo-

morphic to its countably infinite Cartesian power. It is then shown that if Jfis Banach,

all paracompact A'-manifolds may be represented (topologically) by such products.

In [20] it was established that the product of a separable, infinite-dimensional,

Fréchet space and a locally finite simplicial complex is always a paracompact

manifold modelled on the Fréchet space. Previously, David Henderson had shown

(combining results of [10] and [11]) that each paracompact manifold modelled on

a separable, infinite-dimensional, Fréchet space is homeomorphic to the product

of that space with a locally finite simplicial complex, so this characterized the

products of locally finite, simplicial complexes with separable, infinite-dimensional,

Fréchet spaces as precisely the paracompact manifolds modelled on these spaces.

In this paper, attention is primarily given to simplicial complexes which are not

necessarily locally compact but are given complete metrics and to Fréchet spaces

which are not necessarily separable. It is proved (Theorems 3, 4) that if AT is a

simplicial complex which is locally finite-dimensional and is given the metric

derived from barycentric coordinates (as if the complex were embedded piecewise

linearly in a Hubert space with its vertices all mutually orthogonal and on the unit

sphere), then its product with any Fréchet space of suitably large weight which is

homeomorphic to its countably infinite Cartesian power is a manifold modelled

on that space.

In addition, it is shown, using two other results of Henderson and a suggestion

due to him and Israel Berstein, that (Theorem 5) all manifolds which are para-

compact and modelled on a Banach space which is homeomorphic to its countably

infinite Cartesian power are homeomorphic to products of that space with metric,

locally finite-dimensional, simplicial complexes. This leads in turn to a result

(Corollary 2) on the splitting of a Banach manifold into the product of a closed
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submanifold and a Fréchet space when it has the homotopy type of a complex of

less weight than the space upon which it is modelled (provided that that space is

homeomorphic to its countably infinite Cartesian power). The possibility of

obtaining Theorem 5 from something on the order of Theorem 4 was suggested

to the author by David Henderson.

Uniform approximations to complete metric spaces. Here the notions of

"interior approximation", and "y-approximation" developed in [20] for the

context of compact metric spaces, are extended to complete metric spaces. This is

achieved by the expedient of requiring all functions involved to be uniformly

continuous. The proofs of Theorems 1 and 2 here are descendants of those given

in [20] for Theorems 4.1 and 4.2, respectively.

The term "uniform isomorphism" will here be used to mean "homeomorphism

which is uniformly continuous and has a uniformly continuous inverse." "Uniform

embedding" will mean "embedding which is a uniform isomorphism onto its

image."

If Xand Fare complete metric spaces, a uniform interior approximation to Xby

Y is a sequence {Qf= i of uniform embeddings of Y in X satisfying

(1) for each positive number e there is a positive number « such that i>n implies

£i( Y) is e-dense in X,

(2) there is a complete metric space M and a uniform embedding a of I in M

such that

(3) for each positive number e and for each positive integer f, there is a uniform

embedding ßStl of ^ in Af with d(ße<i(x), a(x))^2_í for all xinl which has the

property that

(4) for each positive integer/ there is a uniform isomorphism y£tiJ of a o £¡(7)

onto ]8e>i ° £i+3(F) with d(ySJJ ° a ° Uy), a ° Uy))^e for all y in Y.

(Here and later, all metrics will be denoted by "d".)

If X and Y are compact, M may be taken to be the Hubert cube. It was shown

in [20] that in this case the existence of a uniform interior approximation to X by

Y is sufficient to imply that X and Y are homeomorphic. The author does not have

an analogue to Lemma 4.1 of [20] in the present case, however, and the iterativity

condition defined next serves in its stead.

Let P denote the positive real numbers, N the positive integers, and S the set

of all sequences of members of P x N. A uniform interior approximation £ to X

by Y will be said to be iterative if there is a complete metric space M and a choice,

for each (a, ri) in Sx.N, of a subsequence Cn={Cn,i}isw of £ and embeddings

«cnAßa.n.eAe.nepxN, and {ya,n,e.iAe.i.i)ePxNXN in M satisfying (l)-(4) for £ff>ri to-

gether with

(i) £(r,n+i is a subsequence of £„,„,

(Ü)   <*<,.n + l=ßo.nMn), and

(iii) if o(i) = r(i) for i=l,...,n, then the choices are identical for (a, i) and

(t, i) when l¿i¿n.
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Theorem I. If X and Y are complete metric spaces and there is an iterative

uniform interior approximation to X by Y, then X and Y are uniformly isomorphic.

Proof. Let £ be an iterative uniform interior approximation to X by Y, and let

M and {aa¡n}SxN, {ft,Mii}Sx»xfx», and {y,,,*,e.i.i}sxàxPxiixN be chosen to satisfy

iterativity.

Let £i=i, e2 = \, and ix= 1. Choose ax in S so that o-1(l) = (^, 1). Let i2>h be a

positive integer satisfying the inequality

i2 > 2-log2 (inf {d(a„lA(x), a„lA(x')) | (x, x') e X; d(x, x') ^ ¿}).

Now select a2 in S with a2(n) = (en, in), n = l,2. Letj2 in N be such that Ígui,t1+ia

— tff2,2.i2.

Define inductively sequences {£n}™=i, {/»}"= i> {CTn}"=i! and {/,}"= 2 of members of

P, AT, 5, and N, respectively, satisfying

(a) eu e2, j'i, is, <7i, a2, and j2 are as selected above,

(b)
> 2-log2(inf {dißanin,„nin)ix), ß„v,n,0nW(x')) I

x, x' e X; d(x, x') ^ 2-"-1}),

en + l  ^ i£n

(c) ^ 2"3 inf {¿(^„.„.„„(n,,,-,, °- •••y,„i,„au1 ° «.Li ° Ci(^),

y«r„i.,<7«(»)./» °- • •oy.rn.l.ff.aUa ° a<n.l ° £l(/)) I

^/eF;^,/)^-»"1},

(d) crn+i(m) = (em, 4), w=l,.. .,«+1, and

(e7   »»n.n.U + ia+i = bcr„ + l.n + l.in+1.

Now the sequences <r={(£n, zn)}„eW and {jn}neN define sequences {/n=^,„.<7(n)}new

and {g„=y<,,„,<,<„),,„+ 1 "• ■ ̂ Vc.iMD.h ° a».i ° Wm* of embeddings of X and T,

respectively, in M. These, in fact, converge uniformly to uniform isomorphisms

onto the same subset of M.

First, {fn}neN and {g„}„eN are uniformly Cauchy because of the initial restrictions

of (b) and (c), respectively, together with (3) and (4), respectively. Hence, they

converge to uniformly continuous functions / and g from X and Y into M,

respectively. However, the second inequalities of (b) and (c) guarantee that/and g

are uniform embeddings.

Second, f(X) and g(Y) are dense in each other. This may be seen as follows:

For each e in P, there is an nx in N such that n ^ ny implies d(f(x), fn(x)) < e/5 and

d(g(y), gn(y)) < e/5 for each x in Zand y in Y. Because fH is a uniform embedding,

(1) gives an n2 in N with «2§«i such that n^n2 implies fni ° £„(T) is c/5-dense in

fni(X). Also, there is an «3 in N, n3 ̂  n2, such that £„3 = í„,n2,ín2- Now, if x e X, then
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there is a ye Y such that d(fni(x),fni ° ln3(y))^e/5, and since gn2(Y)

=/n2 ° £<7,n2.i„2(í'), there is a y'in Y with gn2(y')=fn2 o ta irí2,ln2(y). Then

d(f(x),g(y')) ú d(f(x),fini(x)) + d(fini(x),fnio¿:n3(y))

+ d(fin2 ° L3(y),fni o in3(y)) + d(gn2(y'),fn2 c ln3(y))

+d(gn2(y'),g(y'))

< £/5 + £/5 + 2e/5 + 0 + e/5 = e,

so g(Y) is dense in f(X). On the other hand, as gn(Y)^fin(X) for each « and

{gn/neN converges uniformly to g while {fn}neN converges uniformly to / f(X) is

dense in g( Y).

Finally, since/and g are uniform embeddings of complete metric spaces, their

images are closed, hence equal, so/"1 ° g is a uniform isomorphism of Y onto X.

If A' and Y are complete metric spaces, a closed subset Z of Xx Y will be called

a uniform Y-approximation to X provided that there exists a complete metric space

M and, for every e in P, a uniform embedding g£ of Xx Y in ZxM<=Xx YxM

with, for each xinlxf, aX/?i ° ge(x), p,(x)) ^ s such that if gE = (j>,°ge° ip„ p2),

Pi ° ge ° ÍPi, P2), Ps, Ps ° ge ° ÍPi, Pi))- Xx Yx Y^-Zx YxM^Xx Yx YxM

and if Zi = (p,,pi + ,)~1(Z), i—l, 2, then there is a uniform isomorphism

hs:ge(Z2)^Z, with d((p„p2) o he(x), (p„p2)(x))^e for all x in ge(Z2). (Here,

/?¡ is the projection onto the /th factor, and Z is always regarded as a subset of

Xx Y. The metric on finite products will always be the sum of the coordinate

metrics. In the following, infinite products of complete metrics appear, and it will

be convenient to make the convention that given a collection {An}neN of metric

spaces with uniformly bounded diameters, the metric for YlneN An will be given by

d(x, j) = 2new 2~i'1 d(pn(x),pn(y))- Also, given a space Y, the symbol Y™ will

denote the product of a countably infinite set of copies of Y indexed by N.)

Theorem 2. If X and Y are complete metric spaces and there is a uniform Y-

approximation Z to X, then Xx Y" andZx Yx are uniformly isomorphic.

Proof. Let M be a complete metric space as in the definition of uniform l'-

approximation. For convenience, it will be assumed that the diameters of X, Y,

and M are no greater than one. (This may be done because if A is any metric

space, the new metric p(x, v) = min {d(x, y), 1} gives diameter less than or equal

to one, and the identity function is a uniform isomorphism.)

Let £ = {£,}¡6jv, where £¡:Zx Yx^Xx Y°° is given by ^=(pi,(p,°p3,p2°p3, ■ ■ -,

P2Í-1 °Ps, P2, p2i° Pa, P2i + i ° p3, ■■■))■ (The notation supposes Zx Ym<=Xx Y

x y°°.) It will be shown to be an iterative uniform interior approximation.

Fix a point min M and let a embed Zx Yw in Xx y°° x M00 by the formula

(x, y) -> (x, y, (m, m,m,...)).
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In order to define {/3£ii}PxN and {ye,i,j}pxNxN, a "rotation" of Xx Y°° x M°° is

necessary. Let k: PxN-> TV be a function such that k(e, i)£i+2 and 2 —log2 (e),

and for each e in P and i in TV, define <pEy. Xx Y<° xM<° ^ Xx Y" xM<° by

(95, 1)   pjO<pci=Pj,ifj=\,3,

(<P, 2)   pj op2 o çp£ j =/7;- o p2, ify= 1,..., 2i,

(<P> 3)     PaWi.0 + 2; ° P2 ° 9>£,i =P2i + 2Í ° P2,

(<P. 4)     P2i + 2J°P2 °<Pe,i=P2i + 2j-l °P2, if2=1. • ■ •. ^(£. O-».  and

(V. 5)     P2i + 2) - 1 ° P2 ° <Pe,i =P2k(e.i) + 21-1° P2-

For each (e, i) in P x N, define )3Sji by

(ß, 1)   /7i ° ft,¡ =/7! o fa-««,i) o (Pl, p2¡ o p2),

(A 2)   />, o /»2 ° ft,¡ =Pj ° />2 ° <P*,u for jV 2/,

(ft 3)      p2i °p2 o ßeA=p2 o ga-««.t) o (/7!,/72i o/72),

(ft 4)   />, o ̂ 3 o ßei = m, for 7V k(e, i), and

(ft 5)    Pku.D ° Pa ° ft,¡ =Pa ° g2~k^ ° (Pi, P2i ° Pz)-

(That is, ftj is q>e >( o « followed by the action of g2-««.<> in the coordinates X, Y2i,

and AfW£ii).)

For each (e, i,j) in P x N x N, define

y,,u: a o í((Zx y-) = í/7!,^ op2,p3)-\Zx{(m, m,...)}) -> Xx y°° xM°°

by

(y.  O     Pl ° Ye,i,i=Pl ° /¡2-«t.»"1 ° (Pl,P2i °P2,P2k(8,i) + 2j °P2),

(y, 2)   Pnap2° Ye.i.i =Pn ° Pi, for « / 2i, 2fc(e, f) + 2/

(y, 3)     p2i °P2° Ys.i,j=P2 ° hz-klB.t)-1 o (puPii °P2,P2k(.e,i)+2i °P2),

(7, 4)     P2k(e.i) + 2J °P2 ° ys,l,i=Pz ° hz-KW1 ° (Pu?2i ° P2, P2k(e,i) + 2i ° P2),

(y, 5)   Pn°P3°ye,i,j = m,n¥= k(e, i), and

(y, 6)    Pfcig.o °pS ° ye.i,j=Pi ° hi-«'-»'1 ° (Pi,P2i °P2,P2k(e,i) + 2J °Pz)-

(That is, y£i>i is the action of /z2-*<*,»_1 on the X, Y2i, Yms¡l) + 2j, and A/WSji)

coordinates.)

These functions establish that £ is a uniform interior approximation to Ix T°°

by Z x y °°. For each (e, i) in P x N and x in Ix y°°,

d(ßs.t(x), a(x)) ¿ c2(/7i o g2-M.t>ipuP2i °p2)ix), Piix)) + dia I J~[ yT +dia (MWi>0)
Va2i      /

< 2-'£<«.*)-)_2_2i +2_fc<£'i>_1 i= 2_i_14-2-2' :S 2_i

If ie, i,j) is in PxNxN, then for jina» £((Zx y°°),

diys.ijiy), y) ^ d(p! ° /¡2-te.o-1 o ipup2, °p2,P2k(s,i)+2f ° p2)(y), Pi(y))

+ d(p2l °p2 ° Aa-w.0 -x o (^i,/>2( op2,p2MsA) + 2j op2)(x),p2¡ op2(x))

+ dia ( y2W(M) + a/) + dia (Mk(Sti))

< 2-k(.e.i)^.2~k'-e-n + 2~k'-e,n = 3.2~kie'n < e.

(The first 2~kie¡n term is contributed by the first two terms of the preceding part

of the inequality because of the restriction placed on Äa-««.o in the definition of
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uniform F-approximation.) It is clear that all functions involved are uniform

isomorphisms, so there only remains to verify that y£ii,/a ° £((Zx y°°))

=/3£iio£j+;.(Zx Y"). The coordinates defining £i+/Zx y») are X and Y2U+j),

however, and (tp, 3) shows that 9>£,¡ ° « ° £¡+/Zx y°°) = a o £2Jc(£()+2;(Zx y00).

Therefore, following the parenthetical remark after the definition of ßCii, ße-i

o £i+y(Zx y°°) is the image under the application of £2-w*.° in the X and r2(

coordinates, moving into the Mk(e¡t) coordinate, of a o £2W£>i) + 2j(Zx Y°°), which is

also the image under the application of Äa-«M>~X to the Z, Y2i, and Y2kie¡i)+2j

coordinates, moving into the MkUti) coordinate, which function is ye¡ij.

In order to demonstrate the iterativity of £, let r: Xx Yx xMx ^- Xx 7"°

x{(«t, m,...)} be the obvious retraction, and for / in N, let irt: Xx y°° xM*

-» Xx í"° x[]Wi M¡ be the projection off the M¡ coordinate. Now let

v. PxNxN-> Nand r¡: PxNxP^P be functions such that (1) for x and y in

a(XxY») with d(x,y)ú2í'^-m-i\ d(ße<moa-\x), ßE,m o a-\y))^2~ '"\ (2)

■n(e,m,8)<8/2, (3) for x and y in a(Ix f") with d(x, y)á2r¡(e, m, S),

¿(k.m ° «"K*), fc.« » «-^»í «A and (4) *(,(>, «t, 8), »<«, /», /))>*(«> m). Now
for each a in S let affil = a, ßa,,,e,i=ßs,i, and y,,i,,,w«y«,i,/, and let

ßo,2,t,i = (77fc(7i((7(i),ii),v(c7(i)>i)) ° Pací) ° a     ° r, Pkir\<aai.à),-i(.oa),m° Pa)

»/W).».**».»: *x F" -* (xx Y"x n Mi)
\ j^fc(iKa(l).4),v(ff(l),<))        /

x™/c(7i(ff(i),«,v((7(i),i)) = Zx y°°xA/°°.

Also, let

y<7,2,á,i,í = (7rfc(ij(ff(l),i),v(o(l).0) ° Pea) ° a       ° r, PkWtHU.ÔiMelD.m ° Pz)

° y7i<(7(l),»,v<a(l),¡),v(ff(l),l+í)-v(ff(l),i) ° a ° P<7(1).

Then with a(,i2=r9aa) and £<7,2 = {£V(a<i>,i>}ieAr> this choice satisfies (l)-(4) and(i)-(iii)

(with 7i = l, 2). An induction completes the construction.

Since £ is an iterative uniform interior approximation to Xx y°° by Zx y°°,

Theorem 1 applies to finish the proof.

Some technical lemmas. In the following, proofs are abbreviated to construc-

tions, since the verifications that the constructions do work are straightforward.

Let 7™=]!«^ [0, l]i and denote by ^(7°°) those homeomorphisms of 7*° onto

itself which preserve pr x(0) for each i e N. For any space X, let ^(X) be the func-

tions from X into itself; if X is a uniform space, let ^l(X) denote the uniform iso-

morphisms of X onto itself. If {7}¡}ie¡v is any countably infinite collection of Banach

spaces, let v. n¡ejv Et -> FlieN -R¡> where 7?¡ is the real numbers, be defined by/?( o v(x)

= II Piix) || for all x in n¡ew Et and i in N. Also, let £: YlieN E{ ->■ TJieN 7s, be defined

by

pioi(x)=Pi(x)/\\Pi(x)\\    ifPi(x)y=0,

= 0 if pt (x) = 0,
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for all x in Flew Et and i in N, and let p : YIí<¡n 2?¡ x YlieN F¡ ->• Yl¡eN F¡ be coordinate-

wise multiplication. Finally, denote the closed unit ball of E¡ centered at the origin

by B,, and define O: J^(2°°) ̂ ^(Ylies E¡) by 0(/) = M o (/x id) o („, f).

Lemma 1. (I)(^(2cc))c,^(n¡eNAi); furthermore, the constants of uniform

continuity of<&(J) and 0(/)_1 depend only onfi not {Fi;ieN.

Lemma 2. There is a member A of<%(YlieN Bt) and a collection {S^i^iO, 1) such

that A(/jf1(5'1))c:5i xF]í>i S¡2?¡, where Sx is the unit sphere of Bu The collection

{<*i}¡>i Ö independent of{E^iQN, as are the constants of uniform continuity for A and

A"1.

Proof. Theorem 6.1 of [1] asserts the existence of a homeomorphism h of 2°°

onto itself with the property that h(p11(0))<={0}xYli>i (0, 1)¡. An examination of

the proof gives quickly that it may be modified to yield the following: "There is a

member B of ^(2°°) such that e(p11(l))^{l}xUi>i [0, 1),." Let A = O(0).

Lemma 3. Let J be any infinite subset of N, and M, any infinite subset of J for

which J\M is also infinite. 2/{Sy}i6/c(0, 1), there is an element <p of ^(YlieN 2?¡)

carrying C\jejP7\^iRj) into [(%/ Pf xMy)] n [HmeMPmHO)],/or some collection

{ey}ie/c(0, 1). Furthermore, <p may be required to have the property that p¡ ° <p=/?¡ //

;£/.

Proof. This, as Lemma 2, is a generalization of a result in [1]. The proof is

analogous to that in [1] except for one or two points.

Let {Jm}meM be a collection of pairwise disjoint infinite subsets of J\M, and

denote the members of Jm by jim, i), where jinx, f)i£i for all m. For each tti and i

in N, let $m>,: [0, S/(m>J), 1]^ [0, 2~i_4(l-Sm), 1] be the indicated orientation-

preserving piecewise-linear homeomorphism, and let Xm,¡ e ^(Bm x Bjim¡i)) be

(Pi, (Xm.i ° II • II ° P2) -P2). Let 9V, e <^(Pm x P;(m>))) be defined by

9m.i = (Pi.P2 + [(l-||-|l)°P2]-Pi, on 8m-BmxBKm¡n,

= (Pi,P2 + m-\\-\\)°P2][il-l\\)°Pi]lil-om)yPu

on iBm\8mBm) x 5J(m>i).

Now let 0m,(=çpm,i » Xm.i- It has the properties that it changes the ^„-coordinate of

no point, that it carries 8m-Bmx8j{mM-BjlmA) into 8m• Bmx»y(m>0■ BKm_n (where

c7<m,o = 2_i "4(1 — Sm)2 + Sm), so that the projection into BKn4) carries the image

onto eKn¡irBKm¡i), and that for x and y in 8m-Bm x $m,tyBm>i) with |pi(x)-pi(v)|

= 2~', ¡P2 o 4>mÀx)-p2 ° <f>m.i(y)\\ >2'i'1. Define v e <%(Y\ieli Bt) to be that element

defined by {^m,i}(m>i)eM x »• (More precisely, let each >/jm¡i he extended to a uniform

isomorphism of YlieN B ÍB the natural way, and let </(m = limitj_00 ̂ m-i 0. ..0 <fiml

for each m in Af. Then i/i may be defined to be limit,,-,,* i/imM 0.. .0 i/rm(1), where

Af={rti(«)}neJV is an enumeration of M.)
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Here, let irm : 8m ■ Bm x TJieN S/(mi) -> YlteN BmM be the projection. As noted

above, trm ° tpm(8m-BmxT~[i£N 8í(m>í)• ÄJ(m>i)) = Y\ieN emAyBmM; further,

"« ° <Pm I ¿>m • Bm X TY ^ttm.n ' Bum,I)
leur

is a uniform isomorphism. Thus,

Üm= Pl° Urn | <Pm\8m-BmX T~[ 8J(m>i) • 5i(m>i)j j

¡s a uniformly continuous map of YlieN Enm.i)-Bj(m4) onto 8m-7im. Let pm¡i be the

radial retraction of BKm¡i) onto *,,„,„• BmM, and let ,om = n¡=N /'«m.». The function

û>m o pm is a uniformly continuous map of Y~[ieN Bjim¡i) into Sm •!?„,. Define wm in

^(BmxUten 5«m,o) to be (/>1 + [(l-||.||)o/»i]-dimopmofflB, ttJ"1, and extend it

naturally to a member of ^¿(Ylien Bt). Let tu = limitn^co cum(n) o. ■ -o aim(1). The

composition cu o ̂  is the desired function, and fory e J\[M u ({JmeM Jm)], e, may be

had to be 8,.

Lemma 4. If E is a Banach space with (closed) unit ball B and unit sphere S,

then for each e in (0, 1) there exists a collection {Hs}seS, of closed, codimension one

hyperplanes of E with s 4 Hs, a collection {Ws}seS, of closed, symmetric, bounded,

convex neighborhoods of the origin in the hyperplanes, WS<^HS, and a collection

{as}ses of homeomorphisms of B, as: B—> Ws+[—l, l]s, such that

(1) «5(S) = [lFs + {i, -s}]u [Ws\[0, l)-Ws + [-l, l]-s],

(2) ocs(±s)=±S,

(3) there exists a 8 in (0, l)/or which as_1(IFs± [1 —8, l]-s)<=e-B±s, and

(4) {as}seS u {as~ ̂ses is uniformly equicontinuous.

Proof. (Here, A + B denotes {a + b | a e A, b e B}, and CA denotes {c-a\ ceC,

aeA}.)

For each s in S select, by the Hahn-Banach Theorem, a continuous, real-valued,

linear functional/: E-> R of norm one sending s to one. Let Hs=fif1(0) and let

W/s = (£/8)-[(7-/()i)(7i)]. Since Ws + [-l,l]s is a closed, convex, bounded,

symmetric neighborhood of the origin in E, the Minkowski functional x -*■ ps(x)

= inf{f>0 | xei(IFs-l-[-l, l]s)} of Ws+[-l, l]s is a norm for E which is

equivalent to the original one, | • ||. In fact, (4/(4 + e))|.x|| ¿ps(x)^(%/e)\\x\\ for all x

in E, s in S. The function as: B -> Ws + [-1, 1] -s may be defined by

as(x) = (\\x\\/ps(x))x   ifx + 0,

= 0 if x = 0,

and for this choice, e/7 will do for 8.

Throughout, the phrase "metric simplicial complex" will denote a simplicial

complex with the topology generated by the Euclidean metric on the barycentric

representation of its cells. (That is, if the complex K is regarded as a piecewise

linear subset of some Hubert space with the property that all its vertices are mem-



1972] PRODUCTS OF COMPLEXES AND FRÉCHET SPACES 325

bers of a collection of mutually orthogonal unit vectors, then the metric is just that

induced by the norm of the Hubert space.) The symbol st (v, K) denotes the sub-

complex of 2v composed of those simplices of K containing v.

Assuming the terminology of Lemma 4, suppose that K is a finite-dimensional,

metric, simplicial complex, that A<=S, that {Ls}seA is a collection of subcomplexes

of K indexed by A, that there is a vertex v of K such that K=st(v, K) and

Ls = st (v, Ls), for all sin A, and that {ps}ssA is a collection, uniformly equicontinuous

when taken together with {/xs_1}se/i, of homeomorphisms ps: Lsx YJi£N 2i¡ -> n¡eN 2?¡.

For each s in S, let Xs=Lsx [pí1 o as-1(iTs-l-j)u p2x ° a;\Ws+s)].

Lemma 5. If KxY\ieN B¡ is uniformly isomorphic to P°°, then there is a collection

{xsïseA of homeomorphisms, Xs'■ Kx YÍíen B¡ -> Ls x ni6w Bit such that Xs\%s is the

identity and the family {xs}seA ^ {x«-1}s&i is uniformly equicontinuous.

Proof. Let pK be a uniform isomorphism of KxY\ieN B¡ onto ]~lieN B{. It is

easily seen that pK and each ps may be required to have the property that px ° p2

=Pi ° Pa, for a e {A^} u A and i eil, 2}. This assumption gives, for each s in A,

^(^s)cMs(A's) = U?=iPr1 ° a-\ws + s).

It is a simple matter to construct a family {fs}se¿ contained in ^(]~lieN 2i¡) such

that {fS}SEA u {|s" 1}sei4 is uniformly equicontinuous and, for each s in A,

£siöi = iPr1 ° ar1iWs + s))=pï1 ° a~1(Ws+s). (One chooses a homeomorphism £

of [-1, l]x[-l, 1] onto itself such that f(U?=iPf1(l))=Pr1(l) and defines &

to be (a~1 x a"1 x id x id x ■ • • ) o (fx x f2 x id x id x ■ • • ) o (a$ x as x id x id x • • -),

where f( = (I-f( • ) • í) ° Pi + [Pi ° f ° (/s ° Pi./» ° P2)] ■ «, for /' = 1 or 2. Now for each

í in A, let Hs be given the norm under which Ws is the unit ball (the Minkowski

functional of Ws), and let As be the function given by Lemma 2 for the sequence

R, Hs, E2, F3,... of Banach spaces. Let ls e ^iYJteN B¡) be

(fs°<Xs°Pi,(I-fs(-)-s)°as°puP2,P3,---)~1 ° K

0 (/ ° as °Pi. (I-fs(-)s) ° aspup2,p3, ■■■)■

The family {QseA u {£~ 1}seA is uniformly equicontinuous, and there is a collection

{8i}iEwc(0, 1) such that for x in pï1 ° a~1(Ws + s), £s(x) is in as~1(8ilivs4-i')

xE[i>i SjPj. Let y=Ar\{l} and M={2i}ieN, and select, by Lemma 3, a uniform

isomorphism 95 of YJieN B¡ onto itself such that p1 ° <p=Pi,p2i ° <p(pï1(S1)) = 0 for

all 1 in tY, and there is a collection {«2i + i}¡ew<z(0, 1) for which p2i + i° 9(pî1(S1))

<= £2j +1 • 2?2i + ! for all / in A7.

Let /3 e ^(riiew Bi) be the function which exchanges the 2ith- and (2i —l)th-

coordinates for each i, and denote by p0 and pe the projections of fTiew Bt onto

n¡eN 2?2( _ 1 and YJieN B2i, respectively. The same symbols barred will be used to

denote the projection followed by the injection into YlieN B¡ which inserts 0 in each

of the other coordinates. Now let 77,. be the map from Y]ieN Bt to n¡<=¡v B¡ given by

Vs = <P ° ls ° £s ° Hs ° Ps ^ic1 ° is'1'•is'1 cy'1 °ß°pe°(idxa-1xidxidx---)

° (idx(id+í-/s()í)xidxidx ■ ■ •) o (id x as x id x id,...),
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where ps is the retraction of K onto Ls defined by first taking the second barycentric

subdivision K{2) of K, then retracting Km onto L(2) by the simplicial map sending

all vertices of 7C(2) not in L52) to v and then identifying Lf with Ls. Let 6s2i_,

=/>2¡-i + (l-|HI °/>2i-i)7»2i-i °Vs, if »>1, andletöSil be

«s_1° ko^i+(i-IM!s°(id-/(-)-í)o«so^i)-(«so/'io^(-)-í)].

where |-||s is the norm indicated for 77s under which Ws is the unit ball. The

function es in Multes B,) given by ds = (Ss¡„p2,Bs¡3,pi,...) carries ß°<po£s

0 i5 ° Mk(Z) onto the graph of the function pe° ß ° <p ° L°$s° Hk ° H71 ° &1 ° is-1

0 <P_1 I <P ° i5 ° is ° Ms(Z) so that, for x in Xs, 6S ° ¿8 ° tp ° £s o £ o ̂ (x) = (/>0 o <p

0 £s ° isc FsW, Pe ° ß ° <P ° ls° €s° H-kÍx)). By a strictly analogous procedure, one

may construct a family {cos}SE4 of uniform isomorphisms of FLew B¡ such that

(1) Po * "s=Po, (2) ws carries ? ° £s ° is ° /xs(Zs) onto ds o 0 o <p o £s o £s o ^(Zs),

and (3) {cos}S6i4 u {to,- l},eA is uniformly equicontinuous. Since {0s}seA u {0~%,,

is uniformly equicontinuous, the desired family of uniform isomorphisms may be

had by setting Xs = his~1 ° is-1 ° £s_1 ° 9'1 ° ^s'1 ° 8* ° ß ° 9 ° is ° is ° h-k for each s in

A. (This sort of extension procedure is due to V. L. Klee [13] in Hubert spaces

and has been elaborated upon by several authors, [1], [3], [8], and [18].)

Main theorems. In a metric space, a set A will be called uniformly separated

if there is a positive lower bound on the distances between pairs of points of A.

The symbol C(A) will denote the cardinality of A, and if Kis a simplicial complex,

c(K) will denote the least upper bound of {C(st (v, K)°) | v e K°}. The weight

wt (£) of a metric space E is the greatest lower bound of the cardinalities of dense

subsets of E. It is not difficult to show that when E is an infinite-dimensional

Hubert space, then wt (E) = dim (Tí), and if E is an infinite-dimensional Banach

space, then it is of the same weight as its unit sphere. In fact, it is a theorem of

A. H. Kruse [14] that in the latter case, there is a uniformly separated subset of the

unit sphere of E which has cardinality equal to wt (E). Finally, defining a locally

finite-dimensional simplicial complex to be one in which each point lies in a finite-

dimensional neighborhood, we have that this is equivalent to the requirement that

the star of each vertex be finite dimensional.

Theorem 3. Let K be a metric, locally finite-dimensional, simplicial complex and

E, a Banach space homeomorphic to its countably infinite Cartesian power. If

c(K) ^ wt (7s), then KxE is an E-manifold.

Proof. With B denoting the unit ball of E, it is sufficient to demonstrate that

K x YiieN Bi is a n¡eN 7írmanifold, for by a theorem of Bessaga and Klee [6] (see

note added in proof), each infinite-dimensional Fréchet space is homeomorphic

to each of its closed convex bodies. Thus, E is homeomorphic to B and to YJieN Eu

so it is homeomorphic to TIíen B¡. A second reduction of the problem is made by

working with the vertex-stars of K, so it is sufficient to assume that K is finite
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dimensional and the star of one of its vertices v0. The proof proceeds by induction

on the dimension of K.

The case that dim (K)=0 is trivial, since then AT={fj>0}. Assume then that « e Af

and that for any («— l)-dimensional, metric, simplicial complex L which is the

star of one of its vertices, L x YJieN B¡ is uniformly isomorphic to T~[ieN B¡ if the

cardinality of L° is no greater than that of K°. Now for any metric, «-dimensional

simplicial complex M which is the star of one of its vertices v0 and which has no

more vertices than K, there is a uniformly separated subset A of the unit sphere of

B with the cardinality of the set of «-dimensional simplices of M. (This is because

unless K is {v0}, E must be infinite dimensional, in which case if K has only finitely

many vertices, the complex under consideration has at most finitely many «-

simplices, and the unit sphere of B is not totally bounded. Otherwise, if K has

infinitely many vertices, the cardinality of the «-simplices of M cannot exceed that

of the vertices of K.) By Lemma 4 there is a collection {as}s£A of uniform isomor-

phisms, as: B -j> vVs + [—l, l]-s, where Ws is a closed, symmetric, convex neighbor-

hood of the origin in a codimension one hyperplane of E, with the property that

there is a 8 in (0, 1) such that a-\Ws + [l-8, l]-s)^(e/4)-B + s, where e in (0, 1)

is chosen so that for í and / in A, \\s — t || ä e. Let the «-simplices of M be indexed by

A, and define Z in Af x YlieN 7?¡ to be

(st (»o, Af-^xYlBÁ U (J (a'.xo.-HW'. + í) x n BA.
\ lew       /        seA \ 1>1      /

The remainder of this proof consists of the showing that Z is a uniform riiew B¡-

approximation to M.

For each £ in (0, 1), construct a uniformly continuous retraction fi of

MxT~[KflBi onto Z in the following manner: For each s in A, let/is project

A\x(rVs + [-l,l]s)onto(Ansnst(v0,Mn-1))x(Ws + [-l, l)s) u A\x(Ws+s)

from the set {bs}x [( — 4/Q-S+ Ws] along the lines in

{[(bs,y-m)-s), ix,y + ts)] | x 6 A», O st (v0, Af-1), yeWs,te[-1, 1]}

U {[(bs, y-(4/0-s), (x, y + s)]\xe A\, y e Ws),

where bs is the barycenter of d(Ans)\st(v0, M"'1). Let/c>s=(idx(as-1 xidxid

x •••))°(/>i °ft,s°(Pi,Pi °Pè, ÍP2 °fi,s ° iPuPi °P2),P2 °P2,P3 °P2,---))° (id

x (as x id x id x • • •)), and define

Áix)=fUx)   ifpiix)eA\,

= x if p,(x) e st (v0, M""1).

This  function  is  uniformly  continuous  because {as}seA u {a~ 1}seA u {/c,s}seA is

uniformly equicontinuous. Also, for any x in M, d(p,(x),p, °/c(;c))<£.

Define gc : Mx lJieN Bt-^(Mx Y[isN B{) x (Af x n(eiv Bt) to be (/, id). Because

fi is uniformly continuous and gf1=p2, gc is a uniform embedding. Further,
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d(pi ° Pi ° g¿x), pu\x)) è I for each x. Letting Z^Mx YJieN Bt x U^n B¡ he

(PuPt + ù'^Z), i =1,2, and

gt: MxYJ BxYl *,_► ÍMx\-\ BxYl Bt) x (^xfT 22,)
feíí ieN \ ieN ieN       I      \ ieN       I

be ((/»! o /7i o gt, p2°Pi° ge, P3), id), it is necessary to construct a uniform isomor-

phism At: gc(Z2) ->- Zi such that, for x in gt(Z2),

<2((Pi, p2) ° Ä:(x), (/?! °PuP2° Pi)(x)) á £

As Za = st(»o, M^^xUieN 22,xn¡6N 22, u U^ A^xELat Btxfc\Wt + s)
xU¡>i-Bi),

g¿z2) = fist {v0, m » - *) x n 22, x n 22,)
\ ieN ieN       I

u u ic(^sxn^x(«s_i(^+i)xn^)).
se.4        \ ieN \ (>1      //

The set

V ISW ¡EAT /

= {(x, y, z, x, v) I (x, y, z) e st (i>0, Mn"x) x f] B x fl 5¡V
^ lew few       J

The set £{(A», x TIien 22, x (a - \ Ws + s) x fit > 1 B{)) = Cs u 2>s, where

Cs = {(x, y, z, x', y')\xe A"s; y, z e a~1irVs + s)xYl B,;
K (>1

Ply) = Pi(/) for i > 1 ; «s oPl(y)-as °p¿y') e [0, 2]-s;

(x',asop1(y'))e[(bs,(-4/C-l)s + asop1(y)),(x,as(y))]j

and

Ds = {(*, v, z, x', /) I x g A"s n st (i;0, M""1); z e ^Ws + ^xn^;
I. ¡>i

y e U B, ; ply) = ply') for i > 1 ;

a«oPi(j)-a.°Pi(/)6[0,l+j;oa,op1(>')].iand

ix', as o pi(/)) 6 [ibs, as oPl(y) - (f o as <>Pl(y) + 4/0 • s), (x, as °Pi(y))] J-

(Here,/ is the same functional as used in the proof of Lemma 4 to construct as and

Ws.) Therefore,p = (pltpa° p2) \ g¿Z2) : g¿Z2) ^(Mx U^N B¡ x TJ^n B¡) x TJteN Bt

is a uniform embedding. (It is clearly uniformly continuous. It is one-to-one because

if (x, y, z) and (x', y, z') are distinct points of Z2 such that/;(x, y)=f(x', y), then

there must be two distinct elements s and s' of A such that x e Ans\st (v0, Mn~x)

and x' e A"s.\st (i>0, Afn_1),  since f(a,b)^(a,b) implies p2 °fia, b)^b. Then,
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however, p,(z) e as~1(Ws + s) and p,(z') e as.~1(Ws- + s'), which are disjoint by the

choice of 8. The uniform continuity of p'1 may be seen by observing that on

p o gc(st (v0, Mn~1)x YlitN Bt x nieN Bi), p~1 = (p,, (p, o Pl, p2)) and that on

p(Csu Ds),p-1 = (p„(Ts(-)-bs + (l-Ts(-))-p,oPup2)X where

Ts  =  if s °<Xs°Pl°P2aPl -fi °<Xs°Pl0 P2)li4/t +fis °CCs°Pl°P2° Pl)-

Because {rs}seA is uniformly equicontinuous and {p(Cs u Ds)}seA is composed of

sets which are uniformly separated from each other, p ~1 is uniformly continuous

if it is continuous. It is continuous because for

(x,y,z,y') epogLt(v0, Af-^n^xn b\ n p(Cs u A),

y=y' and, thus, rs(x, y, z, /)=0.)

The structure of p ° g~n(Z2) is as follows:

(1) p oft(st (»o, Af""1) x Yli=N Bi x UieN Bi) = {(x,y, z, y) \ (x, y, z) e st (v0, A7*"1)

X VlieN Bt x Y[ieN B¡},

(2) p(Cs) = {(x, y, z, y') \ x e A\; y, z e as-1(Ws + s)xUi>i B{; Pi(y) =Pi(y') if

i>1; «, °p,(y)-as °p,(y') e [0, 2]-*}, and

(3) p(Ds) = {(x, y, z, y')\xe A\ n st (v0, M-1); z e a-\Ws+s)xUi>i Bt;

Pt(y)=Pi(y') for i>l, and as°p1iy')e«s°Piiy)-f,°<*.°Piiy)-s+[-l-f.°<*,

°Pi(y),0]-s}.

Letß:po g¿z2) -> (M x rite* B, x UteN Bt) x [0, 2] be defined by

ßÜPl °Pl)~1i&\)   =  iPl,   II • Il  ° («« aPl°P2-«s°Pl °P2°Pl))

for each s in A andß\(p, op,)'^ (v0, Mn~1)) = (p,, 0). (This is also a uniform iso-

morphism, for on {JsbaPÍCs u A) ¡t is U«e¿ (/>i> Il • Il ° («s ° Pi° P2-<*s°Pi°P2°PU),

the sets /?(CS u 7)s) are uniformly separated, and on

pogÁst (v0, M"-1) xn Bi xY\ b\ np(Cs u 7J>S),
\ ieN isJV       /

the function p2 o p1 agrees with p2, which shows continuity, hence uniform con-

tinuity, of the inverse.)

An examination yields that

ßopogJst^M-^xYlBiXllBi) = (stivo,M*-1)xYlBixTjBÏ\x{0},
\ lew ieiV      / \ ieN ieN      I

that for each  s in  A,  ß-p(Cs) = [Ansx(ar1(Ws + s)xUi>i Bi)x(ar1(Ws+s)

xTIi>iBi)]x[0,2],   and   that   ß op(Ds) = {(x, y, z, t) \x e A", n st (v0, M'"1);

J £ IlieN *<; ̂  e «f W+î) x]li>i Bi, and 0£/g 1 +/, ° asoPl(y)}.

Let t;(£) g (0, 8) be small enough that for any s in A and any x and y in IF,

+ [-1, l].j with ¡x-yWèviQ, ||«»"x(jc)—«r 1(>')H =SÎ/3, and let

ñ:{(s,t)e[-l,l]x[0,2]\tú l+í}-*[-l,i]xf0,2]
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be any homeomorphism which is the identity on [—1, 1] x{0} u {l}x [0, 2] and

changes no point's first coordinate more than r¡((). Let yc: ß ° p o g;(Z2)

-+(Mx YJieN B{ x YJieN Bt) x [0, 2] be ((pj »^(«r1» ((«s -f, ° «s( •))•*) ° Pi ° P2

°Pi + (Pi o yc ° (/ ° as o/?! op2 °PuP2)-s),P2 °P2 °Pl,P3 °P2 ° Pi,-- -),Pa °Pl),

P2 °?t °(fs ° as °Pi °P2 °Pi,p2)) on ((p! o/?i),/7i °P3°Pi)_1(An,xas-1(I»vi-l-j))

and the identity map on p2~1(fy- That yt is a uniform isomorphism follows in a

similar way to the argument for ß. That for any point x in ß ° p ° g^(Z2),

dÜPi ° Pi, p2 ° Pi) ° yc(x), (pi » Pi, p2, ° Pi)(x))=c2(p! op2oPlo yKix), Pi o^2 opAx))

^ £/3 is given by the choice of ?i(0 and the construction of yc.

Upon inspection and reference to the second paragraph back it is immediate

that

yKoßcPogiiZ2) = (st(c0, M»"^n^xf] 22,) x{0}
\ lew ieN       /

U U i(Ans n st(p0, M-^xf] 22, x («rW + i)*]! 5<)1 xt°' 21
se4 L ieN \ i>l      / J

For each s in ^4, let /xs be a homeomorphism of Ans n st (c0, Mn_1) onto

[—1, l]n_1 in such a manner that {fi}seA ̂ {ßs'^seA is uniformly equicontinuous.

Select s0 in A and let ¿t: [-1, l]n_1 x YlieN B¡ -^YlieN Bt be the function

(idxidxa-^xa-ix ■■■)<= (Pl op2, p2 op2, (id-f(-)-s) op3 °p2 + (Pi cPl(.))-s,

....  (ià-fi-)s)   opn + i   op2 + (pn-l   ° Pi( O)'*.   Öd-/(•)■•*)   °Pn + 2  °P2 + (fs  °P3

° P2(-))s,..., (id-f()s) °pm+n_i ° p2 + (fs ° Pm °p2( •))•■*. •••) ° (id x (id x id

Xo!soXO!sox " '))• For each s in A-> let P*: Ansnst(f0, Mn_1) x YlieN BiXYl^N Bt

-> líte» #i be

P°(Ms°Pi. (Pl °P2,Pl °P3.P2 °P2.P2°P3. •• •, Pn ° P2> Pn ° Ps, •• •))•

By hypothesis, st (c0, Mn_1)xFI¡eN 22, xFI,eN 22, is uniformly isomorphic to

PIieN A. so by Lemma 5 there is a family {xs}seA of uniform isomorphisms

XS: st iv0, M-^xUieN BixY\leN B> -+ (A-, n st (c0, M-^xFIien 22,xfliciv B

such that {xs}seAu {Xs_1}seA is uniformly equicontinuous and, for each i,

Xs|Ui2=i (P1.P1 °P, + i)_1([Ans n st (i>0, A/"-1)] xa.-KrP'.+j)) is the identity. Each

Xs defines a uniform isomorphism, which will be called xs, of

(st iv0, Mn-1) x n B x n 22.) x {0}
\ ieN ieN       /

U f(A», n st (c0, AT"1)) xf] 22, x («.^(W.+a) xJ7 22,)1 x [0, 2]
I ieN \ i>l      /J

onto

(A", n st (c0, M-1)) xf] 22, xTJ 22,1 x{0}
L lew ieN       J

U [(A", O st (c0, r-^xFTfii x (as-1iWs + s)xyiB\] x [0, 2]
L ieN \ i>l      /J

which is given by Xs=Xsx id-
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Let 7j(£) e (0, min {e/8, £/20}) be small enough that for each 5 in A and each pair,

x and y, of points in the domain of Xs'1 with dix, y)£i}(t), d(xs'Kx), Xs~1(y))

^ min {e/8,1/20}, and let S(£) e (0, S) be small enough that for each s in A and each

pair x and y, of points of Ws + [-l, l]s with ||x-v|| 5;S(£), ||as"1(-":)-as~1(>;)||

evil)- Nowletcuc: [-1, l]x{0} u {l}x [0,2]->[-l, 1 ] x {0} be a homeomorphism

which is the identity on [-1, 1 - 8(£)] x {0}, and for each s in A let

ws,< : f(A», n st (co, A/"-*)) x YJ P, x YJ P,l x {0}
L (eN leN      J

u f(A», n st (c0, M^^xYJ Bix(as-1(Ws+s)xYl ß\]x[0, 2]
L i£N \ i>l /J

-+ i(A\ n st (c0, M""1)) x n 22, x fi 22,1 x {0}
L ieN (eN      J

be ((id x id x (a,'1 x id x id x ■ • •)) x id) ° ((Pl opi, p2 cPu (Pl o p3 °p1-(fsoPl op3

°Pi(-))-s+Pi °^o(fsoPl ap3 oPl,p2),p2 op3oPl,p3 °p3oPl,...)), 0)°((idxid

x (as x id x id x ■ • • )) x id).

Let </>c: [—1, l]x [-1, 1]-^- [—1, l]x [-1, 1] be a homeomorphism which is

the identity on [-1, .1 —8(£)]x [—1, 1] and carries {l}xpj ° cot({l}x [0, 2]) onto

{l}x[—1,1]. For each s in A, let </iSiC be the uniform isomorphism of

[(A\nst(c0, M""1)^ n,6N Bt xUieN Bi] x{0}   onto   itself  given   by   &,<=((id

x(as-1xidx---)x(as-1xidx--0)xid) o ((Pl oPl, (Pl a p2 o Pl-(fs o Plo p2

°Pl(-))-S+Pl ° «Ac °(fs °Pl °P2 °Pl,/s °Pl °P3 °Pl),P2 °P20Pl,P30P2°Pl, •• •),

(Pl  °P3 °Pl-(fs°Pl  °P3 °Pl(-))-J+P2 ° 'Aï ° (/ °Pl  °P2 °Pl,/S°Pl °P3°Pl),P2

°P3 °Pi, • • •)),P2) ° ((id x (as x id x • ■ •) x (as xid x • • •)) x id).

For each 5 in A let

f,tt: f(A"s n st (c0, A/-1"1)) xf] 2J, x («."W+i) x f[ b\] x [0, 2]
L ¡eN V i>l      /.

u (st (c0, W'-^n 22, xn 22,) x{0}-* (st (c0, M'-^fT Pixfl 22,) x{0}
\ ieN ieN      / \ ieN ieN      /

be Xs~1 ° ws.t: ° Xs-  The  fl(Ç's are  supported  on mutually disjoint subsets  of

(st (c0, A/""1) x n 22, x n 22,) x {0}
\ ieN ieN      /

u (J f(A», n st (c0, A/"-1)) xf] Pi x (as-1(rVs+s)xYlBi]\ x [0, 2].
seA I ieN \ i>l      /J

(This is because cosC(x)^x implies that c<jSiÍ(x) is in [(Ans n st (c0, A/""1))

xElieN 22, x^-^H7,-!-[1-8©, 1]-J)xrii>i 22,)] x{0}, which by the choice of

8(C) is within the open («^-neighborhood of (pi °p3 opi)-1^)—because of the

scaling-down of the metric in accordance with the convention made in the proof

of Theorem 2. Also, by the choice of S(£), there is a point v of (pi ° p3 °Pi)~1(í)

within ij(0 of ojSiC(x). This gives d(xs'\y), xs_1W)^min {e/8, Ç/20}, so x,~r°<"«(*)
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is within e/4 of some point of (p, °p3 °/>i)_1(.5). This establishes that the supports

of the iSi4's are disjoint, for the distance between any point of (p, °p3 °p,)~1(s)

and any point of (p, °p3 ° Pi)~1(A\{s}) is at least e/2.) Therefore, there exists a

function

Íc : (st (»0, A/»" *) x n Bi x n b\ x {0}

u U i(Ans n st (»o, M'-^xYl BiX U~1(Ws + s)xYl b\] x [0, 2]
se A L ieN \ 1>1      /J

-> (st (»j0, a/"-1) x n 5, x n b\ x {0}
\ ieiV ISW       /

defined by the formula

icW = is,c(*)    if is.cW 7e x,

= x if is,c(x) = x for all s in A.

The uniform equicontinuity of the family {is,JSeA u {is.;_1}se>i assures that ic is a

uniform isomorphism. Observe that by the choice of 8(£) and ij(£),

¿((Pi °7>i>/>2 °Pi) ° ic(*)> (7>i °7'i>7>2 °/>i)(*)) =^ Í/20

for each x in the domain of ic.

Utilizing the functions {<ps,t}seA, 'et 0s,t=Xs_1 ° "As.c ° Xs- The supports of the

ös c's are also mutually disjoint, and there is defined a uniform isomorphism 0C of

(st (v0, Mn "J) x n¡Eiv Bt x YJieN B¡) x {0} onto itself which has the property that for

x in (st (»o, Af""1) x n¡e¡v Bt x He* Bt) x {0},

d((Pi °Pi,p2 op,) ° 0((x), (p, op„p2 °p,)(x)) ^ £/4.

(This is because if 0c(x)/x, there is an j in A for which 0c(x) = 0Stt(x) = Ys_1 ° </>s,c

o Xs(x). Since ips.c ° Xs(x)¥"Xs(x), Xsix) must be within ij(£) of some point y in the

fixed point set of xs, so d(x, Xs(x)) fk •>?(£) + £/20^£/10. Also,

d(ip, °p,,P2 °Pi)iXsix)), ipi °Pi,p2 °Pi) ° Kl ° Xsix)) ̂  ij(9 ^ £/20,

and i/ís>t o Xsix) must also lie within fj(Q of some point z of the fixed-point set of xs-

Thus, d(ips¡: o Xs(x), 0s>c(x))^£/lO. Combining the inequalities gives the result.)

Consider now, for s in A,

0IiC o £,,<([( A», n st (»0, A/«"1)) x (as"Ws+s) x]J *t)

x^-W.+iJxni,)] x[0,2]).

It is [(A», n st (»0, AT - O) x («, -1(Ws+s)xUi>i Bt) x UteN Bt)] x {0}. Furthermore,

on this set, (p2,p3) ° p, ° 0s,ç ° is,ç((x, y, z), t) = (p2,p3) °p, ° ôs?c o £s>c((x', y, z), /)

for each y, z e as~\Ws + s) x TJi>i Bi} t e [0,2], and x and x' e Ans n st iv0, M*"1).
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Thus, the function 9K o £c> defined only on (p, °p,)~x(st (v0, A/n_1)) r\yKoßop

o grfiZ2), may be extended to a function aK on yc ° ß ° p ° g¿Z2) by setting

ff£(x) = 0£ o fc(x) if/?! o/JjÍx) e st (v0, Af""1),

= ((/>i °Piix),p2 °A°^° ic((t>o,/>2 °Piix),p3 °Pi(x)),p2(x)),

p3°p,°6t° i£((i>o,/>2 °Piix),p3 ° Piix)), p2ix))), 0)

if />i °7>ito e U Ans\st (»0, A7»-1).
se.4

The desired uniform isomorphism «c is then p, ° a{ o y. o ß o /?. This establishes that

Z is a uniform flieN ^-approximation to Af, so, by Theorem 2, Z x nieiv Bt—which

is uniformly isomorphic to Z—is uniformly isomorphic to M x YIihn Bt.

To complete the proof, all that is necessary is to observe that Z is uniformly iso-

morphic to TlieN Bi. This is easy, for there is a family of uniform isomorphisms

v5: Ans-> [Ansnst(u0, Afn_1)]x[0, 1] such that vs(x)=(x, 0) for each s in

Ans n st (v0, Afn_1) and such that {vs}seA u {^s-1^ is uniformly equicontinuous.

If A is a homeomorphism of [—1, l]x{0} u {l}x [0, 1] onto [—1, 1] such that

A|[—1, l-8]=p,\[-l, 1 — 8], then the function p described by

p(x) = x   if fi oas°p,° p2(x) ^1-8,

= (p, o vs °p,(x), (a^tes °p, °P2ÍX)-fs °"s°Pl °P2ÍX)-S

+ [A ° (f, o as o Pl o p2, p2 o p, o p,)(x)] ■ S),

P2 ° P2ÍX), PS ° P2ÍX), ...))

if fi ° <*s ° Pi ° p2ix) ^ 1-8

will be a uniform isomorphism of Z onto st (v, Mn~1)xYlieN Bt. Therefore

MxYlieNBi is uniformly isomorphic to YlieN Bt, and the theorem follows by

induction.

Theorem 4. If F is a Fréchet space homeomorphic to its countably infinite Car-

tesian power and K is a metric, locally finite-dimensional, simplicial complex, then

each of the following implies that KxF is an F-manifold:

(a) F is homeomorphic to a Banach space and c(K) g wt (F) ;

(b) wt (F) is not the least upper bound of a sequence of lesser cardinals, and

c(K)^wt(F);

(c) C(st (v, K)°) < wt (F) for each v e K°.

Proof, (a) is just Theorem 3.

(b) If F is not a Banach space, then by Theorem 5.4 of [17] there is a sequence

{Ei}ieN of Banach spaces and a linear embedding T of F in fliew E, as a closed

subspace such that/>¡ o T(F) = E, for each f. It is easy to see that

wt (F) = lub {wt (Ei) | i e N},

so for some keN,-wt (Ek) = wt (F).



334 J. E. WEST [April

The Bartle-Graves Theorem [4] shows that because pk o T is a linear map of F

onto Ek, there is a homeomorphism from F to Ekxker (pk ° T). (Actually, the

statement and proof of this theorem in [4] have nothing to do with nonnormable

Fréchet spaces, but the simplified statement and proof of that part needed here

[15, (3.2"(a) => (b))] is easily verified for Fréchet spaces.) As F is by hypothesis

homeomorphic to its countably infinite Cartesian power, it is homeomorphic to

the product of some Fréchet spaces with countably infinitely many copies of Ek.

Theorem 3 shows that the product of K with countably infinitely many copies of

Ek (or F, if F is a Banach space) is a manifold modelled on the product of those

copies of Ek (or F). Thus, KxF is a manifold modelled on F.

(c) Here, one proceeds as in case (b), but considers each vertex-star of K

separately. For a vertex c of K, either Fis a Banach space with wt (F) > C(st (c, A')0),

or F is not a Banach space but is homeomorphic to the product of some Fréchet

space with a Banach space Ev of weight greater than C(st (v, K)°).

Corollary 1. If K and L are two metric, locally finite-dimensional, simplicial

complexes of the same homotopy type and E is a Banach space homeomorphic to its

countably infinite Cartesian power such that K and E andL and E each satisfy at least

one of the conditions (a), (b), and (c) of Theorem 4, then KxE is homeomorphic to

LxE.

Proof. By Theorem 4, KxE and LxE are F-manifolds of the same homotopy

type. A theorem of David Henderson [12] shows them to be homeomorphic.

The next lemma was suggested to the author by Israel Berstein and David

Henderson.

Lemma 6 (Berstein and Henderson). Every simplicial complex K with the

weak topology has the homotopy type of a metric, locally finite-dimensional simplicial

complex L such that c(L) = c(K).

Proof. If K is a simplicial complex with the weak topology which is not locally

finite-dimensional, then consider the space M=(JneN(Kr>x[n,co)). When tri-

angulated and given the weak topology, Af is a locally finite-dimensional complex.

Furthermore, the projection p : Af -> K is easily seen to be a weak homotopy

equivalence and, hence, by a theorem of J. H. C. Whitehead [21], a homotopy

equivalence. Also, it is immediate that c(M)^c(K). The proof is completed by a

theorem of Dowker [9] which says that under the metric topology, this set, called L,

has the same homotopy type as Af. Of course, if K is locally finite-dimensional,

then L may be taken to be the set K given the metric topology.

Theorem 5. If E is a Banach space homeomorphic to its countably infinite Car-

tesian power and M is a paracompact manifold modelled on E, then M is homeo-

morphic to the product of E with a metric, locally finite-dimensional simplicial

complex.
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Proof. It is sufficient to examine the case that Af is connected. Each paracompact

Banach manifold is dominated by a simplicial complex (weak topology) [16]. Also,

for any arcwise connected space, there is a simplicial complex (weak topology)

weakly homotopy-equivalent to it (namely, a triangulation of the realization of its

singular complex) [19]. Let Af be a simplicial complex dominating Af. It may be

assumed that C(N°)^wt (Af), because all that is required is the existence of two

maps f: M-+ N and g: N'-> M such that g of is homotopic to the identity, and

the smallest subcomplex of/^containing/(Af) will do. (There can then be no more

simplices of N than wt (Af ), and hence no more vertices than wt (A/).) Also let

Kx be a simplicial complex (weak topology) which has the same weak homotopy

type as M. A theorem of J. H. C. Whitehead [21] shows that Kx must be homotopy-

equivalent to Af. Now, the method used by Whitehead in the proof of Theorem 24

of [22] to establish that an arcwise connected space dominated by a countable

CW-complex has the homotopy type of a countable CW-complex immediately

shows that there is a subcomplex K2 of Kx of the homotopy type of Af which has

no more than wt (Af ) simplices. The application of Lemma 6 gives a metric, locally

finite-dimensional, simplicial complex L of the homotopy type of Af with the proper-

ty that c(L) :£wt (Af). Since Af may be embedded in E as an open subset by [12],

wt (A/)=wt (E). The proof is finished by applying Theorem 3.

Corollary 2. If E is a Banach space homeomorphic to its countably infinite

Cartesian power and M is a paracompact manifold modelled on E which has the

homotopy type of a simplicial complex K such that c(K) < wt (E), then for any infinite

cardinal X with c(K) S X Ú wt (E), there is a pair, Fj and F2, of Fréchet spaces and a

metric, locally finite-dimensional, simplicial complex L such that c(L) g c(K), LxFx

is an F^manifold, wt (Fi) = X, and M is homeomorphic to (L x F¡) x F2.

Proof. If X = wt (E), then F2 may be E, for i= 1, 2, and the proof reduces to that

of Theorem 5.

If X < wt (E), let E' be a closed, linear subspace of E with weight equal to X.

Now, consider a countably infinite set {E^isN of copies of E and in each let F,' be

a copy of E'. Let Ft = I~IieN E[ and F2 = (n,eN F,)/Fi. Then E is homeomorphic to

FixF2.

If X is not the least upper bound of a countable set of lesser cardinals, then

L x Fi is, by Theorem 4, an Fj-manifold, where L is a metric, locally finite-dimen-

sional, simplicial complex of the same homotopy type as K with c(L) S c(K). On

the other hand, if X is the least upper bound of a countable set of cardinals less

than it, then the method used in the proof of Theorem 5 shows that L may be

chosen to satisfy (c) of Theorem 4 with respect to Fx.

As L x Fi is an Fj-manifold, (L x Fx) x F2 is an F-manifold and homeomorphic

to Af by [12].

A restatement of the above is
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Corollary 2'. Let E be a Banach space, and denote by F the countably infinite

product of E with itself. If M is a paracompact manifold modelled on F with the

homotopy type of a simplicial complex K with c(K) £ wt (F), then there is a closed

submanifold N of M modelled on a closed subspace F, of F such that M is homeo-

morphic to Nx(F/F,) and wt (F,) = c(K).

Corollary 3. If E is a Banach space homeomorphic to its countably infinite

Cartesian power, then each paracompact E-manifiold M with the homotopy type of a

countable simplicial complex is homeomorphic to the product of E with a closed,

separable, Hilbert submanifold of M.

Proof. By Lemma 6, there is a metric, locally finite-dimensional, countable,

simplicial complex L such that L has the homotopy type of M, and by Theorem 4,

L x E is a manifold. Henderson's theorem [12] yields that it is homeomorphic to M.

Let F be a separable, infinite-dimensional, closed linear subspace of E. The

Bartle-Graves Theorem [4] shows that E is homeomorphic to Fx(E/F). Now, all

separable, infinite-dimensional, Fréchet spaces are homeomorphic to a Hilbert

space 77 [2], so E is homeomorphic to Hx(E/F). By Theorem 4, Lx 77 is an 77-

manifold, so M is homeomorphic to (LxH)x(E/F), and this homeomorphism

identifies L x 77 with the inverse image of (LxH)x {0}—a closed submanifold of Af.
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