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EXTENDING CONGRUENCES ON SEMIGROUPS

BY

A. R. STRALKA

Abstract. The two main results are: (1) Let 5 be a semigroup which satisfies the

relation abcd=acbd, let A be a subsemigroup of Reg S which is a band of groups and

let [<p] be a congruence on A. Then [y] can be extended to a congruence on S. (2) Let

5 be a compact topological semigroup which satisfies the relation abcd=acbd, let A

be a closed subsemigroup of Reg S and let [9p] be a closed congruence on A such that

dim Q3(/4)/^'=0. Then [?>] can be extended to a closed congruence on S.

For a semigroup S let us define Reg (S) to be the set of those elements x of S

for which there is an element y e S such that xyx = x and yxy =y. In this paper we

consider the following question : Let 5 be a (compact topological) semigroup, let

A be a (closed) subsemigroup of Reg (S) and let [9] he a (closed) congruence on A.

When can [9] he extended to a (closed) congruence on S? That is, when is there a

(closed) congruence [<J>] on S such that [i>] n A x A = [9] ? It is known (cf. [6]) that

any congruence on any sublattice of distributive lattice L can be extended to L.

In fact this property, known as the congruence extension property, serves to

characterize distributive lattices. The topological analog of this result for compact

topological lattices of finite breadth was proved in [13]. In the same paper an ex-

ample was given of a compact distributive topological lattice of infinite breadth

which does not share this property.

In [16] Wallace, in a result which he attributes to Borsuk, gives conditions under

which, given a closed congruence [9] on a closed subsemigroup A of a compact

semigroup S, [9] uASxS is a closed congruence on S. Further results of this

nature were established by Borrego in [3]. In [12] the author showed implicitly

that if 5 is a compact topological semigroup and [9] is a closed congruence on

E(S), the set of idempotents of S, such that dim 9(E(S)) = 0 then [9] can be ex-

tended to a closed congruence on S.

Our main result for nontopological semigroups is that if S is a semigroup which

satisfies the relation abcd=acbd then any congruence on any subsemigroup A of

Reg S where A is a band of groups can be extended to a congruence on S. For

topological semigroups we obtain the result that if S is a compact topological

semigroup which satisfies the relation abcd=acbd, Ais a closed subsemigroup of

Reg (S) and [9] a closed congruence on A such that dim 9(A)/Jf=0, then [9]
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can be extended to a closed congruence on S. Finally, in §6 we apply some of these

results to obtain representations of compact semigroups by 77L-semigroups. This

sort of representation was first discussed by Clark and Carruth in [4].

We should note that at many points we touch upon the concepts developed by

M. Yamada in [14] and [15].

1. Definitions and notation. We shall assume that all topological spaces are

Hausdorff. Congruences will be denoted by [cp] where <p is the canonical homo-

morphism associated with [cp]. For a semigroup S by S° we shall mean the semi-

group S if S has a zero and S u {0} if S does not have a zero. The quasi-orders

associated with the Green equivalences will be denoted in the following fashion:

x ¿y(y) if and only if Sx u {x}s Sy u {y}. < will mean strict inequality. We shall

use the same notation regarding the Green relations as [5]. For an element x of a

semigroup S we define t(x) to be E(S) n 77* if it is nonempty. Recall that a band

is an idempotent semigroup. For a compact topological semigroup S, M(S) will

denote its minimal ideal. X* will denote the topological closure of the space X.

2. Extending congruences on naturally ordered bands. On a band there is a

partial order (¿/) defined by

e ^ fi-s/)   if and only if efi = fie = e.

In [7] J. M. Howie defines a band to be naturally ordered if its multiplication is

compatible with si, i.e., if e úfi(sá) and g á h(sí), then eg -^fihLsé). It has been

noted by L. W. Anderson and R. P. Hunter in [2] that a band is naturally ordered

if and only if it satisfies the relation abca = acba. While in [14] M. Yamada proved

that a band satisfies the relation abcd=acbd if and only if it satisfies the relation

abca=acba. Bands which satisfy the relation abcd=acbdwere called normal bands

by M. Yamada and N. Kimura [8]. In this paper we shall use the term naturally

ordered band rather than normal band and reserve the term normal for use in

another context.

In this section we prove that naturally ordered bands have the congruence

extension property.

Lemma 2.1. Let S be a naturally ordered band and let A be a subsemigroup of S

which satisfies the condition

(*) if se S then there is aeA such that asa = a.

If a relation [8] is defined on S as follows:

(x, y) e [8]   if and only if there is ae A such that xax = y ay

then [8] is a congruence on S such that 8(A) is the maximal rectangular bandhomo-

morphic image of A.
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Proof. It is readily apparent that [6] is reflexive and symmetric. Suppose that

(x, y), (y, z) e [6]. There are a, be A such that xax=yay and yby=zbz. Then

xabx = (xax)b(xax) = (yay)b(yay)

= (yby)a(yby) = (zbz)a(zbz) = zabz.

Hence [6] is an equivalence relation on S. That [6] is compatible follows from the

fact that if (x, y) e [6] with xax=yay for some ae A then for re S,

(rx)a(rx) = r(xax)r(xax) = r(yay)r(yay) = (ry)a(ry).

Thus [6] is a congruence on S.

Let x, ye 6(S). Choose x e 6~x(x) and y e 6~\y). By (*) there is a e A such that

aya=a. Then xax=xayax=(xyx)a(xyx). Thus

x = 6(x) = 6(xyx) = xyx.

Hence 6(S) is a rectangular band. Now suppose that [p] is a congruence on A such

that p(A) is a rectangular band. Let (x, y) e [6] n A x A. There is ae A such that

xax=>'a>'. Then since p(A) is a rectangular band we must have

p(x) = p(x)p(a)p(x) = p(xax) = p(yay) = MjOKaMjO = p(y).

Hence [0] n,4x,4£[jo].

The next lemma is well known.

Lemma 2.2. Let S be a rectangular band and let A be a subsemigroup of S. Then

every congruence on A can be extended to S.

We now show that naturally ordered bands have the congruence extension

property. In fact, we prove a somewhat stronger result.

Theorem 2.1. Let S be a naturally ordered band, let A be a subsemigroup of S

and let [i/>] be a congruence on A. Then [</>] can be extended to a congruence [*F] on S

which has the property that given ae A and xe S with x¥(a) = x¥(x) there is be A

such that x¥(b)=x¥(x) and bxb=b.

Proof. Let {Da ; a e D} be the collection of ^-classes of ^(A). From each Da

select an element ba to form a set B = {ba; a e il}. Since </j(A) is a naturally ordered

band for each ae Q. the map x-*■ xbax is a homomorphism of i/t(^) onto

¡l>(A)bai¡i(Á). Then since Na=<li(A)ba^(A)\Da is an ideal of 4>(A)bai/i(A), the Rees-

quotient i/i(A)baifi(A)/Na can be formed. Let <fja he the natural homomorphism of

<I>(A) onto ifi(A)ba>p(A)INa. Note that >/ia(i/j(A)) is isomorphic with either Da or D°.

Also the collection of congruences {[ipa] ; a e T} separates points of >/>(A). This

implies that [c4] = f) {['l'a ° <l>] ; « g T}.

Next, for «gQ we define the sets Wa=(>jiao^)-1(Dc), Xa={seS; if we Wa

then wsw^w} and Sa=S\Xa. Let a e Í1 be fixed. It will entail no loss of generality

to assume that Wa + 0. We claim that Xa is a prime ideal of S. Let x e Xa and let
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seS. If there is we Wa such that w = wsxw then because S is naturally ordered

w=wsxw=(wsw)(wxw). Because S is a band this implies that wsw = w = wxw. But

this contradicts our assumption that x e Xa. Now suppose that s, t e S\Xa. There

are w, w' e Wa such that wsw=w and wtw' = w'. Then, since Wa is a semigroup

ww' e Wa and because S is naturally ordered,

ww'stww' = (wsw)(w'tw') = ww'.

Thus Xa is a prime ideal of S. As a consequence of this fact Sa is a naturally ordered

band. On Sa we define a relation [6a] by

(x, v) e [8a]   if and only if there is w e Wa such that xwx = ywy.

Then because as a subsemigroup of Stt, Wa satisfies the condition (*) of Lemma

2.1, [8a] is a congruence on Sa such that 8a(Sa) is a rectangular band and 8a(Wa)

is the maximal rectangular band homomorphic image of Wa. From the last named

property of 8a it follows that there must be a homomorphism ya mapping 8a( Wa)

onto 4>a ° "A(IFa). 8a(Sa) is a rectangular band so from Lemma 2.2 [ya] can be ex-

tended to a congruence [ra] on 8a(Sa). We summarize with the following com-

mutative diagram

sa <—-wa-> 4>(\va)

ea(sa) <— oa(wa) -^U 4>«°<l>iwa)

ra o 8a(sa)

where in each case / is the appropriate inclusion map. Next, we extend [ro o 8a]

from Sa to S. If Xa = 0 then Sa = S and we define rFJ = [ra o 8a]. However, if

Xa7=0 we define

[^«1 = [raoöa]u(jraxza).

Obviously, in either case \/¥a] is a congruence on S and ^„(S) is a rectangular

band in the first case and a rectangular band with zero appended in the second

case. We then define [Y] = f\ {[*Fa];aeü.}. Y¥] is a congruence on S1 and clearly

[Y] is an extension of [tfi].

Now let a e A and x e S with (a, x) e [Y]. Choose a e Q so that i/i(ä) e Da. Then

it follows that (a, x) e PFJ. Wa satisfies condition (*) of Lemma 2.1 as a subsemi-

group of Sa so there is w' e Wa such that w'xw' = w'. Let w=aw'a. Then weWa

and waw = w = wxw. Since w e Wa we have \\>(w)bacb(w) e Da. This implies that

tj>iw) = </jiw)ijjiá)i/jiw)e Da. Because w = awa it then follows that i/i(H>) = ^(a). This

completes our proof.
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3. Extending congruences on bands of groups. Let S be a band of groups such

that £"(5") is a subsemigroup of S. The map t: S->■ E(S) defined by t(x)

= Hx n E(S) is a homomorphism. A fortiori every congruence on E(S) can be

extended to S. However, it will be useful to determine for any given congruence on

E(S) its minimal extension to S. This will be particularly useful in §4. The con-

gruence [<J>] on S is said to be the minimal extension of the congruence [9] on

E(S) if given any congruence [©] on 5 such that [©] is an extension of [9] then

[0]s[e].

Theorem 3.1. Let S be a band of groups such that E(S) is a subsemigroup of S

and let [9] be a congruence on E(S). For xe S define o(x) = 9~1(9(t(x))). Then the

relation [O] defined on S by

(x, y) e [<D]    if and only if a(x)xa(x) n a(y)ya(y) ^ 0

is the minimal extension of[9] to S. Moreover, if ee E(S) has the property

(**) iffeE(S)and9(e) = 9(f)   then efe = e,

then <£ restricted to He is an isomorphism. Also if S is a compact topological semi-

group and [<p] is a closed congruence on EiS) then [O] is a closed congruence on S.

Before we prove our theorem it is necessary to establish the following lemma.

It is assumed that we are operating under the hypotheses as stated above.

Lemma 3.1. (1) If ab e He and e e EiS) then ab=eaebe.

(2) If e,fe aix) and g=r(ex/) then g e a{x) and gxg=exf

(3) If(x,y)e[<S>]theno(x) = o(y).

(4) If efxefe Def then efxef=efexef=efxfef

Proof. (1) If ab e He then ab = eabe. Then, since ea e Re and be e Le, we have

ab = (ea)(be) = (ea)T(ea)r(be)(be) = eaebe.

(2) Since t is a homomorphism of S onto E (S) g = r(exf) = H^M^M/) = erix)f

Since e,f, t(x:) e oix) and aix) is a semigroup g e aix). Then from (1)

exf = giexf)g = igeg)xigfg) = gxg.

(3) From (2) there is g e aix) n aiy) such that gxg=gyg. Then we have aix)

=<p~1(<p(g))=°(y)-

(4) Let 6 he the natural homomorphism of S onto S12. Then since S¡2 is

abelian and efxefe Def,

6iefxef) = 6ief) = 6iefexef) = 0(efxfef).

From (1) above we obtain

efexef = iefe)ief)ixef) = efxef = iefx)ief)ifef) = efxfefi

This completes the proof of our lemma.
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Proof of Theorem 3.1. It is apparent that [$] is a reflexive and symmetric

relation on S. Suppose that (x, y), iy, z) e [<S?]. From Lemma 3.1 it follows that

oix) = oiy) = oiz). Lemma 3.1 also yields the fact that there are e,fe <r(x) such that

exe=eye and fyf=fizf. Then efxefi efiyefi efzefie Hef and by part (4) of Lemma 3.1

efxefi = efiexefi = efieyef

= efiyefi = efyfiefi
= efizfief = efzefi.

Hence, (x, z) e [O] and [O] is an equivalence relation on 5".

Now let (x, y) e [<t>] and let r e S. There is g e <r(x) = (r(y) such that gxg=gyg.

Then it is the case that TÍrg)rxTÍrg), rirg)ryTÍrg) e 77I(rg). Using the facts that t is a

homomorphism and part (4) of Lemma 3.1 we obtain

rirg)rxrirg) = T(rg)/-r(r)gXTÍ/g) = T(rg)rT(r)gxgr(rg)

= TÍrg)rTÍr)gygrirg) = r(rg )ryr(rg).

Then since (r(/)<7(x)£cr(/-x) we conclude that (rx, ry) e [O], Thus it will follow that

[<I>] is a congruence on S.

Suppose that [Y] is any extension of [tp] to S. Let (x, y) e [<£>]. From part (2) of

Lemma 3.1 there is g e EiS) such that gxg=gyg and <pGf) = <p(T(x))=<p(T(y)). Since

[Y] is also an extension of [tp] it follows that (t(x)xt(x), gxg), (t(v)jt(v), gyg)

e [Y]. By transitivity we have (x,y)e [Y]. Therefore [3>]c[Y]. Thus [CD] is the

minimal extension of [tp] to S.

Now suppose that e is a member of EiS) which satisfies the condition (**) above.

Let (x, y) e He and suppose that (x, y) e [3>]. There is g e eT(x) = c(y) such that

gxg=gyg. Since e satisfies (**) ege-=e and gyg e De. Then by parts (1) and (4) of

Lemma 3.1. we obtain

x = exe = egexege = egxge = egyge = egeyege = eye = y.

Thus G> restricted to He is an isomorphism.

Suppose that 5 is a compact topological semigroup and [<p] is a closed congruence

on EiS). Then risa continuous homomorphism on S. Let {(xa, ya) ; a e Y} be a

net in [$] converging to (x0, y0)- Then for each a e Y there is ga e ofxj = aiya)

such that gaxaga=gayaga. There is a subnet {(xa, ya); a e T"} of {(xa, ya); a e Y}

which converges to (x0, y0) such that the net {ga;ae Y'} converges to some point g.

Since EiS) is closed g e EiS). Since t is continuous {r(xa) ; a e T} must converge

to t(x0) and since tp is continuous it follows that g=tpix0). Then by continuity of

multiplication we have gx0g=gy0g. Therefore (x0, y0) e [d>]. Hence [d>] is a closed

congruence.

4. Extending congruences on semigroups which satisfy the relation abcd=acbd.

For a semigroup S recall that Reg (5)={x e S; there is y e S such that xyx=x

and yxy=y}. In [14] Yamada defines a semigroup to be AMnversive if it is regular

and satisfies the relation abcd=acbd. He then proved that such a semigroup must
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be a band of groups whose set of idempotents is a naturally ordered band. If S is a

semigroup which satisfies the relation abcd=acbd then it is easily proved that

Reg (S) is a subsemigroup of S such that EiS) = 2T(Reg (5)). Since Reg (S) must

also satisfy the relation abcd= acbd it must be an TV-inversive semigroup.

Lemma 4.1. Let S be a semigroup which satisfies the relation abcd=acbd. Then

there is a homomorphism üofS into an N-inversive semigroup such that Q. restricted

to Reg (S) is an isomorphism.

Proof. We first prove two preliminary facts. For e e EiS) we define

TVie)={x e S ; exe < ei®)}.   Then

(i) If e e E{S) then Nie) is a prime ideal of S.

Suppose that e e EiS), x e Nie), re S and rx £ Nie). Then erxe e He. Since He

is a group there is h e He such that hierxe) = (hr)(xe) = e. This implies that hr e Re and

xeeLe. From Theorem 2.17 of [5] we have EiS) r\Lhr n Rxe^0. Let/be the

idempotent of Lhr n Rxe. Then ixe)ihr)=xhr e 77,. Since 77, is a group there is

ge Hf such that ixhr)g=f Then

ixe)ihrg)ixe) = ixhrg)ixe) = fxe = xe.

Thus xe e Reg (5). As noted above Reg (5) is a band of groups so EiS) n Hxe j= 0.

This implies that exe e He contrary to our assumption that x e Nie). Therefore

Nie) is an ideal of S.

Let x, y e S\Nie). exe, eye e He, He is a group and S satisfies the relation abed

= acbd so it follows that exye=iexe)ieye) e He. Hence Nie) is a prime ideal of S.

(ii) If e e EiS) then Je = De.

Recall that Je is the set of those elements of S which generate the same principal

ideal as e. Let jc eJe. Since e e EiS) we may assume that x=set for some s, t e S.

From (i) above x $ Nie) so exe e He. This implies that ese, ete e He. Hence se e Le.

Then we have (e, se) e Hf and ise, set) e M. Thus (e, x) e 2, i.e. Je = De. Thus (ii)

is proved.

Let e e EiS). Since EiS) n De is a semigroup the map t restricted to De is a

homomorphism of De onto De n EiS). We define a map we : S -*■ D% by

(*>eix) = rixex)xTÍxex)   if x e S\Nie),

= 0 ifxeN(e).

Clearly, we is the identity map when restricted to De. As a consequence De is

contained in the range of we. For x, y e S\N(e) we have

<»e(.xy) = T(xyexy)xyT(xyexy)

= T(xexyey)xyr(xexyey) = T(xex)T(yey)xyT(xex)T(yey)

= (T(xex)xT(xex))(r(yey)yT(yey)) = «>e(x)<oe(y).

Then since N(e) is a prime ideal of S it follows that me is a homomorphism of S

into 2)^. Form a subset T7 of E(S) by selecting one and only one idempotent from
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each regular ^-class of S. Then £2: S ^- J~[ {D°,fe F) defined by £2(s)e = cue(j) is a

homomorphism of S into the AMnversive semigroup T\ <A{^/ ',fie F}- It then follows

easily that Í2 restricted to Reg (S) is an isomorphism.

Lemma 4.2. Let S be an N-inversive semigroup; let tp be a homomorphism of S

onto the semigroup T such that tp restricted to EiS) is an isomorphism ; and let

K=tp-\EiT)). Then the relation [Ç] defined by

ix,y)e [f ]   if and only if KxK = KyK

is a congruence on S and [tp] = [£] n Jf.

Proof. Clearly, [f] is an equivalence relation on S. Let is, t) e [(]; let reS; and

let ¿!, ¿2 e K. Then there are ¿3, ¿4 e K such that k,sk2=k3tká. K is a band of

groups so t(¿x) exists. Hence

¿^¿2 = TÍk,)k,rsk2 = TÍk,)rk,sk2

= r(¿1)r¿3í¿4 = T(¿1)¿3r/¿4.

Hence KrsKçKrtK. It then follows by symmetry that [f] is a congruence on S.

Then because J? is a congruence so is JP n [£].

Let (x, y) e [<p]. Since 9 restricted to EiS) is an isomorphism we have (x, y) e J^

Let e=T(x) = r(y). tp restricted to 77e is a group homomorphism so there are

¿, ¿' e 9»-1(9>(0) such that y=kx and x=¿'y. Hence

KyK=KkxK £ TCxTC = Kk'yK £ TCyTC.

Thus (x, y) e [fl. Therefore [y]ç JT n [fl.

Now let (x, y)eJf r\ [£]. There are k, k' e K such that y = ¿x¿'. Let/= t(ç<x))

= T(<p(y)). Then

9>( v) = fipiy)f = f?ikxk')f = fipik)tpix)tpik')f
= ifi<ák)f)<PÍx)iftpik')f) =fiPix)f=tPix).

Theorem 4.1. Let S be a semigroup which satisfies the relation abcd=acbd and

let A be a subsemigroup of Reg (5) such that A is a band of groups. Then every

congruence on A can be extended to S.

Proof. As a consequence of Lemma 4.1 we may assume that S is an TV-inversive

semigroup. Let [p] be any congruence on A and let [>/)] = [p] n (7?(yl) x EiA)).

From Theorem 3.1 there is a minimal congruence on A which is an extension of [</>].

Denote this congruence by [Y]. Let [£] be the extension of [</>] to Ti(.S') obtained in

the same manner as that used in the proof of Theorem 2.1. From Theorem 3.1,

[£] can be extended to a congruence [Z] on S. We claim that [Z] n iA x^4) = [Y].

Let (x, y ) e [Z] n iA x A). Then a(x)xa(x) n a(y)ya(y ) ± 0 where a(x)={" HEM*)))-

From Lemma 3.1 a(x) = <r(y) and there are e,/e<r(x) such that exe=fyf. Then

from Theorem 2.1 there is g e £ iA) n tr(x) such that exe =fyf. Then from Theorem
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2.1 there is g e E(A) n a(x) such that geg=gfg=g. With this fact we obtain

gxg = (geg)x(geg) = gexeg = gfyfg = (gfg)y(gfg) = gyg.

Therefore (x, y) e [T] and [Z] n (A x A)ç [Y]. Obviously, [¥]<= [Z] n (^ x A) so

we have [Z]n 04 x/!) = [¥].

PF] is the minimal extension of [<fi] to A so it must be the case that [Z]n(AxA)

S [p]. Let <p be the canonical homomorphism from Z(A) onto p(A). Note that 9 is

an isomorphism of E(Z(A)) onto 2?(pC4)). Let 2v = ç>_1(2s(p04))). From Lemma 4.2

we know that [9] = [C]c\3fc° where [f] is defined on A by

(x, y) e [f ]   if and only if   /Cc/C = KyK for xje/

The same proof as that used in Lemma 4.2 shows that the relation [E] defined on S

by

(x, y) e [E]   if and only if KxK = KyK for x, y e S

is a congruence on S and obviously [E] is an extension of [£] to S. It then follows

immediately that [E] n Jf is an extension of [p] to S1.

5. Extending congruences on compact semigroups. We begin by giving two

examples which show that results directly analogous to Theorem 2.1 and Theorem

4.1 are not possible for compact topological semigroups. Our first example also

appears in [13].

Example 5.1. Let 2 denote the semigroup {0, 1} where 0 is a zero and 1 is the

identity element. Let X be the Cartesian product of a countable collection of

copies of 2 endowed with the Cartesian product topology and coordinatewise

operations. X is then a compact zero-dimensional topological semilattice. It can

easily be shown that X contains a closed subsemigroup S which is a chain (i.e.,

for s, t e S, st e {s, t}) homeomorphic with the Cantor set. Let $ be the usual

dimension-raising homomorphism of S onto I. It was proved in [13] that X does

not have any dimension-raising homeomorphisms. Hence it follows that [if>] cannot

be extended to a closed congruence on X.

Example 5.2. In E2 we define 2)1={(l/2, 1)}. Then after having defined Dkfor

all those positive integers A: such that l^k^i we define A+i={(*± 1/3', l/(i+l));

(x, I//) g D,}. Let S=(\J?=i A)* and let 2)0O = S'\Ur=i A- Note that 2)œ is the

usual Cantor ternary set on the closed interval from (0, 0) to (1, 0). For oo^m^n

^ 1 we define a map 77mn : 2)m ->• A by letting rrmn(x) be that point of A which is

nearest to x. We shall now use this collection of maps to define a multiplication on

S. Let x, y e S. There are m,neZ+ U {oo} such that xe Dm and y e D„. Let

fc = min {m, «}. Then xy is defined to be Ttnk(y). It follows that S with this multi-

plication becomes a compact, naturally ordered topological band such that the

^-classes of S are the A's defined above and S=SDœS=DxSDa.

Now let i/> be the usual dimension-raising map of 2)œ onto [(0, 0), (1, 0)]. Since

Dm is right singular [</r] is a closed congruence on Dx. Suppose that [T] is a
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closed congruence on S which is an extension of Up]. It follows that if x, y e D¡ for

ij^oo then (x, y)e [Y]. But this would imply that YY] = S¡. Hence U/j] cannot be

extended to S.

Let 4 denote the four element rectangular band which is neither left singular nor

right singular. As a consequence of Theorem 1 of [11] and its own natural order

it follows that if 5 is a compact zero-dimensional naturally-ordered band then the

collection of continuous homomorphisms of S into 4°, Horn (5, 4°), separates

points.

In light of Examples 5.1 and 5.2 it is not unnatural that in the following theorem

we include a condition which precludes the possibility of attempting to extend a

dimension-raising homomorphism.

Theorem 5.1. Let S be a compact topological semigroup which satisfies the relation

abed=acbd and let A be a closed subsemigroup of Reg S. IfiU/>] is a closed congruence

on A such that dim </r(y4)/jf=0 then [>/>] can be extended to a closed congruence on S.

Proof. As noted in §4, Reg S is a band of groups. Then because A is a closed

subsemigroup of Reg S it must also be a band of groups.

Let [tp] denote the restriction of [>/>] to EiA). cpiEiA)) is isomorphic with tbiA)/^

and dim (</-(^)/^T) = 0 so dim tpiEiA))=0. Then as noted above Horn (<p(7iGO), 4°)

separates points. Hence there is a family {tpa;ae Y}s Horn (TíiA), 4°) such that

[tp] = H {[cpa] ; a e Y). We may assume that for all a e Y, tp; 1i4) j= 0. Then since

EiA) is compact we choose for each a e Y an element ea of Mi<p¿ \4)). Note that

Mfa H4))s7)ea. We define

Eau = {e £ M(<p-H4)); tpjfi) = tpaiea)},

Eai2 = {ee Af(<p-H4)); ?>a(0 = <paieae) ¿ <paiea)},

Ea2, = {ee Mi<pai4)); tpaie) = <pa(eea) ^ <pa(ea)}.

Then we define Na to be the closed ideal of S generated by ieaSEa„ n eaSEal2)

u iEa„Sea n Ea2,Sea) u ¡/>äH0). It is easily seen that Na does not meet Dea. On

eaS we define a relation [Aa] as follows

(x,y) e [Aa] ox = y,   or

o x, y e Na n eaS,   or

o there are ie{l, 2} and e,fe Eall n eaS such that xe=y and y/=x.

We claim that [AJ is a closed congruence on eaS. It is apparent that [Xa] is both

reflexive and symmetric. Suppose that (x, y), (y, z) e [A„]. There are i,/e{l,2}

with e,feEal¡ and g,heEa„ such that xe=y, yf=x, yg=z and zh=y. If i^j

then ye=y=yh. Thus y e eaSEa„ n eaSE,2. This implies that x,y,ze Na. Hence

(x, z)e[AJ. If i=j then /, g e Eali with xg=xeg=z and zfi=zhf=x. Therefore

(x, z) e [A„] so [A„] must be an equivalence relation on eaS. Now let (x, y) e [Aa]

and let r e eaS. There is i e {1, 2} and e,fie Eali such that xe=y and yf=x. Ob-

viously rxe = ry and ryf=rx. Since r e eaS=eS we have r=er. Hence xr=xer=yr.
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Thus [Aa] is a congruence on eaS. Let {(xy, yy) ; y e V} he a net in [Xa] converging to

(x, y). Then because the range of 9a is finite {(xy, yy) ; y e V} has a subnet

{(xy,yy);yeY'} which converges to (x, y) such that for each yeV there is

ey,fy e Eali (i fixed) such that xyey=yy and yyfy = xy and the nets {ey;ye F'} and

{/; y e T'} converge to e and/respectively. Since Eali is closed e,fe Eall. Then by

the continuity of multiplication xe=y and yf=x. Hence [Xa] is a closed congruence

on eaS. By the same reasoning as above it will follow that the relation [pa] defined

on Sea by

(x, y) e [Pa] o x = y,   or

o x,yeNar\ Sea,   or

o there are / e (1, 2} and e,fe Eail n Sea such that ex=y and fy=x

is a closed congruence on Sea. Since S satisfies the relation abcd=acbd the maps

x ->■ eax and x -*■ xea are continuous homomorphisms of S onto t^S and Sea

respectively. Hence the relation [Oa] defined by

(x, y) e [4>a]   if and only if (eax, eay) e [Xa] and (xea, yea) e [Pa]

is a closed congruence on S. Moreover, it is easily seen that [<Pa] is an extension of

[<P«l
Let [$] = n {[$«]; « e r}- Then [<t>] is a closed congruence on S which is an

extension of [9]. We claim that [O] n ^ x Aç [i/i]. Let (x, j>) e [<£] n (/I x A). Then

0>(t(x)) = O(t(j0). Let eÊ/l/icp-HvWjc)))). There is a net {ea;«Er} (the ea's

are the idempotents associated with the homomorphisms 9a as above) which

converges to some point fe E(A) n De such that for each aeT, ea¿e(2). Since

(x, y) e [<P], (x, y) e [3>a] for all aeT. This implies that for each aeT there is

gae M(9¿\4)) such that eaxga = eay. After choosing appropriate subnets and

then passing to the limit we obtain ge De such that fxg=fy. Then exe = e(fxg)e

= e(fy)e = eye. Hence

ftx) = Í(t(x)xt(x)) = ^(t(x))^(x)^(t(x))

= i/>(e)^(x)i/j(e) = i/i(exe) = </<(eye) = >/>(y).

Therefore [<P] n A x A A[0].

Now, let y be the canonical homomorphism of $>(A) onto </r(^() and let

K=y~ 1(tlt(E(A))). Kisa closed subsemigroup of <I>(S). As a consequence of Lemma

4.2, the relation [r¡] defined on <&(S) by

(x, y) e [tj]   if and only if KxK = KyK and (x, y)eJ^

is a congruence on 0(5). It is then easily seen that [t¡] is closed. It will then follow

that [r¡ o O] is the desired congruence.

For zero-dimensional semigroups we are able to prove a stronger result. Virtually

the same proof which is used in Theorem 1.4 of [12] can be used for
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Theorem 5.2. Let S be a compact zero-dimensional topological semigroup which

satisfies the relation abcd=acbd. Then EiS) and Reg (S) are homomorphic retracts

ofS.

6. 77L-semigroups. In [4] Clark and Carruth introduced the class of 77L-

semigroups. An 777,-semigroup is a compact topological semigroup such that the

Schiitzenberger group of each of its Jif-classes is a Lie group. From [1] it follows

that this property is equivalent to requiring that all maximal subgroups be Lie

groups. Further work on 777_.-semigroups was done by Mislove in [10]. In this

section we present several results which are complementary to those appearing in

[4] and [10].

Let S be a compact topological semigroup. J?&(S) is the collection of closed

congruences on S such that if [93] e Jf ^C(S) then tpiS) is an 77L-semigroup. The

general aim here as it had been in [4] and [10] is to determine classes JT of compact

semigroups such that if S e Jf then J^SC(S) separates points of S.

A normal semigroup is a semigroup having the property that xS=Sx for all

x e S. Recall that for such semigroups 2 reduces to ¿? which is a congruence.

Lemma 6.1. Let S be a semigroup which is a band of groups such that EiS) is a

subsemigroup of S. Then the relation [q] defined on S by

ix,y)e [v]    if and only if EiS)xEiS) = E(S)yE(S)

is a congruence on S such that -q(S) is the maximal normal semigroup homomorphic

image of S and r¡ restricted to any Jf-class of S is an isomorphism. If in addition S

is a compact topological semigroup then [r¡] is a closed congruence.

Proof. It is readily apparent that [17] is an equivalence relation on S and if S is a

compact semigroup then [17] is closed. Also note that part (1) and the second half

of part (2) of Lemma 3.1 will hold for 5. Thus we have (x, y) e [q] if and only if

i-(x)yT(x) = x and T(y)xi-(y)=y. From this it follows that r¡ restricted to any

2?-class of S is an isomorphism.

Now suppose that (x, y) e [r¡] and r e S. Let g= r(rx). Then

rx = grxg = grr(x)yr(x)g = grgr(x)gygr(x)g = grgyg = gryg.

This fact will lead to the conclusion that [77] is a congruence on 5. To see that -qiS)

is the maximal normal homomorphic image of S note that for e e EiS), r¡iDe) is

isomorphic with -q(He).

Corollary. Let S be a semigroup which is a band of groups such that EiS) is a

subsemigroup of S. Then Jíf n [77] = A. Moreover, if [p] is any congruence on S then

[P] = ([p] v Jf) n i[P] v M).

Proof. Let (x, y) e [77] n Jf. S is a band of groups. Hence there is an idempotent

e e Hx = Hy. Since (x, y) e [77] there are/, g e EiS) such that y=fxg. Then

y = eye = e(fxg)e = e(f(exe)g)e = (efe)x(ege) = exe = x.
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Thus Jf n[r¡] = A.

It is easily seen that if [p] is any congruence on S then (x, y) e [p] v JP if and only

if p(x) and p(y) are in the same ¿F-class of p(S), and (x, y) e [p] v [77] if and only if

E(p(S))p(x)E(p(S)) = E(p(S))P(y)E(p(S)). It then follows that [P] = ([P] V^f)

n ([p] v [77]).

Let 7denote the closed real interval with multiplication defined by xy = min {x, y}.

For a topological semigroup S let ^(5, 7) be the set of closed congruences [<p] on S

such that tp(S) can be topologically and algebraically imbedded in 7.

Theorem 6.1. Let S be a compact topological semigroup such that

(1) S is a band of groups,

(2) E(S) is a subsemigroup of S,

(3) ^(S/S), I) separates points.

Then Jf&(S) separates points.

Proof. Let x and y be any pair of points of 5. Since Sisa band of groups Jf is a

closed congruence on S. Each subgroup of S/3tf is degenerate so S/Jf is an 77L-

semigroup. Hence Jf e Jf¿f(S). Then if (x, y) £ $C x and y would be separated

by ^ Thus we may assume that (x, y) e ¿f. This being the case 77(x)^77(y) where

[77] is the minimal normal semigroup congruence on S as defined in Lemma 6.1.

Thus we may assume that 5 is normal. This implies that the map of S onto xS

defined by s -> t(x)s is a continuous homomorphism. Thus we may assume that S

has an identity element 1 and 1 = t(x). Since H, is a group y has an inverse with

respect to 1, call it y-1. Let z = xy'x. We will show that z and 1 can be separated

by a member of J^^C(S). Then since this congruence restricted to 77! will be a

group congruence x and y will be separated by a member of 3tPJ£(S).

We consider two cases.

Case (i). Suppose that 1 is an isolated point in E(S). Then S\H, is a closed

ideal of S. H, is a compact topological group so there is a closed normal subgroup

K of 77x such that z <£ K and H,/K is a Lie group. Since 5 is a normal semigroup the

congruence on Hx induced by K can be extended to a congruence [p] on S by

defining

(s, t) e [fi]   if and only if sK = tK.

Let I be the natural map of S onto the Rees-quotient p(S)/p((E(S)\{l})S). 1,(1) is

the only nonzero idempotent of {(S) and £(77x) is a Lie group. Hence l(S) must be

an 77L-semigroup and [t,°p]e3tf'y. £ o 7¿(z)^£ o ¿¿(1) so [£ °/x] is the desired

congruence.

Case (ii). Suppose that 1 is not isolated in E(S). S is normal so S¡2 is iseo-

morphic with E(S). Then since ^(S/2,1) separates points, ^(T^S), 7) separates

points. This implies that there is a net {ea; a e Y} of members of £(5)^1} which

converges to 1 such that for each a e Y there is a homomorphism 7ra of E(S) onto

a compact chain Ea having ea as the zero of n^\na(l)). For s e S we define £a(s)
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to be the zero of 77~1(7rit(T(j))). Since S is a normal semigroup which is a union of

groups by Theorem 3.1 [tTa] can be extended to a closed congruence [ya] on S.

Because S is compact and normal [ya] may be defined by

(s, t) e [ya]   if and only if £a(s)s = £tt(t)t.

If e = £a(e) then e satisfies condition (**) of Theorem 3.1. Hence ya restricted to He

is an isomorphism. Moreover, E(ya(S)) is isomorphic with Ea. Since the net

{ea; aeT} converges to 1 there is an a e T such that eazj^ea. Thus ya(T)+ya(z)-

If y ail) is isolated in EiyaiS)) then by Case (i) there is a homomorphism of yaiS)

onto an 77L-semigroup which separates ya(l) and ya(z). The composition of this

homomorphism with ya then gives rise to the desired congruence. Thus we may

assume that ya(l) is not isolated in E(ya(S)). This implies that there is

e e EiyaiS))\{yail)} such that eya(z)^e. Since He is a compact topological group

it has a closed normal subgroup Ke such that eya(z) $ Ke and HJKe is a Lie group.

Let p denote the canonical homomorphism of He onto He/Ke. On yaiS) we define

a relation [P] by

is, t) e [P] os, t eeyaiS),   or

o eset e He, pies) = piet),   and

o(s,t)e&

Since the map s-> es is a homomorphism [P] will be a closed congruence on yaiS).

If/äe it follows that pieHf) is a Lie group. This implies that PiyaiS)) is an 77L-

semigroup. Also P ° ya(z)=£P ° ya(l). Thus P ° ya is the desired homomorphism.

¿C is a congruence on semigroups which satisfy the hypotheses of Theorem 6.1

and #Ff£ is closed with respect to finite intersections so it follows that such semi-

groups have enough ^f-classes separating homomorphisms onto 77L-semigroups

to separate points.

Theorem 6.2. Let S be a compact topological semigroup such that

(1) HiS) is contained in the center of S.

(2) #(£(5), I) separates points.

Then 3tf3?(S) separates points in S.

Proof. If x e S and 77* is nondegenerate then since S is compact there is a

unique minimal idempotent w(x) = e such that Hx = xHe (Lemma 3, [1]). Hence if

x e S\EiS)S then 77* is degenerate. Then since EiS)S is a closed ideal and 7/(5)

is contained in the center of S it follows that #F n (£(5)5 x £(5)5) is a congruence

on EiS)S. Let x,ye £(5)5 with (x,y) e JC and let reS. Then there is g e Haix)

such that gx=y. Thus

Sry = Srgx = Sgrx = Sœ(x)rx = Srio(x)x = Srx.

From [16] it follows that Jf is a congruence on 5.
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Now suppose that x and y are distinct elements of S. If (x, y)^^f then

3tf e J'if^C(S) and JP separates x and y. So we may assume that (x, y) e 3tP. Then

x, y e E(S)S. Choose g e Hm(x) so that gx=y. From Theorem 6.1 there is [p]

eJiTä'(H(S)) such that p(a>(x))¿P(g). Let K=p-1(P(E(S))). We define a relation

[8] on S by

(x, y) e [S]   if and only if xK = yK or x = y.

Then [8] n 77(5) x H(S)=Jf n [?]. Thus [S] n 77(S) x 77(5) e tf&(H(S)) and

[8] e Jt^(S). Moreover 8(x)^8(y). So [8] is the desired congruence.
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