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THE GLIDING HUMPS TECHNIQUE FOR FK-SPACES

BY

G. BENNETT

Abstract. The gliding humps technique has been used by various authors to

establish the existence of bounded divergent sequences in certain summability

domains. The purpose of this paper is to extend these results and to obtain analogous

ones for sequence spaces other than c and m. This serves to unify and improve many

known results and to obtain several new ones—applications include extensions to

theorems of Dawson, Lorentz-Zeller, Snyder-Wilansky and Yurimyae. Improving

another result of Wilansky allows us to consider countable collections of sequence

spaces—applications including the proof of a conjecture of Hill and Sledd and

extensions to theorems of Berg and Brudno. A related result of Petersen is also

considered and a simple proof using the Baire category theorem is given.

1. Introduction. Using the gliding humps technique, Wilansky and Zeller [19]

have shown that if a convergence domain cA (defined below) contains c as a non-

closed subspace, then cA contains a bounded divergent sequence. This result was

extended by Meyer-König and Zeller in [13] and [14], where cA was replaced by an

arbitrary FTC-space. The main result of this paper is Theorem 1 which leads to

analogous results for sequence spaces other than c and m. Applications include

extensions to theorems of Agnew [1], Dawson [7], Lorentz and Zeller [11], Snyder

and Wilansky [17], and Yurimyae [20]. In §4 a result of Wilansky is improved and

this allows us to consider countable collections of sequence spaces. Applications

include the proof of a conjecture of Hill and Sledd [8] and extensions to theorems

of Berg [5] and Brudno [6]. In the final section a related result of Petersen [15] is

considered and a simple proof using the Baire category theorem is given.

2. Notation, w denotes the space of all complex-valued sequences and any

vector subspace E of co is a sequence space. A sequence space E with a complete,

metrizable, locally convex topology t is called an FK-space if the inclusion map

(E, t) -> cu is continuous when to is endowed with the topology of coordinatewise

convergence. An FTC-space whose topology is normable is called a BK-space. The

following well-known 7?7C-spaces will be important in the sequel:

m, the space of all bounded sequences ;

c, the space of all convergent sequences ;
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c0, the space of all null sequences;

l", 1 fip< co, the space of all absolutely/7-summable sequences;

bv = {x ew : ~£?=1 \xj — xj+1\<oo}, the space of all sequences of bounded

variation ;

cs={x e w : 2f=i Xj converges}, the space of all summable sequences; and

bs={xew : sup |2?=i x¡\ <°o}.

As usual, I1 is replaced by / and || • || „ denotes the norm on m.

x e w is called ultimately almost periodic if, to each e > 0, there correspond

positive integers n, N such that every interval (k, k+ri), k= 1, 2,..., contains an

integer / satisfying

|xr-xr+¡| < s   for all r > N.

uap denotes the space of all ultimately almost periodic sequences and it should be

noted that c^uap^m.

3. The main result.

Theorem 1. Let E be an FK-space with c n E not closed in E. Then E contains

(i) a bounded sequence which is not ultimately almost periodic;

(ii) a null sequence which is not of bounded variation;

(iii) a null sequence which is not absolutely p-summable for any p^ 1.

Proof, (i) follows as in Theorem 1 of [14] with only minor modifications,

(ii) As in the proof of Theorem 1 of [14], we may suppose that the topology of F

is given by a family of seminorms {/>„}"=i with the property that

(1) \xm\ ú pm(x) Ú pm + i(x)      (xeE;m - 1,2,...).

Now c0 is of codimension 1 in c so it follows from [9, §15.8 (3)] that c0 n Fis not

closed in E. We then have

given e > 0, r¡ > 0 and a positive integer m, there exists

x e c0 n E such thatpm(x) < e and \\x\\„ = r¡.

For, if not, there exist e>0, r¡>0 and a positive integer m such that ||jc||m=7J

=> pm(x) ̂  e whenever x e c0 n E. Then, for 0 ̂  x e c0 n E, we have pm(r¡x/ || x | œ ) ä e

so that || x || o,, ̂ (■q/e)pm(x) for every x e c0 n E. It follows that cQ n E is closed in E,

a contradiction.

With e = e1 = 1/22,77=77! = 1 and m = m± = 1, find x(1), say, as in (2). Let n> 1 and

suppose that Wj,.. .,mn.1 and x(1),..., x(n_1> have been chosen. With en= l/2n+1

and r¡n = \/n, choose 777„>7«n_i so that

(3) |xfP| ̂  l/2"+1       (k am,;lá/< »),

and choose x(n) e c0 n F so that

(4) pmB(*(n)) < *n   and    |x<"»|U=77n.
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In this way we obtain by (1) a sequence {x(n>}"=1 of elements of c0 n E with

p,(xw) g • • • ̂ />„(x(?l>) < 1 /2n +1 (n = 1, 2,... ). Let x = 2ñ= i *(n>> the series obviously

converging in E. We complete the proof by showing that x e c0\bv.

In the interval m¡ek¿mi+,vie have

\xf\ á l/2'+1   if / < y (by (3)),

(5) Ulli        if ï=y (by (4)),       (7=1,2,...)

Ú l/2i+1   if i > j (by (4));

so that

|xfc| Ú J |4°] ¿ï l/2'+1 + l/7+  S   l/2' + 1^0   asy-
i=i i=i ¡=í+i

•oo.

and so x e c0.

Finally, we show that x $ bv by exhibiting a subsequence y of x that is not of

bounded variation. For each positive integer j, there exists n, e (m¡, mj+1) such that

|^| = 1/7 and so, by (5),

W ^ 1/7-2 !/2i + 1-   Î   l/2i + 1 = l/j-j/2' + \
i = i i=í+i

Now again by (4) and (5),

M =ï l/2'- + 1 + l/2'+1+  f    l/2' + 1 = (/+2)/2>+1.
1 = 1 1=; + 1

Let

^ = xMj   if 7 odd,
... v7 — Ij A • • -A

= xnj    if 7 even,

then j is a subsequence of x and it is easy to see that v £ ¿>r. This completes the

proof of (ii) ; (iii) can be proved similarly and the details are left to the reader.

It is not difficult to see that none of the converse results to (i), (ii) or (iii) is true

in general.

4. Applications. In this section we shall be concerned with matrix transforma-

tions y = Ax, where x, y e a>, /í={ají}("=1 is an infinite matrix with complex co-

efficients and ̂ i = 2r=i auxi 0 = 1> 2,...).

For any subspace E of to and any matrix A, EA denotes the set {xem : Ax exists

and Ax e E}. If E is an FTC-space then by [21, Theorem 4.10] EA may be topologized

so that it too becomes an FTC-space, and it will always be assumed that EA carries

this topology. Of special interest will be the spaces lA, the absolute summability

domain of A ; and cA, the convergence domain of A. If x e cA, we say that x is

limited by the matrix A and write "lim^ x" in place of "limiJ00 2f=i afixy". A is

called conservative if c^cA; regular if c^cA and lim^ x = limi^00 x, for each xec.

P(a = {%}"= i denotes the ith row of A, i= 1, 2,..., and m r\ cAis called the bounded

convergence domain of A.
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Yurimyae [20, Theorem 8] has shown that if/is a nonclosed subspace of lA, then

lA n (bs\l) is nonempty; this can be substantially improved as follows:

Theorem 2(i). Let E be an FK-space with I n E not closed in E; then E contains

a summable sequence which is not absolutely summable.

Proof. Consider the one-to-one mapping S of o> onto itself given by

S(x) = (Xj, Xi+x2, Xi + x2 + x3,...)       (xecu).

S maps E onto an F2C-space, say F. / n E is not closed in E and so bv n F, which

corresponds to / n F under S, is not closed in F. If c n F=bv n F, then c n F is

not closed in Fand Theorem l(ii) is contradicted. It follows that FC\ (c\bv) is non-

empty and then that F n (cs\l) is nonempty, which gives the desired result.

It would be extremely interesting to find necessary and sufficient conditions on the

matrix A in order that / be a closed subspace of lA.

Only minor modifications to the above argument are needed to prove the

following results:

Theorem 2(ii). IfbvnE is not closed in E, then E r\ (cs\bv) is nonempty.

(iii) If p> 1 and l" n E is not closed in E, then E n (cs\lp) is nonempty.

In a forthcoming paper we treat the related problem of determining when

E n F is closed in F, where F and F are arbitrary F^-spaces with the so-called

JS-property.

Our next result improves a theorem of Dawson [7, Theorem 2].

Theorem 3. Let {yln}"=i be a collection of matrices, each matrix limiting every

sequence of bounded variation. Then there is a summable sequence, not of bounded

variation, which is limited by each of the matrices An.

Proof. By the corollary to Lemma 5 and Corollary 1 to Theorem 5 of [2],

D "= i ca" is an F2v-space with a separable strong dual. As in the proof of Corollary

3 to Theorem 5 of [2], bv is a nonclosed subspace of f)"=i cAn- The desired result

now follows from Theorem 2(ii) by putting F=H"=i ca"-

In exactly the same way we can establish the following improvement of a result

of Lorentz and Zeller (see [11, Lemma 5]). We note, however, that a quicker proof

can be obtained by simply adding A to the collection {An}ñ=1, where the matrix A

consists entirely of "ones".

Theorem 4. Let {An}™= x be a collection of matrices, each matrix limiting every

absolutely summable sequence. Then there is a summable sequence, not absolutely

summable, which is limited by each of the matrices An.

We note here that the analogous result with / replaced by lp in Theorem 4 still

holds. This, however, requires a different proof and will be discussed elsewhere.

The proofs of Theorems 3 and 4 depend in an essential way on the separability
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of the strong dual space of a convergence domain; for general FTC-spaces it turns

out that we have to impose a monotonicity condition :

Theorem 5. Let {Fn}"=i be a decreasing sequence of FK-spaces and E be a BK-

space such that Eç C)™= 1 Fn. Then E is closed in f]n= i Fn (if and) only if E is closed

in Fm for some positive integer m.

Proof. Let || • || be a norm defining the topology of E and, for each positive

integer «, let {/>"}"= i be a sequence ofseminorms defining the topology of Fn. As

usual, we may assume that pj ¿ pk whenever j £k;n=l,2,...; and since fn^Fn + 1

for n= 1, 2,..., we may further assume that p]^pf whenever n^m; j=l,2,....

The FTC-topology on f)ñ=i Fn is given by the family of seminorms {/>"}"„ = 1 and

so, if E is closed in f) ™=, Fn, we can find k > 0 and positive integers j, m such that

||x|| úkp™(x) for each xeE. On the other hand, since E^Fm, it follows from the

closed graph theorem (see [21, Theorem 4.5]) that

pf(x) á k'\\x\\    (x e E)       for some k! > 0.

Thus £ is a topological subspace of Fm and, being complete, is closed. The converse

result is obvious.

Theorem 5 was stated only in terms of FTC-spaces but can clearly be extended to

FTT-spaces (see [18] for the definition of F77-spaces). It then improves a result of

Wilansky [18, p. 67, Theorem 2.2]. A slightly sharper version is valid for FTC-

spaces with the TiS-property and this will be discussed in another paper.

We note here that the monotonicity condition of Theorem 5 cannot be dropped.

To see this, let x be the sequence given by xn = (—l)n, n=l, 2,... ; then x-bv,

taking coordinatewise products, is a TiTC-space containing /. Now / is closed in

neither of the spaces bv, x-bv but we do have l=bv n x-bv.

In [8], Hill and Sledd conjectured that uap could not be the bounded con-

vergence domain of any regular matrix. That this is the case, even for nonregular

matrices, was established by Berg in [5]. The next two results extend these ideas to

countable collections of matrices.

Theorem 6. Let {An}n = , be a collection of conservative matrices with C/2C/+1,

« = 1,2,..., and such that each An limits at least one bounded divergent sequence.

Then there is a bounded sequence, not ultimately almost periodic, which is limited by

each of the matrices An.

Proof. By Theorem 1 of [19], c is a nonclosed subspace of cA», «=1, 2,....

Theorem 5 shows that c is a nonclosed subspace of n"=i <V and tne conclusion

follows at once from Theorem l(i).

For regular matrices the monotonicity condition on the sequence {An}ñ=, can

be relaxed slightly to obtain the following improvement of a result due to Brudno

[6]. (Brudno's theorem is given in English as Theorem 4.3.3 of [15].) For the proof

we need the following remarkable "consistency theorem", first stated by Mazur

and Orlicz in [12] and first proved by Brudno in [6].
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Let A and B be regular matrices with cAr\ mQ,cB; then limfl x = lim/t x whenever

xecAC\ m.

For a survey of this result, the reader is referred to the paper [4].

Theorem 7. Let {An}™=x be a collection of regular matrices with cv2cv>+i n m,

n= 1, 2,..., and such that each An limits at least one bounded divergent sequence.

Then there is a bounded sequence, not ultimately almost periodic, which is limited by

each of the matrices An.

Proof. We introduce a new family {2?n}£°=1 of matrices as follows. Set B1 = A1

and suppose that B1,..., Bn have been defined. The ith row of Bn+1 is given by

/»£♦!« ¿g«     ifi = 2k-l,
(k = 1,2,...).

= p%>      if i - 2k,

It is easy to see that c/2cs>2c8n*i (»=1,2,...). Furthermore, the Brudno-

Mazur-Orlicz consistency theorem and an elementary induction argument give

cBn 2 m n cA» (n = 1, 2,... ). Thus the Bn's satisfy the hypotheses of Theorem 6 and

so m n nr=i ca", which is equal to m n H"=i cb", contains a sequence which is

not ultimately almost periodic.

The interested reader is invited to contrast these last two results with Theorem 3

of [23].

We close this section with some further remarks concerning Theorem 1. First

we observe that it is possible, using (2), to establish the existence in m n E of an

uncountable family {x<a)} of points such that ||x(a)-xW)||oo > 1 whenever a^ß.

Thus we have

Theorem 8. Let E be an FK-space such that c n E is not closed in E; then m(~\E

is a nonseparable subspace of m.

Following Snyder [16], we say that an FyV-space E is conull provided that i/>r -> 0

weakly in E, where </rr denotes the sequence (0,..., 0, 1, 1,...) with r zero co-

ordinates. We next show that Theorem 8 is stronger than a recent result of Snyder

and Wilansky [17, Corollary 7 to Theorem 11].

Corollary 1. Let E be a conull FK-space; then m n E is nonseparable in m.

Proof. By Theorem 5 of [16], we see that c n Eis not conull. Again by Theorem

5 of [16], c n E cannot be closed in E; the desired conclusion now follows at once

from Theorem 8.

The next result was obtained by Agnew in [1] for a special class of conservative

matrices and by Zeller in [22] in the form given here.

Corollary 2. Let A be a conservative matrix which limits at least one bounded

divergent sequence; then cAd m is nonseparable in m.

Proof. Theorem 1 of [19] shows that c is not closed in cA; the conclusion follows

at once from Theorem 8.
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x e w is called almost convergent (see [10]) if the limit

..      xn + xn + ,+ ■ • ■ +Xn + P-,

p-»oo P

exists uniformly in «. ac denotes the space of all almost convergent sequences and

we have the following inclusion relationships: c^uap^ac^m. In view of this it

seems natural to ask whether Theorem l(i) can be improved slightly by replacing

"wa/?" by "ac". It turns out in fact that such an improvement is not possible;

to see this, we recall Theorem 1 of [19] and note that Lorentz [10, p. 174] has given

an example of a regular matrix A, limiting a bounded divergent sequence, with

m n cA = ac n cA.

On the other hand, Berg [5] has shown that if a conservative matrix limits every

periodic sequence, then m n cA properly contains ac n cA. This naturally raises the

following question, which will be discussed elsewhere. If £ is an FTC-space containing

the periodic sequences and is such that c n E is not closed in E, must the set

E C\ (m\ac) be nonempty ?

5. The Baire category theorem and a result of Petersen. Related to Theorems

6 and 7 is a rather difficult result of Petersen [15, Theorem 4.4.1]. We improve

Petersen's result by giving an entirely different proof based upon the Baire category

theorem. First we need the following well-known lemma [24, Chapter 17, IV].

Lemma. Let {Fn}™=1 be a collection of FK-spaces such that Fm == U"= i Fn,

«1 = 1, 2,... ; then U»=i Fn ù not an FK-space.

Theorem 9. Let {A"}n=, be a set of matrices such that each matrix An, n = 2, 3,

..., limits a bounded divergent sequence not limited by Ar,r= 1,2,.. .,n—I. If A is a

matrix with cA^m n (J™=1 cA*, then A limits a bounded sequence which is not limited

by any An.

Proof. Putting Fn=m n cA", «=1,2,..., we see that the hypotheses of the

lemma are satisfied. It follows that m n U"=i cAn is not an FTC-space and so does

not coincide with m n cA.
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