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OPERATOR AND DUAL OPERATOR BASES IN

LINEAR TOPOLOGICAL SPACESi1)

BY

WILLIAM B. JOHNSONS)

Abstract. A net {Sd : d e D} of continuous linear projections of finite range on a

Hausdorff linear topological space Fis said to be a Schauder operator basis—S.O.B.

—(resp. Schauder dual operator basis—S.D.O.B.) provided it is pointwise bounded

and converges pointwise to the identity operator on V, and SeSd = Sd (resp. SdSe = Sd)

whenever e ä d.

S.O.B.'s and S.D.O.B.'s are natural generalizations of finite dimensional Schauder

bases of subspaces. In fact, a sequence of operators is both a S.O.B. and S.D.O.B.

iff it is the sequence of partial sum operators associated with a finite dimensional

Schauder basis of subspaces.

We show that many duality-theory results concerning Schauder bases can be

extended to S.O.B.'s or S.D.O.B.'s. In particular, a space with a S.D.O.B. is semi-

reflexive if and only if the S.D.O.B. is shrinking and boundedly complete.

Several results on S.O.B.'s and S.D.O.B.'s were previously unknown even in the

case of Schauder bases. For example, Corollary IV.2 implies that the strong dual

of an évaluable space which admits a shrinking Schauder basis is a complete barrelled

space.

I. Introduction. Let F be a Hausdorff linear topological space. A basis of

subspaces for V is a sequence {Mn}„= x of subspaces of V such that for every x in V,

there is a unique sequence {x„}"= x with xn e Mn such that x = 2"= i xn.

Bases of subspaces were introduced by Grinblyum in [6] and have been exten-

sively studied by McArthur and his students. Note that a summation basis can be

considered to be a basis of subspaces {Afn}"=1 where each Mn is one dimensional.

It is known that many of the theorems concerning summation bases have ana-

logues in the theory of bases of subspaces. For example, the weak basis theorems

of [1], [2], and [3] hold true for bases of subspaces if each Mn is closed [10]; the

characterization of reflexivity of a Banach space in terms of a boundedly complete

and shrinking basis given by James in [7] is true for a basis of subspaces if each Mn

is reflexive [12].
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Most of the proofs of theorems involving a basis of subspaces do not use the

Mn's but consider instead a sequence of linear projections defined in terms of the

Mn's. Let {Mn}n = , be a basis of subspaces for V. For each «, define the partial sum

operator Sn : V^ V by

n

Sn(x) = 2 xi,
1 = 1

where 2í= i xt is the expansion of x in terms of the elements of the M/'s. Each Sn

is a linear projection of V onto the span of U?=i M¡. Further, for each « and m,

SnSm = Smln(n,m; and for each x in V, limnJ0O Sn(x) = x. If each Sn is continuous,

{Mn)n=, is called a Schauder basis of subspaces for For a Schauder decomposition

for V. In this paper we abstract the properties of the partial sum operators associated

with a basis of subspaces to get the following definition:

Definition 1.1. Let Kbe a Hausdorff linear topological space and let {Sd : deD}

be a net of linear projections of finite range on V. Fis said to be an operator basis

—O.B.—(resp. dual operator basis—D.O.B.) for V provided

(1) for each x in V, the net {S„(x) : de D} is bounded and converges to x;

(2) SeSd = Sd whenever e^d (resp. SdSe = Sd whenever e^d);

(3) if {x;} is a net in V which converges to x and if limy Sd(x,)=yd uniformly on d

in D, and if lim,i yd = x, then Sd(x)=yd for all d"in D.

If each Sd is continuous, {Sd} is said to be a Schauder O.B.—S.O.B.—(resp.

Schauder D.O.B.—S.D.O.B.). If, in addition, {Sd} is uniformly bounded on boun-

ded sets, {Sd} is said to be a u.b.S.O.B. (resp. u.b.S.D.O.B.). If {Sd} is equicon-

tinuous, {Sd} is said to be an e-S.O.B. (resp. e-S.D.O.B.).

Some comments are in order about the various parts of Definition 1.1. In most

of the work that follows, the assumption that each Sd has finite dimensional range

is not essential. In particular, this condition could be replaced in §11 by the assump-

tion of closed range and in §111 by the assumption of reflexive range. However,

it seems doubtful that such a general theory has any useful applications and the

assumption of finite range considerably simplifies the proofs of several theorems.

Note that {7}, where 7 is the identity operator on V, satisfies all the conditions of

Definition 1.1 other than the finite range condition.

The pointwise boundedness condition in (1) does not arise in the definition of

basis of subspaces because a convergent sequence is automatically bounded. This

mild-seeming condition has powerful implications. Roughly speaking, one can say

that the structure of a space with a S.O.B. or S.D.O.B. is determined by the structure

of its bounded sets.

Condition (2) for O.B.'s says that the ranges of the S„'s are directed by inclusion.

Condition (2) for D.O.B.'s says that the null spaces of the S „'s are directed by

containment. Note that the sequence of partial sum operators associated with a

basis of subspaces satisfies both of these conditions.

Condition (3) replaces the uniqueness of expansion condition for a basis of
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subspaces. The relationship between (3) and the uniqueness of expansion condition

is made precise in Theorem ILL

In §11, we consider conditions on V which will guarantee that an O.B. or D.O.B.

for KisaS.O.B. or S.D.O.B. for V. The corresponding results for bases of subspaces

are in [10].

§§III and IV, which can be read independently of §11, contain applications of

S.O.B.'s and S.D.O.B.'s to the duality theory of locally convex spaces. Note that

if {Sd :deD}isa S.O.B. (resp. S.D.O.B.) for V, then {S% :deD}isa S.D.O.B.

(resp. S.O.B.) for V* if V* is endowed with the weak* topology. (This relationship

justifies the use of "dual" in "dual operator basis".)

It is shown in §111 that a locally convex space with a S.D.O.B. is semireflexive

if and only if the S.D.O.B. is shrinking (Definition III.5) and boundedly complete

(Definition III.2). The corresponding theorem for Schauder bases in Banach

spaces was proved by James in [7]. Retherford [11] established the "if" part of

the theorem for Schauder bases in locally convex spaces, and he proved the "only

if" part for Schauder bases in complete, reflexive spaces.

Theorems III.7, HI.8, and III. 10 discuss the duality between shrinking S.O.B.'s

and boundedly complete S.D.O.B.'s. In [4], Dubinsky and Retherford prove III.7

and IN.8 and a restricted variant of III. 10 for Schauder bases in locally convex

spaces.

The other results of §111 are structure theorems for locally convex spaces with a

S.O.B. or S.D.O.B. These theorems generalize the best known results for Schauder

bases. A typical example is Theorem III.3, which shows that a space with a boun-

dedly complete e-S.D.O.B. is complete. In [4], Dubinsky and Retherford show

that a space with a boundedly complete e-Schauder basis is sequentially complete.

In §IV we deal with the structure of a space which admits a boundedly complete

S.D.O.B. (Corollary IV.3 and Theorem IV.4). However, the most interesting and

useful result of this section is Theorem IV. 1, which guarantees the evaluability of a

"large enough" subspace of V* when V admits a u.b.S.D.O.B.

Throughout this work we use the notation and terminology of [9]. We also use

the following notation : If 5" is a linear operator, RiS) denotes the range of S and

ker(S) denotes the null space of S. "7" denotes the identity operator, "sp A"

denotes the linear span of A and "cl/i" denotes the closure of A. If Fis locally

convex, the canonical embedding of Kinto V** is denoted by "~".

II. Weak basis theorems. Theorem II. 1 justifies the assertion that O.B.'s and

D.O.B.'s generalize the concept of finite dimensional bases of subspaces.

Theorem ILL Let {£„}"= i be a sequence of linear operators on a linear topo-

logical space V. Then {SX=1 is both an O.B. and D.O.B. for V iff{SX=i are the

partial sum operators associated with a finite dimensional basis of subspaces for V.

Proof. To go one way, suppose that {Sn}?=1 is both an O.B. and D.O.B. for V.
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Let M, = R(S,), Mn = R(Sn-Sn-,) («> 1). Note that each Mn is finite dimensional.

{Mn}n = i is representing, because if x e V,

x = lim Sn(x) = S,(x)+ f (Sn-Sn.,)ix).
n n=2

We show that this representation of x is unique. Suppose that x=2"=1 x„, where

xn e Mn. Since 2?=i xt—5n(2i»i *i) is either 0 or 2r=i+i *i according as j^n or

7<n, it follows from the convergence of 2"=i xn that

(i        -, n

2 *< ) = 2 *<¡=i /   i-i
uniformly on «. We conclude from 1.1(3) that Sn(x) = 2?= i x¡ for all «. Thus

S,(x) = x, and (5,n-5n_1)(x) = xn for «> 1.

To go the other way, suppose that {5"n}"=, are the partial sum operators asso-

ciated with a finite dimensional basis of subspaces for V. {Sn}"=1 obviously satis-

fies conditions (1) and (2) of 1.1. Let {x,}, x, and {yn}ñ=, be as in (3) of 1.1. Since

R(Sn) is finite dimensional for each «, R(Sn — Sn-,) is finite dimensional for each

«> 1. In particular, these subspaces are closed. Thus y, e R(S,) and for «> 1,

yn-yn., = \im (Sn-Sn.,)(x,)eR(Sn-Sn.,).
i

But
CO

x = limyn = y,+ £ yn-yn-„

so that y, = S,(x) and yJi-yn-,=(Sn-Sn_,)(x) for «> 1. From this it follows that

yn = Sn(x), for all«.   Q.E.D.

The following lemma provides most of the machinery for deriving the so-called

"weak basis" theorems for O.B.'s and D.O.B.'s. The lemma is a straightforward

generalization of Lemma 2 in [10].

Lemma II.2. Let (V, T) be a [locally convex] linear topological space. Let

{Sd : de D} be a [weak] O.B. or a [weak] D.O.B. for V. Then there is a linear

topology T' for V such that

(1) T/cf;

(2) {S„ : (V, T') -+ (V, T) : de D} is equicontinuous;

(3) if(V, T) is locally convex, so is (V, T);

(4) if(V, T) is metrizable, so is (V, T');

(5) if(V, T) is complete or quasi-complete (bounded Cauchy nets are convergent)

or sequentially complete, then so is (V, T').

Proof. Let I be a local base of closed, circled T neighborhoods of 0. If T is

locally convex, let each member of L be convex. Let L'={[/' : UeL}, where

u' - n sdKuy
deD
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McArthur's proof of Lemma 2 in [10] shows that L' is a local base for a linear

topology, 7", on V, and that (1), (2), and (3) are satisfied. (4) is satisfied because

if T is metrizable, L can be chosen to be countable, so that L' is countable. We

show that (5) holds. Suppose that (K, T) is complete (resp. quasi-complete, resp.

sequentially complete). Let {xa : a e A} be a 7"-Cauchy net (resp. bounded T'-

Cauchy net, resp. 7"-Cauchy sequence). By (1), {xa} is T-Cauchy (and T-bounded

if {xa} is r'-bounded) and thus T-converges to, say, x. Since {xa} is 7"-Cauchy, it

follows from the definition of 7" that {5d(xa) : a e A) is T-Cauchy, uniformly on

de D. Thus r-lima Sd(xa) exists for each de D, and in fact uniformly on de D

[hence weakly uniformly on d e D]. Let

y a = r-lim SA\xa).
a

We show that {yd : de D} [weakly] converges to x.

Let K he a [weak] neighborhood of 0 in iV, T). [Let J be a weak neighborhood

of 0 such that J+JcK.] Let U e L such that U+ U+ U<=K [such that Í/+Í/<=./].

Let Ne A such that if a^N, x — xae U. Choose N' e A such that if a^N', Sdixa)

—ydeU for all de D. Fix a e A such that a follows both N and N'. Choose M e D

such that for d^M, xa-Sdixa)e U [such that xa-5d(x0) eJ]. Then if d^M,

x-yd = ix-xa) + ixa-Sdixa)) + iSdixa)-yd)eK. Thus {yd} [weakly] converges to

x. It follows from 1.1(3) that Sdix)=yd for all de D. But {Sd(xa) :aeA} T-con-

verges to yd i=Sdix)) uniformly on de D, so it follows from the definition of

T that {x0} r'-converges to x.   Q.E.D.

Theorem II.3. Let {Sd : de D) be a weak S.O.B. for a locally convex space V.

Suppose either that {Sd} is u.b. and V is évaluable, or that V is barrelled. Then {Sd} is

ane-S.O.B.for V.

Proof. Either hypothesis guarantees that {Sd} is equicontinuous. Now

{Sdix) : de D) is eventually x if x e [JdeD RiSd), so {Sd : de D} converges point-

wise to the identity operator, I, on the subspace {JieD RiSd). Since {Sd} is equi-

continuous, it converges pointwise to I on

cl U RiSd)] = weak-cl [ |J R(Sa)] = V.       Q.E.D.
deD J i-dsD J

Theorem II.4. An O.B. iresp. a D.O.B.) in a complete linear metric space is an

e-S.O.B. iresp. an e-S.D.O.B.).

Proof. Immediate from II.2 and the open mapping theorem.   Q.E.D.

Theorem II.5. A weak O.B. for a Fréchet space is an e-S.O.B.

Proof. II.2 and the open mapping theorem imply that the elements of the O.B.

are continuous. The desired conclusion then follows from II.3.   Q.E.D.
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III. Applications to duality theory. In this section we let K be a Hausdorff,

locally convex, linear topological space. Endow V*, the dual of V, with the strong

topology s(V*, V). Recall that a local base for V* is {B° : B is a bounded subset

of V}, where B°={fe V* : |/(6)|gl, for all beB}. Alternatively, V* has the

topology of uniform convergence on bounded subsets of V.

If P is a continuous linear operator on V into V, define P* : V* -> V* by P*(f)

=f°P. P* is necessarily continuous on V* [9, p. 204, 21.6]. If {S„ : de D} is a

S.D.O.B. for V, let

y = U RisS),
d£D

and let F be the strong closure of Yin V*. Note that Y, and hence F, is a linear

subspace of V*.

The main results of this section, Theorems III. 11 and III. 13, show that a locally

convex space with a S.D.O.B. is semireflexive iff the S.D.O.B. is both shrinking

and boundedly complete. Theorem III. 16 then characterizes reflexivity of a space

with a S.D.O.B. in terms of additional properties of the S.D.O.B.

Singer [13] noted a duality between shrinking and boundedly complete Schauder

bases: if {S,,}^! are the partial sum operators associated with a Schauder basis

for a Banach space V, then {.Sn}™=i is shrinking iff {5*}™=1 is a boundedly complete

basis for V*; {5n}"=1 is boundedly complete iff {S*}n=, is a shrinking basis for F.

Dubinsky and Retherford [4] extended this result to Schauder bases in certain

kinds of locally convex spaces. Theorems III.7, III.8, and III. 10 verify that under

reasonable conditions on V (which are satisfied whenever V is quasi-complete

and évaluable), there is a duality between shrinking and boundedly complete

S.O.B.'s and S.D.O.B.'s.

The following known lemma is useful for obtaining the results of this section.

Lemma III. 1. (a) Let {P¡ : ieJ} be a uniformly bounded family of continuous

linear operators on Vinto V. Then {P* : ieJ} is equicontinuous.

(b) Let V be sequentially complete and let {P¡ : ieJ} be a pointwise bounded

family of continuous linear operators on V. Then {Pt : i eJ) is uniformly bounded.

(c) A semireflexive space is sequentially complete.

Proof, (a) Let 7J° be a basic neighborhood of 0 in V*. Since B is bounded and

{Pi : ieJ} is uniformly bounded, C={Pi(b) : ieJ, b e B) is bounded in V. Hence

C° is a neighborhood of 0 in V*. We assert that P?[C°]<=B°, for all i e J. Suppose

that/e C°, ieJ, and beB. Then |P,*(/)(6)| = \f(Pi(b))\ Ú 1, since Pt(b) e C. Hence

P*(f) e B°, and thus {P* : ieJ} is equicontinuous.

(b) and (c) are immediate from [9, p. 105, 12.4] and [9, p. 190, 20.2], respectively.

Q.E.D.
Definition III.2. Let {Sd : d e D} be a S.D.O.B. for V. {Sd} is boundedly

complete iff, for each bounded net {xd : de D} in V satisfying S^x^) = xe for all

e-¿d, there is x e V such that S„(x)=x„ for all de D.
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Of course, the statement in the above definition that Sdix)=xd for all de D is

equivalent to the statement that [xd] is convergent.

Theorem III.3. Let {Sd : de D} be a boundedly complete e-S.D.O.B. for V.

Then V is complete.

Proof. Let V~ be the completion of V. For each d in D, let Sd he the continuous

extension of Sd to V~. Note that {Sd : de D} is equicontinuous (see [9, p. 38,

5.5 ff.]), so since it converges to / pointwise on V, it converges to I pointwise on

cl{V)=V~. Now RiSd) = RiSd) because the latter is finite dimensional and hence

complete. Thus if y is in V~, {Sd(y) : de D) is a bounded net in V which con-

verges to y. Obviously if e^d, Se(Sd~(y)) = Sè(y). But since {Sd : d e D} is bound-

edly complete, {Sd(y) : de D] must converge in V. In other words, y is in V.

Q.E.D.
Remark III.4. It follows from Theorem III.3 and [9, p. 192, 20.4] that if V is

évaluable and has a boundedly complete u.b.S.D.O.B., then V is barrelled.

Definition III.5. Let {Sd : d e D} be a S.O.B. (resp. a S.D.O.B.) for V. {Sd} is

shrinking iff {S$ : d e D} is a S.D.O.B. (resp. a S.O.B.) for V*.

Theorem III.6. Let {Sd : de D] be a shrinking S.O.B. or S.D.O.B. for V. Then

{Sd} is uniformly bounded and consequently {S* : de D} is an e-S.D.O.B. or e-S.O.B.

for V*.

Proof. For each fe V*, {S*(f) : de D) is bounded, hence, for each fe V*,

{f° Sd : de D} is uniformly bounded, hence {Sd : de D} is uniformly bounded.

The equicontinuity of {5* : de D) follows from III. 1(a).

Theorem III.7. Let {Sd : de D} be a shrinking S.O.B. for V, and suppose that V

is évaluable. Then {S* : de D} is a boundedly complete e-S.D.O.B. for V*.

Proof. In view of III.6 and III. 1(a), we need prove only that {S* : de D} is

boundedly complete. Let {xd : de D} be a strongly bounded net in V* such that

S?ixd) = xe for all e^d. Since V is évaluable, {xd : de D] is equicontinuous [9,

p. 192, 20.4]. Let/be in RiSe). Then

lim xdif) = lim xdiSeif)) = um S?(*,)(/) = x.(f),
d d d

so that {xd : d e D) converges pointwise on lJeeD RiSe). Since {xd : d e D} is equi-

continuous and IJeeD RiSe) is dense in V, limd xd(/) exists for each fin V. Let x be

defined by

x(f) = lim xdif),
d

for all fin V. x is in V* (i.e., x is continuous on V) because it is the pointwise

limit of an equicontinuous net. Clearly S*ix) = xd for all d in D.   Q.E.D.

Theorem III.8. Let{Sd : de D} be a boundedly complete S. D.O.B. for a barrelled

space V. Then {S¡* : de D} is a shrinking e-S.O.B. for Y.
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Proof. Note that {Sd} is equicontinuous since V is barrelled so that, by III.l,

{S*} is equicontinuous. A standard argument (e.g., that used in II.3) shows that

{S* : de D} is an e-S.O.B. for F Let/be in F*. Since S„ is a projection, R(Sd)*

and R(Sf) are naturally isomorphic. Since R(Sd) is finite dimensional and thus

reflexive, we can find xd in R(Sd) such that for all y in R(Sd), y(xd)=f(y). Now if

e&d, y(xd)=f(y)=y(xe) for all y in R(Sf). Thus the totality of R(S*) over R(Se)

implies that Se(xd) = Se(xe) = xe for all e^d. We show that {xd : de D) is bounded.

Let v be in V*. Since {S*} is equicontinuous, {S*(y) : deD} is bounded and

hence {/(Sft.y)) : de D} is bounded. But

iñSiiy)) :deD} = {S*(y)(x„) :deD} = {y(xd) :deD}.

Thus {xd : deD} is weakly bounded, hence, bounded. Since {Sd : deD} is

boundedly complete, there is x in V such that Sd(x) = xd for all d in 7). Clearly

y(x)=f(y) for all v in Y, so >,(x)=/(j) for all y in y. This argument and the

totality of y over V show that K is canonically (algebraically) isomorphic to Y*.

But since the topology of Y* is the topology of uniform convergence on bounded

subsets of y and the topology of Kis the stronger topology of uniform convergence

on weak* bounded subsets of V* [9, p. 171, 18.7 and p. 156, 17.7], {S$* : deD}

is a S.D.O.B. for F*.   Q.E.D.

Remark III.9. Under the hypotheses of III.8, V and F* are isomorphic. Let T

be the barrelled topology on V and let T' be the topology on V of uniform con-

vergence on bounded subsets of Y. We are asserting that T=T'. III.8 shows that

T' is weaker than T. Let {x¡} be a net in V which T'-converges to 0. Let C be a

weak* bounded subset of V*. C is strongly bounded [9, p. 171, 18.7], so that

/= U {5*[C] : d e D} is a strongly bounded subset of Y, and thus {f(x,)} converges

to 0 uniformly on fin J. Let J be the weak* closure of J. Clearly C is a subset of

J. Now {Je,} is a net of weak* continuous functions on V* and {x,(f)} converges

to 0 uniformly for fin the weak* dense subset J of J, hence {x,(f)} converges to 0

uniformly for fin J. Thus T^T'.

One obvious, but interesting, application of III.8 and III.9 is that a Banach space

with a boundedly complete S.D.O.B. is isomorphic to a conjugate Banach space.

Theorem III. 10. Let {S„ : deD} be a S.D.O.B. for a quasi-complete space

(V, T) (i.e., bounded T-Cauchy nets are T-convergent). Suppose that {S* : de D}

is a shrinking S.O.B. for Y. Then {Sd : de D} is boundedly complete.

Proof. Note that by III. 1(b), {S„ : deD} is uniformly bounded, so that, by

111.1(a), {S* : de D} is equicontinuous. Since y is total over V, we can identify

V with a subset of F*. The relativised topology, 7", induced on V by the strong

topology on Y*, is the topology of uniform convergence on (strongly) bounded

subsets of F. Now, the weak* bounded and strongly-bounded subsets of V*

agree because Kis quasi-complete [9, p. 170, 18.5], so that the proof of III.9 shows

that ris weaker than 7". Let {xd : de D} be a bounded net in V such that ^(x^)
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= xe for all e^d. To show that {xd : de D} is T-convergent, it is sufficient to show

that {xd : deD} is T-Cauchy. Now {xd : d e D] is T-bounded, hence is equi-

continuous on V*. If/is in 7?(5e*),

limfixd) = lim S*if)ixd) = UmfiSeixd)) = /(xe).
d d d

Since {xd : de D} is equicontinuous on V*, limd fixd) exists for all/in Y. Define

.Fon F by

FiJ) = lim/ix,).
d

F is continuous on Y because it is the pointwise limit of the equicontinuous net

{xd : de D). Since {S* : de D) is shrinking, it follows that if B is a bounded

subset of Y, then

lim/(xd) = Fif),
d

uniformly on /in B. Thus {xd : de D) is T'-Cauchy, hence T-Cauchy.   Q.E.D.

Theorem III.ll. Let {Sd : de D) be a S.D.O.B. for a semireflexive space V.

Then {Sd} is both shrinking and boundedly complete.

Proof. Since V is semireflexive it follows from III(c) and 111(b) that {Sd} is

uniformly bounded, and thus from 111(a) that {S* : deD} is equicontinuous.

Since V is semireflexive, the weak* and weak topologies on V* agree, so that our

usual argument shows that {S* : de D) is a S.O.B. for V*. Thus {Sd : de D} is

shrinking.

To show that {Sd} is boundedly complete, we let {xd : de D} be a bounded net

in V such that Seixd) = xe whenever e^d. We show that {xd : de D) is weakly

Cauchy (hence weakly convergent by [9, p. 190, 20.2]). Let/be in V* and let e>0.

Since {Sd : de D) is shrinking and {xd : de D} is bounded, there is d in D such

that, if d'à3, \S*(ß(xt)-f(xi)\<e/2 for all i in D. Now suppose that d and e

both follow d. Pick j in D so that j follows both d and e. Then

|/K*d)-/(*.)| tk \f(xd)-f(Xj)\ + \f(Xj)-f(xe)\

= \f(Sd(Xj)) -f(Xj)\ + \f(Xj) -f(Se(Xj))\

- i<ft/xx,)-M)i+iyi*y)-src/x*/)i < «•
Thus {xd : d e D} is weakly Cauchy and thus weakly converges to, say, x. Clearly

Sdix) = xd for all din D, so {Sd : cf e 0} is boundedly complete.    Q.E.D.

An easy modification of the above proof yields the following corollary.

Corollary 111.12. //{5„}™=i is a shrinking S.D.O.B. for a weakly sequentially

complete space, then {5*n}"=1 is boundedly complete. In particular, a shrinking finite

dimensional Schauder decomposition for a weakly sequentially complete space is

boundedly complete iand hence the space is semireflexive by III. 13).

Theorem III. 13. Let {Sd : de D) be a boundedly complete, shrinking S.D.O.B.

for V. Then V is semireflexive.
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Proof. Let F be in V**. As in the proof of III.8, for each d in D there is x„ in

R(S„) such that for all / in R(S%), f(x„) = F(f) and Se(xd) = xe whenever e^d.

We show that {xd : de £>} is bounded. It is sufficient to show that {xd} is weakly

bounded. Let f be in V*. Then f(xd) =f(Sd(xd)) = F(S*d(f))- But {S*(J) :deD}

is bounded and Fis continuous, so that {F(S*(f)) : de D} is bounded. This shows

that {xd : de D} is bounded. Thus there is x in F such that Sd(x) = xd for all a" in D.

Clearly f(x) = F(f) for all fin Y. Since x and T^are both continuous, f(x) = F(f)

for all / in Y. But Y = V*, since {S„ : d e D} is shrinking. Thus the canonical

embedding of Kinto V** is onto, and Kis semireflexive.   Q.E.D.

A semireflexive space is reflexive iff it is évaluable (or, equivalently, barrelled)

[9, p. 194, 20.6 and 20.7]. Thus to characterize reflexive spaces which admit a

S.D.O.B. it is natural to ask what properties a S.D.O.B. in a évaluable or bar-

relled space must have.

Suppose that V is barrelled (resp. évaluable) and {Sd : de D} is a S.O.B. or

S.D.O.B. for V (resp. a u.b.S.O.B. or u.b.S.D.O.B. for V). Let/be a bounded

linear functional on V satisfying the condition that

lim f(Sd(x))=fi(x)
d

for all x in V. For each din D, R(Sd) is finite dimensional, so that/is continuous on

R(Sd). Thus fio S„ is continuous for each d in D. But {Sd : de D} is uniformly

bounded and/is bounded, so that {/° S„ : de D} is a uniformly bounded net of

continuous linear functionals on V. It follows from [9, p. 191, 20.3] that

{fio S„ : de D} is equicontinuous. Thus/, the pointwise limit of {f° Sd : de D},

is continuous.

The preceding observation motivates Definition III. 14.

Definition III. 14. Let{Sd : deD} be a S.O.B. or S.D.O.B. for V. {Sd : de D}

is full iff every bounded linear functional,/ satisfying

limfi(Sd(x))=f(x)
d

for all x in V, is continuous.

Obviously every S.D.O.B. or S.O.B. for a bound space is full. The remarks

preceding Definition III. 14 prove that a S.O.B. or S.D.O.B. for a barrelled space is

full and that a u.b.S.O.B. or u.b.S.D.O.B. for an évaluable space is full.

The definition of full bases is similar to Jones' definition in [8] of A' Schauder

bases. One of Jones' results is that if V admits an A' Schauder basis, then V* is

complete. Theorem III. 15 extends this result to full S.O.B.'s and full S.D.O.B.'s.

(L(V, X) is the space of all continuous linear maps from F to X endowed with the

topology of uniform convergence on bounded subsets of V.)

Theorem 111.15. Let {Sd:de D} be a full S.O.B. or full S.D.O.B. for V. (a) V*

is complete, (b) If, in addition, V is Mackey, then L(V, X) is complete for every

complete locally convex space X.
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Proof, (a) In view of [9, p. 169, 18.4], it is sufficient to show that every linear

functional which is continuous on bounded sets is continuous. But this follows

immediately from the definition of fullness.    Q.E.D.

(b) As in (a), it is sufficient to show that every linear map K on V into X which

is continuous on bounded sets is continuous, (a) guarantees that such a K is

continuous considered as a mapping from V into (X, w(X, X*)). But then by

[9, pp. 203-204, 21.5 and 21.4] Kis Mackey continuous, hence, continuous. Q.E.D.

Let V he reflexive and let {Sd : deD} be a S.D.O.B. for V. {Sd : deD} is

shrinking and boundedly complete by ULI 1. Fis barrelled [9, p. 194, 20.6], so that

{Sd : d e D} is full. Since Fis évaluable, every bound absorbing barrel is a neighbor-

hood of 0. These observations lead us to consider the following theorem.

Theorem 111.16. Let (V, T) be a Mackey space and let {Sd : de D} be a S.D.O.B.

for (V,T). Let T' be the topology on V which has for a local base the collection of all

bound absorbing barrels in (V,T). Then(V, T) is reflexive iff{Sd : de D] is shrinking,

boundedly complete, and full, and {Sd : de D} is a S.D.O.B. for (V, 7").

Proof. The "only if" part follows from the remarks preceding the theorem. To

go the other way, note that (F, T) is semireflexive by III. 13. Now suppose/is a

7"-continuous linear functional on F. Note that ( F, T) and ( V, 7") have the same

bounded sets, so that/is a T-bounded linear functional. Since {Sd : de D} is a

S.D.O.B. for (V, 7") and/is 7"-continuous,

lim f(Sd(x)) = f(x)
d

for all x in V. It follows from the fullness of {Sd : de D} that/is T-continuous.

Thus 7" is compatible with the duality (F, F*). Since Tis Mackey, 7*= 7", so that

T is évaluable.    Q.E.D.

IV. Further applications to duality theory. In this section we continue to let

{Sd : de D} be a u.b.S.D.O.B. for the locally convex space Fand y be the strong

closure of \JdeD R(S%).

It is well known that F* need not be évaluable even if F is a Fréchet space with a

Schauder basis (cf., e.g., [9, p. 221, G]). On the other hand we have the fundamental

Theorem IV. 1. Let {Sd : de D} be a u.b.S.D.O.B. for the locally convex space

V and let Tbe the relativisation ofs(V*, V) to Y. Then (Y, T) is évaluable.

Proof. Let B be a bound absorbing barrel in (Y,T). Let K=C\deDS^-1[B].

K is a barrel in F* because, for each/e V*, {S*(f) : de D} is strongly bounded

and is thus absorbed by B. Hence K, the weak* closure of K, is a weak* barrel in

F* and is thus a strong neighborhood of 0 in F*. We intend to show that K n F

<= B, from which it follows that B is a neighborhood of 0 in ( F, T).

Let y e K n Y and let {yj} be a net in K which weak* converges to y. By the

definition of K, Sd(y,) e B for each deD and for each / For each deD,

Sî(y) = weak*-lim S*0,)
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because S* is weak* continuous. Now the strong topology must agree with the

weak* topology on the finite dimensional space R(Sd), hence also,

Sîiy) = strong-lim Sftiy,).
i

Thus S*(y) e B because B is strongly closed. Finally,

strong-lim S*(v) = y
i

because y e Y, so that by again using the strong closedness of B we conclude that

yeB.    Q.E.D.

Corollary IV.2. If V admits a shrinking S.D.O.B. or a shrinking S.O.B. then

V* is évaluable. If, in addition, V admits a full S.D.O.B. or a full S.O.B., then V* is

barrelled.

Proof. A shrinking S.D.O.B. or S.O.B. is uniformly bounded by III.6, so the

proof of IV. 1 shows that V* is évaluable. Since a complete évaluable space is

barrelled [9, p. 192, 20.4], the second assertion follows from III. 15.   Q.E.D.

Corollary IV.3. Let V be a barrelled space which admits a boundedly complete

S.D.O.B. {Sd : deD}. Then V is isomorphic to the strong dual of a complete

barrelled space.

Proof. By III.9, Fis isomorphic to Y*. Y is évaluable by IV. 1 and is complete

by 111.15, hence Fis barrelled by [9, p. 192, 20.4].    Q.E.D.

In case V is not barrelled, there is a weaker form of IV.3 which is true:

Theorem IV.4. Let {S„ : de D} be a u.b.S.D.O.B. for the locally convex space

(V, T). Consider the following properties:

(1) V is semireflexive in the duality (V, Y);

(2) {S„ : de D} is boundedly complete;

(3) the canonical embedding of V into Y* is onto ;

(4) s(Y, V) is the relativisation ofs(V*, V) to Y.

Then the following implications hold:

(1) => (2) o (3); (2) and (4) => (1).

V

(4)

Proof. (1) => (2). Note that w(V, F) is weaker than T and each S„ is w(V, Y)-

continuous, so that {Sd : de D} is a S.D.O.B. for (V, w(V, ?)). Thus, by IH.11,

{S„ : de D} is w(V, F)-boundedly complete, from which it easily follows that (2)

is true.

(2) => (3). This implication follows from the proof of Theorem III.8.

(3) => (2). Let {x„: de D} be a bounded net in (V, T) such that Se(x„) = xe
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whenever e-¿d. Note that {xd : de D}° is a (strong) neighborhood of 0 in F*, so

that {xd : deD} is equicontinuous on F*. Now if y e R(Sd), then lime xe(y)

=y(xd). Thus lime xe(y) exists for each y e Y. Since {xd : d e D} is equicontinuous,

lime xe(y) exists for each y in cl Y= Y. Define /on Y by f(y) = lime xe(y). f is

the pointwise limit of an equicontinuous net of functionals on Y and is thus con-

tinuous. That is,/is in Y*. By (3), there is x e F such that f(y)=y(x) for all y e Y.

Clearly Sd(x) = xd for all deD, hence (2) holds.

(1) => (4). s(Y, F) is obviously stronger than the relativisation of s(V*, V) to F.

However, the latter topology is évaluable (and hence Mackey) by IV. 1, and by (1)

the dual of Y is F when Y is endowed with either topology, so that the two topolo-

gies on Y are the same.

(2) and (4) => (1). Note that (4) is just another way of saying that every w(V, Y)-

bounded subset of F is T-bounded. From this observation and (2) it follows that

{Sd : de D} is a shrinking, boundedly complete S.D.O.B. for (F, w(V, F)), so that

III. 13   applies.   Q.E.D.

Remark IV.5. We continue to use the notation of IV.4. If F*, or even F, is

sequentially complete (as it will be when {Sd : d e D} is full), the implication (2)

=> (1) is true. To see this, note that Y is barrelled because it is évaluable and

sequentially complete, hence, Y* is w(Y*, T)-quasi-complete [9, p. 171, 18.7].

Since (3) holds, this last statement says that Fis w(V, 7)-quasi-complete, which is

equivalent to (1).

Example IV.6. In the notation of IV.4, there is a space in which (2) holds but (1)

fails. Let F= /i and let F* = sp (A' u 95), where K is the set of all real sequences

{Xi}T= 1 such that x4 = ± 1 and <p is the set of all real sequences which have only

finitely many nonzero terms. Note that F* c\c0 = <p. It is not hard to see that a

subset of F is bounded in the /j norm iff it is w(V, V*) bounded. Thus the usual

Schauder basis for /j is a u.b. boundedly complete Schauder basis for (F, w(V, F*))

and the strong topology s(V*, V) is the sup-norm topology on F*. Hence F

= cQ c\ V* = <p. But a subset of Fis w(V, 99) bounded iff it is coordinatewise bounded.

Thus (4) fails and hence (1) fails. Note that this example also shows that Y need

not be barrelled.

A slight modification of this example shows that (1) does not imply that Y is

sequentially complete. Indeed, replace <p by any proper barrelled subspace L of c0

such that cpczL. By combining the proof of IV.5 with Example IV.6, we conclude

that (1) holds, but L (= Y) is not sequentially complete.

Added in proof. Independently, N. J. Kalton has discovered analogous results to

many of the theorems of §111 and §IV in the context of Schauder bases of subspaces.

His work is titled Schauder decompositions in locally convex spaces, Proc. Cambridge

Philos. Soc. 68 (1970), 377-392.

Prior to the discovery of our results, T. A. Cook (Schauder decompositions and

semi-reflexive spaces, Math. Ann. 182 (1969), 232-235) had proved the analogues

of III. 11 and III. 13 for Schauder bases of subspaces.



400 W. B. JOHNSON

References

1. M. G. Arsove, The Payley-Wiener theorem in metric linear spaces, Pacifie J. Math. 10(1960),

365-379. MR23#A2731.
2. C. Bessaga and A. Pelczyñski, Properties of bases in spaces of type B0, Prace Mat. 3 (1959),

123-142. (Polish) MR 23 #A3986.

3. J. Dieudonné, On biorthogonal systems, Michigan Math. J. 2 (1954), 7-20. MR 16, 47.

4. E. Dubinsky and J. R. Retherford, Schauder bases and Käthe sequence spaces, Trans.

Amer. Math. Soc. 130 (1968), 265-280. MR 38 #510.

5. J. A. Dyer, Integral bases in linear topological spaces, Illinois J. Math. 14 (1970), 468-477.

MR 41 #5923.

6. M. M. Grinblyum, On the representation of a space of type B in the form of a direct sum

of subspaces, Dokl. Akad. Nauk SSSR 70 (1950), 749-752. (Russian) MR 11, 525.

7. R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518-527.

MR 12, 616.

8. O. T. Jones, Continuity of seminorms and linear mappings on a space with Schauder basis,

Studia Math. 34 (1970), 121-126. MR 41 #4182.

9. J. L. Kelley and I. Namioka, Linear topological spaces, The University Series in Higher

Math., Van Nostrand, Princeton, N. J., 1963. MR 29 #3851.

10. C. W. McArthur, The weak basis theorem, Colloq. Math. 17 (1967), 71-76. MR 35 #7103.

11. J. R. Retherford, Bases, basic sequences and reflexivity of linear topological spaces, Math.

Ann. 164 (1966), 280-285. MR 33 #6351.

12. W. H. Ruckle, The infinite sum of closed subspaces of an F-space, Duke Math. J. 31 (1964),

543-554. MR 29 #3862.

13. I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961/62),

351-369. MR 26 #4155.

Department of Mathematics, University of Houston, Houston, Texas 77004

Current address : Department of Mathematics, Ohio State University, Columbus, Ohio 43210


