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CALVIN C. MOORE(2)

Abstract. It will be shown that a locally compact group has a finite bound for

the dimensions of its irreducible unitary representations if and only if it has a closed

abelian subgroup of finite index. It will further be shown that a locally compact group

has all of its irreducible representations of finite dimension if and only if it is a pro-

jective limit of Lie groups with the same property, and finally that a Lie group has this

property if and only if it has a closed subgroup H of finite index such that //"modulo

its center is compact.

1. Let G be a locally compact group; a (unitary) representation of G is by

definition a strongly continuous homomorphism n of G into the group of unitary

operators on some Hubert space H(tt) [11]. One says that 77 is irreducible if the

only closed subspaces of 7/(77) invariant under all the operators 77(g), ge G, are

(0) and H (it). We shall denote by G the set of equivalence classes under unitary

equivalence of irreducible unitary representations [11], and we shall use 77 to denote

both a representation and its equivalence class. Associated with any representation

7T we have a cardinal number d(n), the degree of 77, which is by definition the

cardinality of an orthonormal basis of the Hubert space H(w). It is not assumed

here that the topology of G satisfies the second axiom of countability nor that

d(tr) is restricted to be ^ X0.

Although, in general, examples show that representations with d(n) finite are

rather rare, the purpose of this paper is to investigate two closely related hy-

potheses involving finiteness conditions on d(-rr). To be precise, we say that G

satisfies (1) if there is an integer M<oo such that d(n)-¿M for every -rr eG. We say

that G satisfies (2) if d(n) < 00 for every neG. Our results, which are stated below,

supply simple necessary and sufficient conditions in terms of the structure of G

that a group satisfy either (1) or (2). These questions have been investigated pre-

viously and many results obtained. In particular, Freudenthal [3] in 1936 showed

that a separable (i.e. second countable) connected group G satisfies (2) if and only

if G = K+ F where tí is compact and Fis a vector group. In fact, and this shall be

important for us, Freudenthal showed that G = K+V under the much weaker

assumption that G is maximally almost periodic; that is, that there exist enough
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finite dimensional unitary representations to separate the points of G, or equiva-

lent^ that there is a continuous injection of G into a compact group. Weil [24]

extended this result to arbitrary locally compact connected groups. Finally recent

work of L. Robertson [20] expands and amplifies our results concerning condition

(2). Kaplansky [10] has considered groups G which satisfy condition (1) and proved

many interesting results. Condition (1) has also been treated in recent literature

(see e.g. [7]) in the context of abstract groups and arbitrary (nontopological)

representations.

Finally we mention the results of Thoma ([21], [22]) which completely answer

questions about conditions (1) and (2) for discrete groups. Recall that a group is

type I [11] if for every unitary representation it of G, the von Neumann algebra

R(tt) generated by the operators -n(g), g e G, is type I. Thoma proves that a discrete

group is type I if and only if it possesses an abelian subgroup A of finite index.

We note that the existence of such an A implies that G satisfies condition (1) and

hence (2) above and that (2) implies that G is type I [9]. Thus conditions (1), (2),

type I, and also CCR [11] and existence of an abelian subgroup of finite index

are equivalent in the case of discrete groups. This result supplies the key to the

proof of Theorem 1 below.

With this introduction, we shall now state our results.

Theorem 1. If G is locally compact, then there is an integer M such that d(n) ^ M

< co for all-ne G if and only if there is an open abelian subgroup of finite index in G.

The theorems involving condition (2) involve two definitions. Following [4], we

say that G is a Z-group (or is a central group) if G/Z(G) is compact where Z(G)

is the center of G. It is known ([14], [4], [5]) that a Z-group satisfies (2), namely that

all of its irreducible unitary representations are finite dimensional. Finally we say

that G = proj lim (Ga) (projective limit) if there is a family of normal subgroups Ha

directed by inclusion such that Ga = G/Ha and Ç\a H« = (e) and such that each 77a

is compact (or what is really the same, that a cofinal set of the 77a is compact).

Theorem 2. Let G be a Lie group ; then G satisfies (2) (i.e. d(rr) < oo W e G)

// and only if there is an open subgroup 77 of finite index in G which is a Z-group.

Just to standardize terminology, we say that G is a Lie group by definition if its

component of the identity G0 is open in G, and if G0 is a (connected) Lie group.

This is equivalent of course to saying that G is locally Euclidean [15].

Theorem 3. 7/G is locally compact, then G satisfies (2) if and only if G = proj lim Ga

where each Ga is a Lie group which satisfies (2) and thus, equivalently, the structural

condition of Theorem 2.

It would be pleasant indeed if Theorem 2, which makes perfect sense for any

group G, were valid in general. This is unfortunately not the case, and we shall give

a simple counterexample in §5.
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One may regard the content of Theorems 1 and 2 as saying that the only groups

satisfying the relevant conditions on their representations are the obvious ones.

In fact the sufficiency of the structural conditions is rather trivial. Theorem 3 is

less satisfactory, although it does present necessary and sufficient conditions, and

in fact the proof of sufficiency here lies a bit deeper.

2. In this section we want to consider the "if" parts of Theorems 1, 2, and 3.

We mention first the following well-known fact.

Proposition 2.1. Let G be locally compact, and H an open subgroup of finite

index. Then d(ir) -¿M<co W e G (resp. d(rr) < oo W e G) if and only if d(ir) ̂  M1

< oo W e H (resp. d(rr) < oo Vw e 77).

Proof. If 770 = D xHx '1 (x e G), H0 is open and of finite index. So by using our

result twice, it suffices to consider the case when 77 is normal. If 77 is any unitary

representation of G, tt\h will denote its restriction to 77 and if A is any unitary

representation of 77, UÁ will denote the induced representation which can be

defined with no trouble in this simple situation. As in [13] or as in [19] one can

establish a Frobenius reciprocity law of the form HomG (Uk, 7r)s;Homíí (A, tt\h)

where Horn denotes the space of bounded intertwining operators.

If A e 77, let us take tt=Ua\ then, as is clear, UK\H is the sum of n = [G:H]

irreducible representations all conjugate to A. Therefore Horn,, (A, UX\H) has

dimension at most n, and so does HomG (Ux, UK). This says that Ux is a finite

direct sum of irreducible representations, in fact of at most n irreducible representa-

tions. Thus if d(n)<:M Vtt e G, d(UA)^nM, but on the other hand, d(UK) = d(X)n

and so d(X) á M VA e 77. Similarly if d(rr) < 00 for all 77 e G, it follows immediately

that d(X) < 00 for all A e G.

Conversely suppose that cf(A)<oo for all A £ 77, and let neô. Then if Z(7r|w)

is the center of the von Neumann algebra generated by n\H, G/H acts as a group of

automorphisms of Z(tr\H). Any operator in Z(tr\H) invariant under this action is a

commuting operator for 77 and hence is a scalar. It is immediately clear, then, that

the dimension of Z(tt\h) is at most n=[G:H]. Thus Z(rr\H) is finite dimensional,

and it follows that ir\H is a finite sum of primary representations. Since 77 is type I,

77^ has an irreducible subrepresentation A.

We apply the Frobenius reciprocity theorem above to A and 77, and conclude

that HomG (t/\ tt)^(O). A nontrivial commuting homomorphism is necessarily

surjective since 7r is irreducible so that d(TÍ)^d(UA) = n d(\)<co. Moreover if

d(X) ¿ M < 00 for all A e 77, d(rr) ̂  nM for all -neu. This completes the proof of the

lemma.

We can dispose of the "if" parts of Theorems 1 and 2 at this point by noting

first that d(\) = 1 for every A e 77 if 77 is abelian. Thus if G has an open abelian

subgroup of finite index, then d(n) ^ M for some M and all tt eG. Finally if 77 is a

central group, then <f(A)<oo for all A e 77 by [5] and hence if G has such an open

central subgroup of finite index, then d(rr) < 00 for all tt e G.
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We turn now to the "if" part of Theorem 3 (on projective limits). The following

fact accomplishes this and perhaps has some independent interest.

Proposition 2.2. Let G = proj lim Ga with Ga = G/Ha where Ha is compact.

Let 77 be a primary representation of G. Then there exists a such that tt(H¿) = (1).

Proof. Let Xa denote the restriction of tra to 77a. Then as 77K is compact \a is the

sum of copies of various irreducible representations of 77a, Aa = 2«<,o- (oeHa)

where na are cardinal numbers. Let Xg denote the subspace of 77(77) which is the

range of the projection onto the summand n„a. Now, just as in [14], G acts as a

permutation group on Ha and ir(g) - X£ = Xg'°. Thus if O is an orbit of G on Ha

and if Z° = 2 X£ (<* e O) then X° is an invariant subspace for w. Moreover the

projection P¡¡ onto XI and hence the projection PS onto XS are in the von

Neumann algebra R(tt) generated by w. Thus PS is in the center of R(tt) and, since

77 is primary, PS is either zero or one. Thus there is a unique orbit O such that

Aa = 2 nao (0 e O), with each a e O of the form g-a for some fixed a e O. Let 77'

be the kernel of a in 77a. Then Ha/H' is a Lie group and since 77a = proj lim (H„/He),

ß^a it follows from general facts about projective limits and Lie groups that there

exists ß such that HB<=-H'. Thus o'(h)= 1 for « e Hß, but 77,, is normal in G and

(g-o')(h) = tr'(ghg-1)=l. We find that a(h)=l for all heHß and aeO, and

finally that tt(«) = \a(h)= 1 for « g Hß. This completes the proof.

The "if" part of Theorem 3 is clear, for if G = proj lim Ga, where each Ga has

all irreducible representations finite dimensional then, by the proposition above,

G has the same property.

Remark. This proposition tells us that the representation theory of a projective

limit G = proj lim Ga is determined almost completely by the representation theory

of the Ga's. For instance it follows at once that G is type I iff each Ga is type I, and

that G is CCR iff each Ga is CCR. Moreover G = ^Ja Ga, and similarly for the

primitive ideal spaces of the associated C*-algebras.

3. It will be convenient at this point to take care of the " only if" part of Theorem

1 ; that is, we must show that if G is any locally compact group with d(-rr)^M<oo

for some M and all 77 e G, then G has an open abelian subgroup of finite index.

Proposition 3.1. If d(n) ^ m < 00 W e G, then G has an open abelian subgroup

of finite index.

Proof. Let Gd denote the underlying group of G (with the discrete topology).

Then any unitary representation of G is a priori a unitary representation of Gd

and hence can be viewed as a representation of the algebra A(Gd) where A(Gd) is

the group algebra of the discrete group Gd. Of course A(Gd) is the algebra of all

complex measures on G which are supported on a finite set of points with con-

volution as multiplication. It is clear that the representations of A(Gd) obtained

from the irreducible unitary representations of the topological group G separate

the elements of A(Gd). Therefore A(G„) has a separating family of representations
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all of which have degrees no larger than m. The "Godement principle" says now

that any suitably irreducible representation of A(Gd) can have degree at most m.

More precisely, there is a standard polynomial in 2m noncommutative variables

P2m such that P2m(X1- • -X2m) = 0 is satisfied identically when the x¡ are nxn

matrices n ¿ m, but such that this fails for (m+ l)x(rw+ 1) matrices [8]. Since A(Gd)

has a separating family of representations of degree at most m, it follows at once

that the identity 7>2m=0 is satisfied identically in A(Gd).

Now if tt is any representation of A(Gd) on a Banach space F, it is clear that the

identity P2m = 0 holds in the algebra of operators Tr(A(Gd)). If n is completely

irreducible in the sense that Tr(A(Gd)) is dense in the strong operator topology in

the algebra of all bounded operators L(V) on F, it follows by standard limit

arguments that P2m=0 holds identically in L(V). The only way this can happen is

of course that dim V=d(Tr)^m. In particular let tt be any representation of A(Gd)

obtained from an irreducible unitary representation of the discrete group Gd. It is

evident that 7r is completely irreducible and hence d(Tr)^m. Therefore the discrete

group Gd is type I and by Thoma's results it has an abelian subgroup B of finite

index. The closure of B in the original topology on G, say A, is clearly abelian and

of finite index and hence open. This completes the proof of Theorem 1.

We should remark that we could also have appealed to the results of Isaacs and

Passman in [7] and obtained the same result. Moreover if G were separable, we

could then find a countable dense subgroup D of G. We could then have replaced

Gd above by D with the discrete topology and the same argument would work;

we would find an abelian group B of finite index in D. A simple argument shows

again that the closure of B in G is abelian and of finite index in G. Thus to prove

Theorem 1 for separable G, Thoma's result for countable discrete groups would

suffice.

At this point Theorem 1 is completely proved and the "if" parts of Theorems

2 and 3 are proved. It remains to prove the more nontrivial parts of Theorems 2

and 3, namely, to prove structure theorems about a group G starting from hy-

potheses about its unitary representations.

Thus we assume that G is a Lie group and that d (tt) < oo for all tt eG. Since we

want to show that G has an open central subgroup of finite index, we are clearly

free to replace G by any subgroup of finite index. Our hypothesis on G is preserved

by Proposition 2.1. Let G0 be the connected component of G. Since the irreducible

unitary representations of G separate points of G, and hence of G0, G0 is maximally

almost periodic. By the classical result of Freudenthal and Weil, G0 = K+ F where

K is compact and F is a vector group.

Since our hypothesis on G inherits to any quotient group, G/G0 satisfies the same

hypotheses. As we have remarked, the hypothesis that c7(7r)<oo for all tt e G

implies that G is type I. Thus G/G0 is type I and, as G0 is open in G (G is a Lie

group), G/G0 is discrete. Thus Thoma's theorem implies that G/G0 has an abelian

subgroup of finite index. We may then simply assume that G/GQ is abelian.
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Let N be the derived group of G0 = K + V so that N is also the derived group of K

and is hence a semisimple Lie group. Since K is normal in G, N is also normal in

G and G acts by automorphisms of N. Since the group of all automorphisms of N

modulo its inner ones is finite there is a subgroup of G of finite index which acts

by inner automorphisms of N. Thus again we can simply assume that all of G acts

by inner automorphisms of N.

We consider the quotient group H=G/N; it is an extension of the discrete

abelian group G/G0—77/770 by 770~G0/Ar which is an abelian connected Lie group.

The group 77/770 acts on 770 and hence on H0, the dual group. It follows by a

trivial modification of Mackey's theory in [14], taking account of the fact that

77/770 need not be countable (the extra difficulties here are negligible), that if there

is any orbit of 77/770 on 770 which is infinite, then 77 has an infinite dimensional

irreducible unitary representation. Thus if for À e 770, 77(A) is the stability group of

A, then 77(A) is of finite index in 77. Now since 770 is the sum of a vector space and a

finitely generated discrete group, there is a dense finitely generated subgroup, say

with generators A¡, i= 1,..., «. Then (~)t=, H(X/) is of finite index in 77 and, if «

is in this subgroup, it acts trivially on a dense subgroup of 770, hence on H0, and

hence on 770. Thus we may in addition assume that 770 is central in 77.

It remains to analyze the central group extension 1 -> 770 -> 77-> 77/770 -> 1.

Since 77/770 is discrete we can essentially treat this as an extension of abstract

groups. It is described by a cohomology class a e H2(H/H0, 770). Now for each

A e 770 = Hom (770, T) where T is the circle group, let A^a) be the image of a in

772(77/770, T) and let 77(A) be the corresponding extension of 77/770 by T. There is a

homomorphism t/>(\) of group extensions of 77 into 77(A) such that T-</>(X)(H)

= 77(A). Thus if 77 is any irreducible representation of 77(A), tt is scalar on T, and

hence 77 o <£(A) is an irreducible representation of 77. Since all irreducible representa-

tions of 77 are finite dimensional, the same is true of 77(A) (see [25], [17]).

Now by a standard argument, it follows from this (and, in fact, from the weaker

assumption that there is some irreducible representation of finite degree of 77(A)

nontrivial on T) that the cocycle a(X) defining 77(A) has finite order, say m, in

772(77/770, T). Since T is divisible we can find some cocycle representative a(A)

for a(A) which takes values in Zm, the set of «tth roots of 1 in T. It follows that there

is a subgroup 77i(A) of 77(A) of the form 1 ->ZM -* H,(\) -> 77/770 -*- 1.

It is clear that any irreducible representation of TT^A) extends trivially to an

irreducible representation of 77(A). Thus all irreducible representations of 77j(A)

are finite dimensional and, moreover, 77i(A) is a discrete group. Thus by Thoma's

theorem, there is an abelian subgroup ^i(A) of finite index in H,(X) and, since Zm

is central, we may assume that A,(\)^>Zm. Now A(X) = T-A,(X) is an abelian sub-

group of finite index in 77(A) since T is central in 77(A).

Now if s and t are in 77/770, we may pick coset representatives s, i in H for them.

The commutator [s, i] depends only on s and t and is an element of 770 denoted by

[s, t]. Now for each A e 770, we have seen that there is an abelian subgroup A(X)
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of finite index in 77(A). This immediately implies that there is a subgroup 5(A) of

finite index in 77/770 such that X([s, t])=l if s and t are in B(X). As before, we use

the fact that there is a dense finitely generated subgroup of 770 with generators

Aj,..., An, to see that, if s, t e Hf-i B(\i), then [s,t] = l. Thus there is a subgroup

of finite index in 77 which is abelian. Now we note that we can assume that 77 is

abelian.

Let us summarize what we know about our original group G now; G has a

normal subgroup N which is a compact connected semisimple Lie group, H=G/N

is abelian and G acts on N by inner automorphisms. Let Z be the centralizer of N

in G ; then we know that G=ZN and Z n N is finite and Z/Z n N~ G/N is abelian.

We claim now that every irreducible representation of Z is finite dimensional.

Indeed if tt eZ, tt(z) = X(z) -l for z e Z n N since Z n N is central in Z where

A e (Z n N)~. We may find a (finite dimensional) irreducible representation p of

A' with /o(n) = X(n)■ 1 for n eZ n Af. Now on the Hubert space 77(p) <g) 77(77), define

a representation /x of G by 7i(g) = p(n) <g> 7r(z) when g=n-z, neN, zeZ. It is

immediate that p is in fact a well-defined irreducible representation. Since it is

finite dimensional, 77 is finite dimensional. Now by exactly the same arguments

we used for 77 we can show that Z has an abelian subgroup of finite index, which

we may assume contains Z r\ N. Therefore we may assume that Z is abelian in

addition to what we have already.

Finally as G=NZ with Z abelian and centralizing N, it is clear that Z is the

center of G. Then G/Z~N/Zis compact so that G is central. This proves Theorem 2.

4. It remains to prove the second half of Theorem 3, namely that if d(tt) < 00

W e G, then G is a projective limit of Lie groups, G = proj lim Ga. Once we know

this, then each Ga automatically satisfies the same condition that G does and the

result will be proved.

Let us say that a representation 77 of G is finite if the von Neumann algebra R(tt)

generated by tt is a finite von Neumann algebra [2]. This differs somewhat from

Mackey's terminology in [11].

Lemma 4.1. 7/ G is locally compact, then d(n) < 00 W e G if and only if every

representation of G is finite.

Proof. The "if" part is clear for an irreducible representation 7r is finite if and

only if d(-n) <ao. For the converse, we consider the group C*-algebra A of G. Iff

is a two sided primitive ideal, then 7 is the kernel of an irreducible representation tt.

Since i/(7r) = n < 00, A/I has dimension n2. Let Fn be the set of all primitive ideals

7 of A such that A/I has dimension less than or equal to n2 and let F be the primitive

ideal space of A. Then by assumption F=IJ„ Fn. For each subset K of F, the kernel

I(K) of K is f)I (le K). The closure of K in the kernel-hull topology on F is

K={J e F;J^=> I(K)}. Let P2n be the standard polynomial identity characteristic

of the ring of n x n matrices [8]. Then 7J2n = 0 is satisfied in A/I for each I e Fn and
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hence P2n = 0 is satisfied in A/I(Fn). Moreover if JeFn, then P2n = 0 is satisfied in

A/J and hence J e Fn. Thus Fn is a closed subset of F.

Now following Glimm [6], we define for each closed subset K of F and for every

representation A of A, P¡,(K) to be the projection onto Hx(K) = {x : x e 77(A), and

A(a)x=0 for every a e I(K)}. According to Theorem 1.9 of [6], K^*PA(K) extends

to a countably additive projection-valued measure on the Borel sets of F with

7\(7v) in the center of 7?(A). Since F={jnFn, H(\) = J,(HÁ(Fn)-H¿Fn^,)). We

define a subrepresentation Xn of A by restricting A to the invariant subspace

HA(Fn) - Hh(Fn _,). Then A = 2 An, and An(a) = 0 if a e I(Fn). Since P2n = 0 is satisfied

in A/I(Fn) as we have noted above, the algebra Xn(A) and hence its weak closure

7?(An) satisfy P2n = 0. Now any von Neumann algebra satisfying this identity is

finite. Moreover 7?(A) is the direct sum of the 7?(AJ and since the direct sum of

finite algebras is finite [2], R(X) is finite as desired.

Lemma 4.2. If d(n) < co for all neô, then G has arbitrarily small invariant

neighborhoods ofie.

Proof. We can always find a representation A of G such that A is a homeomor-

phism of G onto a closed subgroup of the unitary group U(R(X)) of 7?(A) in the

strong operator topology (say, the regular representation). If R(X) is finite, which

it is by the previous lemma, it is clear that U(R(X)) has arbitrarily small neighbor-

hoods of e since 7?(A) has enough finite traces. It follows at once that G has the

same property.

The following lemma completes the proof of Theorem 3.

Lemma 4.3. 7/G has arbitrarily small invariant neighborhoods of e, then G is a

projective limit of Lie groups.

Proof. For the sake of completeness we include a proof of this fact (see also

S. P. Wang [23]). We have to show that given any neighborhood U of the identity

in G, there is a compact normal subgroup K of G with 7C<= JJ such that G/K is a Lie

group. We consider first the case when G is totally disconnected. If U is any

neighborhood of the identity, it is known [15, p. 54] that there is a compact open

subgroup L of G contained in U; moreover by assumption there is an invariant

neighborhood V of the identity contained in L. We let K=C\gLg'1 (geG) so

that K is a compact normal subgroup of G. Since V=g Vg ~1 for all g e G, and since

L=> V, K^OgVg'1 (g 6 G)= V and so K is open. Then G/K is a discrete group,

hence a Lie group.

If G is any locally compact group, let G0 denote the connected component of the

identity in G. Then G/G0 is totally disconnected, and since G has arbitrarily small

invariant neighborhoods, so does G/G0. By the above, we can find a compact

open normal subgroup N in G/G0. We denote by 77 the complete inverse image of

A7 in G so that 77 is normal, open and contains G0. Since 77/G0 is compact, it follows

[15, p. 175] that 77 is a limit of Lie groups. Therefore if U is any neighborhood of
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the identity in G, we can find a compact subgroup Ki of G, contained in 77 and

normal in 77, such that H/Kx is a Lie group. Our problem is to replace Kx by a

subgroup K which is also normal in G.

Since 77/7?! is a Lie group, we can find a neighborhood W of the identity in

H/Kx which contains no nontrivial subgroups. If p is the projection of 77 onto

77/Äj we can find by assumption, and the fact that 77 is open in G, an invariant

neighborhood F of the identity in G which is contained in 77 and with p(V)<^ W.

Again since 77 is a limit of Lie groups, we can find a compact normal subgroup K2

of 77 with K2^ V, such that H/K2 is a Lie group. \f g e G, gK2g_1 is a subgroup of

77 contained in gVg'1 = V and hence p(gK2g'1) is a subgroup of 77/^ contained

in p(V)=W. By the choice of W, p(gK2g_1) must consist of one element or,

equivalently, gK2g'1(=-Ku Now let K be the smallest closed subgroup of G con-

taining every gK2g~x for every g eG. Then K is normal in G and K^K^U since

Ki is a subgroup. Moreover K=>K2 by definition and, since H/K2 is a Lie group, so

is H/K. Finally as 77 is open in G, we see that G/Kis a Lie group and this completes

the proof.

5. In [20] L. Robertson has improved considerably the criterion characterizing

non-Lie groups G for which cf(7r) < oo for all ireô. The following example shows

that Theorem 2 is false in general even for separable groups. Let T be the circle

group and let the integers mod two, Z2, act on Thy conjugation and let G0 = T+Z2

be the semidirect product. Then J is a compact open subgroup. Let 7"* be an

infinite product of circles and let Z2°° be the countably infinite direct sum of copies

of Z2. Then Z2 ={(at), a¡ = 0, 1, and 0 except for finitely many i} is a discrete group

and acts on Tx componentwise (a-t^acU where t = (ti)eT'a. Then let G = 7"°

■Z2 be the semidirect product. (G can also be described as the restricted direct

product [18] of a countable number of copies of G0 relative to the compact open

subgroup T.)

It can be seen either from [14] or from [18] that £f(7r)< oo W e G, and in fact that

d(rr) is always a power of 2. Finally it is quite easy to see that no subgroup of finite

index in G can be a central group, so that this is a counterexample to Theorem 2

for general groups.
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