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Abstract. Let M be a finite-dimensional, flexible, Lie-admissible algebra over a

field of characteristic ^2. Suppose that 91 ~ has a split abelian Cartan subalgebra g>

which is nil in 91. It is shown that if every nonzero root space of 91" for S is one-

dimensional and the center of 91 ~ is 0, then 31 is a Lie algebra isomorphic to 31".

This generalizes the known result obtained by Laufer and Tomber for the case that

91" is simple over an algebraically closed field of characteristic 0 and 31 is power-

associative. We also give a condition that a Levi-factor of 91" be an ideal of 31 when

the solvable radical of 31" is nilpotent. These results yield some interesting applica-

tions to the case that 31" is classical or reductive.

1. Introduction. Let 91 be a finite-dimensional nonassociative algebra over a

field. A. A. Albert [1] proved that if 91 is a flexible algebra of characteristic ^2, 3

such that 9t + is a simple Jordan algebra of degree ^3 then 91 is either quasi-

associative or a Jordan algebra. As an analog to this result, Laufer and Tomber [7]

have proved that if 91 is a flexible power-associative algebra over an algebraically

closed field of characteristic 0 such that 91" is a simple Lie algebra, then 91 is a Lie

algebra isomorphic to 91 ". In this case it is shown that the simplicity of 91 ~ implies

that 91 is nil ([8], [10]). In the present paper, by assuming only that a split Cartan

subalgebra of 91 " is nil in 9Í, we extend the result of Laufer and Tomber to the case

that the radical of 91 ~ is not 0 and the characteristic is not 2. We also obtain the

same result for the algebra 91 with 91" classical.

If 91 ~ is a Lie algebra of characteristic 0, consider a Levi-factor © of 91 ". Although

© may be an ideal of 91", © need not be an ideal of 9t even in case 91 is a nilalgebra.

Therefore, in terms of a Cartan subalgebra of ©, we give a condition that © be an

ideal of 91 when the solvable radical of 91" is nilpotent. This provides some interest-

ing applications to the case 9Í" is reductive.

2. Preliminaries.    For an algebra 91, the algebra 9t " is defined as the same vector

space as 91 but with a multiplication given by [x, y] = xy-yx. Then 91 is called Lie-
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admissible if 91" is a Lie algebra, that is, 91" satisfies [x, x] = 0 and the Jacobi

identity [x, [y, z]] + [y, [z, x]] + [z, [x,y]]=0for x, y, zin 9Í. 91 is said to be flexible

if it satisfies the flexible law

(1) (xy)x = x(yx)

and the linearized form of this is

(2) (xy)z+(zy)x = x(yz) + z(yx),

or, equivalently,

(3) L,Xy—LyL,X     =     KyX—  KyRx

where Rx and Lx are right and left multiplication by x in 91.

If 9Í is an algebra over a field i> of characteristic +2, the algebra 9t+ is defined

as one with multiplication xy = \(xy-\-yx) on the same vector space. If 91 is

flexible, by (1) we get \[y2, x]=y- [y, x], and the linearization of this implies that

DX=RX—LX is a derivation of 9l + , that is,

(4) (y-z)Dx=yDx-z+y-zDx

for all x, v, z in 9Í. Hence if 91 is flexible and Lie-admissible then Dx is a derivation

of 91 for every x in 9Í, since Dx is a derivation of 9t~ and yz=y-z+\[y, z]. If we

denote TX=\(RX+LX), from (4) we deduce

(5) Dy.Z=      DyTz+DZTy.

A power-associative algebra 9Í is said to be nil in case every element x of 9Í is

nilpotent, that is, xn = 0 for some positive integer n. If 91 is a flexible algebra of

characteristic /2, 3, 5, it is shown in [1] that 91 is power-associative if and only

if x2x2 = x3x for all x in 91.

Let 91 now be a finite-dimensional, flexible, Lie-admissible algebra over a field

<1> and £> be a split Cartan subalgebra of 9Í". Then 9t" has a vector space decom-

position; the Cartan decomposition relative to §:

91- - %„+%„+'•' • ■+%,

where 9ta, the root space corresponding to the root a, is the set of elements xa in 91

such that xa(Dh-a(h)I)rm = 0 for all h in £>. Then we have

[9ta, 9^] £ 0 if a + ß is not a root,
(6)

S 9tœ+/î   if a+ß is a root.

Let9ía(A)={x£ 9Í I x(Dh — a(h)I)k = 0 for some k} for h in §. Since Dh is a derivation

of 9Í, it is shown that

9ta(ft)9Ii(W s 0 if a(h)+ß(h) is not a characteristic root,

- 5ia(ft)+£(w   if a(h)+ß(h) is a characteristic root

(see [6, p. 54]). Recalling yía = r)neH 9ía(ft), we see that

9L9L ç0 if a + ß is not a root,
(7)

£ 9ta+i   if a + ß is a root.
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Since § is the root space corresponding to the root 0, (7) implies that any split

Cartan subalgebra of 9Í " is a subalgebra of 9Í. If 5DÎ is a subset of 9Í, then we note

that the centeralizer of 9JÎ in 91" is a subalgebra of 91 and so is the center of 91 ~.

For the basic results on Lie algebras we refer the reader to [3], [6], and [11].

Throughout this paper we assume, unless otherwise stated, that 91 denotes a

finite-dimensional, flexible, Lie-admissible algebra over a field O of characteristic

#2.

3. General results in case rad 9Í" ^0. This section is devoted to the proof of

the theorem :

Theorem 3.1. Let 91 be a finite-dimensional, flexible, Lie-admissible algebra over a

field $ of characteristic i= 2. Suppose that 91 " has a split abelian Cartan subalgebra

§ which is nil in 91. If dim 9ta= 1 for a/0 and'ñ' has the center 0, then 91 is a Lie

algebra isomorphic to%~.

For the proof we first deduce some basic identities for flexible algebras and

prove lemmas which are useful in this paper.

Let 91 be a flexible algebra of characteristic /2. Then from the flexible law

(5) we get

(8) Dh* = 2DhTh = 2ThDh

for all h in 91. If h is a power-associative element (that is, the subalgebra generated

by h in 9Í is associative), then by (5) we see ZV = A>?*2 + Dh^Th and so from (8) we

have

(9) Dh* = Dh(2TZ + Th*).

From (8) and (5) we also obtain

(10) 2V = 2Dh*Th> = 4DhThTh* = 4Th*ThDh = DhT^ + D^Th,

(11) ¿V = DtfTtf + DfT*.

Lemma 3.2. Let 91 be a flexible algebra over afield <1> of characteristic ^2. Let

h be a power-associative element of 91. Then

(i) if an element x o/9I is a characteristic vector of Dh and Dh*, then xDh* = xDh*

= 0 implies xZ)h2 = 0, and furthermore

(ii) if x is a characteristic vector of Dh, Dhz, Rh, and Rhz, then xDh* = xDhs = 0

implies xDy? = 0.

Proof, (i) Let xDh = Ax and xDht = px for A, p. in 0. If A = 0, we use (8) to obtain

p. = 0. If A^0, we get x7>= -2xJft2 from (9). Hence, by (10), 0=xDh*=4xTh*ThDh

= -8xrft3£)h=-8Axrfe3 since ThDh = DhTh, thus x7;3 = 0. But then, by (8), xTh

=p.(2X)~1x and so p. = 0; xDh* = 0.

(ii) Let xDh = Xx, xDh2=p.x, xRh = vx, and xRh^ = wx for A, p., v, w in i>. If A = 0,

we use (9) to conclude xDA3=0. Now suppose A^0. If /u.=0 then, by (8), xTh = 0,
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and we use this together with (9) to obtain xDhz = xDhTh* = Xu>x. Hence by (11)

this implies that 0 = xDhzT„? = XwxTh2 = Xw2x (recall p. = 0), thus w = 0 and xDha = 0.

If p.^0, then, by (10), 0 = xDhi = 2xDh2Th2 = 2p.xTh* and so xTh*=0, and since

A^O, this implies xDhTh***Q. Hence, by (9), we have xDh* = 2xDhTl = 2XxTl

= 2Xv2x where v = v-\X. Recalling xFfc2 = 0, this and (11) imply 0=xDhs=xDhzTh*

-T-xD,l3Th2 = pxThz + 2Xv2xTh2=p.xTh3 and so xFft3 = 0. Therefore from (10) it

follows that 0 = xDh* = xDhTh3 + xDh3Th = XxTh3 + 2Xi>2xTh = 2Xi>3x, thus f = 0 and

xZ)ft3 = 0. This completes the proof.

Lemma 3.3. Let ig be a split Cartan subalgebra o/9t" with h2 = 0for all h in §.

If a is a nonzero root ofS¿ such that Dh is a scalar on 9fa/or all h in §, then 9taF„ = 0

for all h in £>.

Proof. Let h be any element of § and let Dh = a(h) on 9ia. By (8), DhTh = 0 and

hence if a(//)^0, then 0 = 9íaZ)hFA = a(/¡)9íaFh implies 9taF. = 0. If a(h) = 0, then

a(/z')^0 for some h' in © since a is a nonzero root. We linearize (8) to get

0 = 9taOAFh. + 9taOrF)l = 9ia£>ft-Fh = a(A')9IaFh, and thus 91^ = 0. The proof is

complete.

We are now ready to prove the theorem.

Proof of Theorem 3.1. Since § is finite dimensional and is nil in 91, there exists

a positive integer t> 1 such that A' = 0 for all h in §. We first show that h2 — 0 for

all h in £. Suppose t^3 and let n be the least integer such that 3n^t. For any

element h e §, let g=hn. Then g3 = 0. Since dim 9ta= 1 for a^0 and £ is abelian,

by (7) and Lemma 3.2(i), g2 belongs to the center of 9Í" and so g2 = 0, or h2n = 0.

If 2«>4, let m be the least positive integer with 3m^2n. Then we see m<n. The

above argument implies h2m = 0 and hence by repeated applications of this, we

have either A4 = 0 or h2 = 0. But if /t* = 0 then, by Lemma 3.2 (ii), A3 = 0 and so

h2 = 0. Since £ is abelian, this implies that § is a zero algebra i.e., £>2 = 0. Therefore

if 9Ia = <I>x and [x, h] = a(h)x, then by Lemma 3.3 we have xh= —hx = \a(h)x.

Let a, ß be any nonzero roots. If a + ß is not a root, by (7), 9(^ = 91^91,2 = 0. Now

suppose a + ß is a root. If a + ß = 0, choose an A in § with a = a(A)#0 and let

xh = ax and 9tí = í>_v, so hx = (a — a)x. Since xy and yx are in §, from the flexible

law (hx)y — h(xy) + (yx)h—y(xh) = 0, we have xy = aa~1[x,y]. If a + ß is a nonzero

root, then by (7) 9ia9la£9ta+Ä = <Pz. Therefore, for any roots a and 0^0, we have

(12) xy-yx = Xz,       xy = pz,       yx = (p.-X)z

for x in 9ta and some z^0 in 9ía+í. We now choose an h in § with ß(h)^0, and let

a = a(h) and ß=ß(h). Then by Lemma 3.3

(13) xh = —hx = -Jax,       zh = —hz = \(a+ß)z

for x in 9ta and z^0 in 9ta+i. We use (hx)y-h(xy) + (yx)h-y(xh) = 0 together

with (12) and (13) to obtain

±[-ap. + (a+ß)p. + (p.-X)(a+ß)-a(p,-X)]z = 0.
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Since z^O, this gives ß(2p. — X) = 0 and so X = 2p.. Therefore, from (12), xy= —yx

=j[x,y] and this holds for all x, y in 91. This completes the proof.

It is shown in [7] that if 91 ~ is semisimple over an algebraically closed field of

characteristic 0, then 9Í is a direct sum of ideals 9t¡ of 9t such that the 9i4"'s are

simple Lie algebras. In this case it follows that if 91 is power-associative then 91

is a nilalgebra ([8] and [10]) and hence 91" being semisimple satisfies the conditions

in Theorem 3.1. Therefore Theorem 3.1 generalizes the result of Laufer and

Tomber.

A finite-dimensional Lie algebra £ over a field of characteristic ^2, 3 is called

classical if (1) the center of S is 0; (2) £ = [£, £]; (3) fl has an abelian Cartan sub-

algebra © (called a classical Cartan subalgebra), relative to which (a) 2 = 2« £«

where the adjoint map ad h is a scalar on 2a for any h e ig and a; (b) if a^O is a

root, dim [£„, £-J= 1 ; (c) if a and ß are roots and ß^O, not all a + kß are roots.

In any classical Lie algebra, dim Sa=l for a^O (see [10, p. 30]). We also recall

that classical Lie algebras need not be semisimple. As an immediate consequence

of Theorem 3.1 we have

Corollary 3.4. Suppose that 91" is a classical Lie algebra having a classical

Cartan subalgebra which is nil in 9Í. Then 91 is a Lie algebra isomorphic to%~.

In Theorem 3.1, the conditions that £> is abelian, dim 9ia= 1 for a#0 and the

center of 9Í" is 0 are not strong enough to imply that § is nil in 91. The condition

of center 9t" =0 is also essential in the theorem. We now give examples for these

two facts in the following:

Example 3.5. Let 9Í be a 3-dimensional algebra over $ with the multiplication

table given by

xh = x,       yh = \(a+\)y,       hy = \(\ -a)y,       h2 = h,

and all other products are 0, where a^O, 1 in <I>. We easily check that 9t is flexible,

and 91" is given by

[x, y] = 0,        [x, h] = x,        [y, h] = ay,

and so is a solvable Lie algebra. We also note that O/i + Ox+Oj' is the Cartan

decomposition of 91" for the Cartan subalgebra £> = <5>h and 9^ = Ox, 9Ia = Oy for

the roots 1 and a. The center of 9Í " is 0 but © is not nil in 91.

Example 3.6. Let 9Í be a 4-dimensional algebra over the field <t> with the

multiplication given by

xy = z+\h,       yx = z — \h,       xh = —hx = \x,

yh = -hy = -$y,       h2 = -z,

and all other products are 0. It can be shown that 91 is flexible Lie-admissible but

not associative since (yh)hj^yh2 = 0. We also see that © = <P/i + Oz is an abelian

Cartan subalgebra of 91" and 91" =$Q + $>x+<t>y is the Cartan decomposition for

© such that 9tx = Ox and 91 _ x = <by for the roots 1 and —Lit follows that § is a nil
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subalgebra of 91 such that w3 = 0 for all u in ¡q and the center of 91" is 3>z, but 9( is

not a Lie algebra.

4. Levi-factors of 91 ". Let 9t be a finite-dimensional, flexible, Lie-admissible

algebra over a field <J> of characteristic 0. A Levi-factor S of 9t~ is a semisimple

subalgebra of 21" such that 91" =3î + © (vector space direct sum) where 3Í is the

solvable radical of 21". Though © may be an ideal of 2Í", © is not in general an

ideal of 21 even in case 21 is nil. In fact, if 2t is the algebra in Example 3.6, we see

that 2t is a nilalgebra with u3 = 0 for all u in 21 and <S = <bx+<t>y+<bh is a Levi-

factor of 21" which is an ideal of 91" but not of 91. Here we notice that the Cartan

subalgebra <J>A of ©, being nilpotent in 21, is not a subalgebra of 91. Therefore we

wish to give a condition that the Levi-factor © is an ideal of 9Í in terms of a Cartan

subalgebra of ©.

Theorem 4.1. Let 9t be a finite-dimensional, flexible, power-associative, Lie-

admissible algebra over an algebraically closed field <t> of characteristic 0 such that

the radical 3t o/9l" is nilpotent. Then a Levi-factor © o/9l" is an ideal o/9l if and

only if © has a Cartan subalgebra Sb that is a nil subalgebra of 2Í and [3í, íp] = 0. In

this case 3t is a subalgebra o/9t, and furthermore ifli is simple, then either 91 is a Lie

algebra or 91 " is nilpotent.

Proof. Suppose that © is an ideal of 91. Then since © is power-associative under

the multiplication in 91 and semisimple under Lie multiplication, by the remark

following the proof of Theorem 3.1, © is a Lie algebra under the multiplication in

9Í. Hence any Cartan subalgebra of S satisfies the conditions in the theorem.

Now suppose that § is a Cartan subalgebra of © satisfying the conditions. We

show [S, 9Î] = 0 and hence © is an ideal of 91". Let ©ao be the root space of ©

for the root a0#0 of §. Then ©ao = i>x and a0 = a0(h) ^ 0 for some h in §. By the

Jacobi identity a0[m, x] = [SR, a0x] = [?R, [x, A]]£[[SR, h], x] + [[x, 3d], h] = 0, and

hence [3î, x] = 0 and [3Î, ©] = 0. It now follows from [4, p. 20] that there exists a

Cartan subalgebra £' of 91" such that §' = £ + £>' n 9î and 9ta = 9ta n S + 9la n 3î

where 9ttt is the root space of 21" for §' corresponding to the root a. Since [£>, 3Ï] = 0

and § and 3ï are nilpotent, so is £ + 31 in 91". Since §' is maximal [3, p. 380], we

see that §' = £> + 3Î. Therefore 2ta £ © for a ¿ 0 and © 2 § + 2* # 0 2Ia, that is,

Since a(z) = 0 for ze 3t, this is the Cartan decomposition of© for § and so dim 9ta

= 1 for <*5¿0. Since § is a commutative nil subalgebra of 9Í and the center of ©

is 0, by the same method as in the proof of Theorem 3.1, we obtain §2 = 0, and

hence, by Lemma 3.3, Lh= -Rh on © for all h in ©. Therefore

(14) xh = —hx = i[x, h] = \a(h)x

for x in 21.

We first prove that © is a subalgebra of 91. If a and /J are nonzero roots and
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a+ß/0, then 9ía9í„c©. Let a^O and let x and y be nonzero elements of 9ta and

9t_a, respectively. Then, by (7), xye&' and so xy = h + z for he ig and zefR.

Since a#0, by (14), we may choose h' e Sq such thatyA' = — h'y = Xy for A/0 in <I>.

From (xy)h' + (h'y)x=x(yh') + h'(yx), we have (h + z)h' - Xyx = Xxy + h'(h" + z)

where yx = /z" + z for h" e ig. Since §2 = 0 and [9î, £>] = 0, this implies A(xy+yx) = 0

and xy+yx = 0 since A^O. Hence h + h" + 2z = 0 and so h + h" = z = 0. Therefore

xy= —yx belongs to § and by (14) this proves that © is a subalgebra of 91.

We now prove that © is an ideal of 91. Since © is a subalgebra of 9t, as before,

we see that © is a Lie algebra under the multiplication in 91. Hence for a root a^O

of § there exists a 3-dimensional simple subalgebra ©<af) of © with a basis x, y, h

such that

(15) xh = x,       yh = —y,       xy = h,

where 9ia = Ox and 9t_a = i>y. If z is any element of Si, then we have

(16) xz = zx = Ax,       yz = zy = py

for A, ¿tin <P. Writing §' = í>/¡ + 93 (vector space direct sum), we see that hz=zh = vh

+ b for be S3. Equation (2) applied to x,y, z together with (15) and (16) implies

2(vh + b) = 2p.h and so v = p, and b = 0. Similarly, (2) applied toy, x, z, (15), and (16)

give v = X. Since there exists a basis hly h2,..., hr of £> such that each At is embedded

in the canonical basis of ©(o:) as in (15) for a root a^O (see [6]), we also see that

§9î = 9î©ç§. Therefore © is an ideal of 91 and moreover

(17) xz = zx = Ax,       yz = zy = Xy,       hz = zh = Xh

for z£ 9t and a#0, where A £ <b depends on z and a.

Since [©, m] = 0 and the center of © is 0, 9t={xE 9t | [x, ©] = 0} and so «R is a

subalgebra of 91. If 91" is not nilpotent and 91 is simple, then ©#0 is an ideal of 91

and 91 = ©. Hence 91 is a Lie algebra. This completes the proof of Theorem 4.1.

Remarks. (1) Under the conditions in Theorem 4.1, © is the unique Levi-

factor of 91". Indeed, let S' be any Levi-factor of 91". Then by the theorem of

Malcev-Harish-Chandra there exists an invariant automorphism A such that <SA

= ©', but since [©, 9Î] = 0, A is the identity map on © and © = ©'.

(2) Power-associativity for 91 is needed for the "only if" part of the proof,

while, in view of Theorem 3.1, the "if" part of the proof requires only that the

Cartan subalgebra § is power-associative in 9Í.

Corollary 4.2. Let 9Í, % ©, and $ be the same as in Theorem 4.1. For a root

a^O o/§, let ©<a) be the 3-dimensional simple Lie algebra given by (15). Then for

any root a^O of ig, there exists a subalgebra 93a o/9t such that

(i) the Lie algebra 33¿" = 9i + S(a) is a Levi decomposition of 93¿", and

(ii) the multiplications between 91 and ©<ar> are given by sz = zs =fa(z)s for se ©<a)

and z £ ÍR, where fa is a linear function on di.
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Proof. Since dl and ©(a) are subalgebras of 9t and 9î©(a) = ©(a)9îç©<a), 93„.

= 9i+3(<ir). Clearly 9í + ©(c) is a Levi decomposition for 93â and the second part

follows from (17).

Corollary 4.3. Let 9t and 3t be the same as in Theorem 4.1. If di is nil in 91, then

the linear function fa is 0 for a^O and 9ï is an ideal o/9t.

Proof. Let z be an element of 9î and a a nonzero root. Suppose that Rz is nil-

potent. Then, by Corollary. 4.2(ii),/a(z) = 0. Hence 9Î is an ideal of 91. Since Dz is

nilpotent, it suffices to prove the following:

Lemma 4.4. Suppose that 91 is a flexible, power-associative algebra over í> of

arbitrary dimension. If x is a nilpotent element o/9l such that Dx is nilpotent, then so

are Rx and Lx.

Proof. If x is nilpotent in 9Í, so is x in the algebra 91+ . Hence, by [5], Tx

=i(Rx+Lx) is nilpotent, and by the flexible law LXRX = RXLX, Tx+iDx = Rx and

TX—\DX=LX are also nilpotent.

5. The reductive case. A finite-dimensional Lie algebra 2 over a field of charac-

teristic 0 is called reductive if ad 2 is completely reducible. It is known that 2 is

reductive if and only if the quotient algebra 2/3 by the center 3 of S is semisimple

[3, p. 255]. One can easily see that if 2 is reductive, the radical of 2 coincides with

3- Let © be a Levi-factor of 2. Then [2, 2] = [©, ©] = © since S is semisimple.

Hence if 2 is reductive, 2 has a unique Levi-factor [2, 2]. Therefore by Theorem

4.1 (recall the remark to Theorem 4.1) we obtain

Theorem 5.1. Let 91 be a finite-dimensional, flexible algebra over a field of

characteristic 0 such that 91" is a reductive Lie algebra. If [91, 91] has a split Cartan

subalgebra that is a power-associative, nil subalgebra o/9t, then [9Í, 9Í] is an ideal of W.

and so is a Lie algebra. Moreover, ¡/9I is simple, then 9Í is either commutative or a Lie

algebra.

In Theorem 5.1 the algebra 91 need not be power-associative.

Example 5.2. Let © be the 3-dimensional Lie algebra over a field <b of charac-

teristic ^2, 3, 5 such that xh — x, yh= — y, xy = h. Let 9í(a) = © + <l>z (vector space

direct sum) be the algebra defined by zs=sz = as for all j in © and z2 = z, ae O.

Then 9i(a) is flexible Lie-admissible and [91(a), 9t(a)] = © has a Cartan subalgebra

OA with h2 = 0. We see that u3u = u2u2 for all « £ 91(a) if and only if 2a3 — 3a2 + a=0 ;

that is, 91(a) is power-associative if and only if a = 0, \, or 1. We also note that 91(a)

is isomorphic to 9l(ß) if and only if a=ß.

Theorem 5.3. Let 9Í be a finite-dimensional, flexible, power-associative algebra

over afield of characteristic 0 such that 91" is a reductive Lie algebra. If there exists

a split Cartan subalgebra © of 9Í " with h3 = 0 for h e Sg, then the center 3of%~ is

an ideal o/9t. Moreover if% is simple then it is a Lie algebra.
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Proof. We recall that dim 21« = 1 for a =£ 0 and $ abelian. Hence, by Lemma 3.2(i),

h2 belongs to 3 for all heÍQ. Let hlt h2 be elements of £. Then (h1-hh2)2 = h2

+ 2h,h2 + hl is in 3 and hence £>2ç3- Since 3 is contained in £, by Lemma 4.4,

32ia = 0 for a^O and 3 is an ideal of 21. If 21 is simple, either 3 = 0 or 3 = 9t.

Suppose 3 = 9i. Then 9Í is a commutative algebra with x3 = 0 for xe9I, and by

[1, p. 557] 21 is a Jordan algebra. But since there is no simple Jordan nilalgebra of

finite dimension, we must have 3 = 0 and therefore, by Theorem 3.1, 91 is a Lie

algebra, and the proof is complete.

Remarks. In case 91 is nil and simple, Theorem 4.1 allows 91" nilpotent. At

the present time, it is not known whether there exist simple, flexible, Lie-admis-

sible nilalgebras 91 with 21" nilpotent even in commutative case of dimension

> 3. For instance, it is not known that if 9t is a flexible Lie-admissible nilalgebra

with 91" nilpotent, then 91 is nilpotent. In the characteristic 0 and commutative

case, Gerstenhaber [5] has shown that if 91 is a nilalgebra of dimension ^ 3 then

21 is nilpotent. If there is no simple, commutative nilalgebra, by a theorem of

Block [2], it is shown that any finite-dimensional, simple, flexible nilalgebra of

characteristic ^2 is anticommutative. From the result of Gerstenhaber and the

theorem of Block it also follows that any simple flexible nilalgebra of dimension

= 3 is anticommutative if the characteristic is 0.

In connection with these questions and results, for the characteristic 0 and non-

commutative Lie-admissible case, the author has however been able to prove in

[9] that (i) if 21 is a finite-dimensional flexible nilalgebra such that 21" is nilpotent

and has an abelian ideal 93 of codimension 1, then the center of 21" is an ideal of 21

as well as 23, (ii) if 21 is a flexible nilalgebra of dimension ^4 such that 21" is

nilpotent, then 2t is also nilpotent, and (iii) if 21 is a simple flexible nilalgebra of

dimension ^4 then 21 is a 3-dimensional simple Lie algebra. The first two results

together with Theorem 4.1 may be used to determine some special classes of

simple flexible nilalgebras. The results (ii) and (¡ii) for an arbitrary dimension

remain, as far as the author knows, unsolved.
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