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ON CHARACTER SUMS AND POWER RESIDUES

BY

KARL K. NORTON«

Abstract. Sharp estimates are given for a double sum involving Dirichlet charac-

ters. These are applied to the problem of estimating certain sums whose values give a

measure of the average distance between successive power residues to an arbitrary

modulus. A particularly good result of the latter type is obtained when the modulus is

prime.

1. Introduction. Let n, A, w represent positive integers (throughout this section).

Let x be a Dirichlet (residue) character mod n, and define

(1.1) Sw(n,h,x)= Î   2x(x + l)
x=l   1=1

For convenience, write Sx(n, h, x) = S(n, h,x)- In this paper, we obtain sharp

upper bounds for S(n, A, v) and apply the results to some problems on the differ-

ences of consecutive power residues mod n.

In a series of important papers, Burgess estimated the sums Sw(n, h, y) for

primitive characters x and showed how to use the results to get inequalities for

sums of the form

(1.2) 2 X(x + l)
h

I
1 = 1

when x is nonprincipal mod n. In [1] he carried out this process for the case in

which n=p is prime (and x ¡s nonprincipal mod/7), obtaining

(1.3) Sw(p,h,x) < (4w)w + 1phw + 2wpll2h2w

and a bound for (1.2) which does not concern us here (the latter result was im-

proved in [3]). In [2, Lemma 8] and [3, Lemma 8] Burgess generalized (1.3) by

showing that if v is primitive mod n, and if either w = 2 or n is cubefree, then

(1-4) Sw(n, h, x) = 0Wie(nhw + nll2 + °h2w)

for each real e>0. (Throughout this paper, the notation t\e>... indicates an

Received by the editors July 29, 1971.

AMS 1970 subject classifications. Primary 10G05, 10H35.

Key words and phrases. Dirichlet character, residue character, character sum, power

residue.

(*) Part of this research was performed while the author was an ONR Postdoctoral

Research Associate at the University of Michigan. Support was also received from the grant

AF-AFOSR-69-1712.

Copyright © 1972, American Mathematical Society

203



204 K. K. NORTON [May

implied constant depending at most on 8, £,..., while O implies an absolute

constant.) In [3, Theorem 2] he gave a corresponding estimate for the sum (1.2);

here it was sufficient for y to be nonprincipal mod n.

The inequalities (1.3) and (1.4) are powerful, and their proofs are deep. In the

case vf=l, better results can be obtained by much simpler methods. It has been

known for some time that if y is nonprincipal mod p (p prime), then

(1.5) S(p,h,x)= ph-h2   forl¿A£/>,

and it follows from the periodicity of y that

(1.6) S(p,h,x) < ph   for A ̂  1.

Easy proofs of (1.5) can be found in Vinogradov [20, pp. 125, 206-207] and in

Davenport and Erdös [5, Lemma 1] (there is also a preliminary version of (1.3)

in [5, Lemma 3]). It is natural to ask whether (1.6) still holds if p is replaced by an

arbitrary positive integer n. It appears that little was known about this problem

until quite recently, when Burgess showed that for each nonprincipal y mod n and

each real e > 0,

(1.7) S(n, A, x) ¿ nh{d(n) log n}2 = Os(n1 + sh),

where d(n) is the number of positive divisors of n. (His elementary proof is given

in [17, pp. 410-413].) Our first objective in this paper is to improve (1.7) by showing

that

(1.8) S(n, A, x) < (9/8)nA    (x nonprincipal mod n).

(We give a different sort of inequality in Theorem 3.52 which sometimes improves

(1.8).) It is clear from (1.5) that the constant 9/8 cannot be replaced by a constant

less than 1. Even when n is not prime, (1.8) is almost best possible. For example,

we show that if «ê 133 is odd and y is primitive mod n, then there are values of A

for which S(n, h, y)>(l/4)«A. We conjecture that (1.8) holds with 1 in place of

9/8, but we can show this only in some special cases (e.g., when y is primitive).

Our proof of (1.8) is elementary and virtually self-contained. However, it is

rather complicated and depends on a method of Hooley [11], who estimated

S(n, A, x) when x ¡s principal mod n. (We shall also give a small improvement of

Hooley's result; see Theorem 3.32.) In the important special case of primitive

X mod n (n> 1), Professor Patrick Gallagher has given a very simple and elegant

proof that S(n, h, x)<nh. With his permission, we include this proof in §2.

In order to discuss the applications of these results on S(n, A, x) to another

problem, we must introduce some further notation. For positive integers n and k,

let C(n) denote the multiplicative group of residue classes (mod n) which are

relatively prime to n, and let Ck(n) denote the subgroup of kth powers. Write

v = vk(n) = [C(n):Ck(n)], and let 1 =g0<gi< • ■ ■ <gv-i be the smallest positive

representatives of the v cosets of Ck(n), so gj = gj(n, k). Let a = ak(n) be the cardin-

ality of a coset gsCk(n) (thus a = (p(n)/v, where <p is Euler's function), and let
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h0,hx,...,ha be the a+1 smallest positive integers in this coset arranged in

increasing order, so hj = hj(n, k, s) and (if n> 1), 1 Sgs = h0<hx< ■ ■ ■ <Aa_1<«<Aa

= n + h0. The values of the sum

(1.9) <B(n, ß, k,s) - | (hj-ht-xY       (ß real, ß S 1)
;' = i

can be considered to measure the average size of the differences A; —A;_x. Since

(1.10) <S(n, 1, k, s) = B,

a simple application of Holder's inequality (see [17, Theorem 3.32]) yields

(1.11) &(n,ß,k,s) ä «(/î/a)"-1 = ^-1«{«/<p(«)}"-1       (/3 ä 1),

and this inequality will be fairly sharp if all of the numbers A, — A;_, have approxi-

mately the same size.

We are interested in obtaining good upper bounds for 3(«, ß, k, s); the signifi-

cance of these will be easier to understand if we first state two facts about v=vk(n).

An explicit formula for vk(n) was given in [16, Lemma 4.3]; from this it follows that

(1.12) v = vk(n) = Ok¡e(ns)   for each e > 0.

On the other hand, it was shown in [17, Theorem 3.27] that for each k^2, there are

infinitely many n such that

. . . f(log k) log n        (     log n    U
**» = eXp|  log log,   +0H(ïoiîoi^)j-

In [17] and [18] we obtained several upper estimates for &(n, ß, k,s). For

example, we showed in [18, Theorem 5.7] that

(1-13) ®(n,ß,k,s) = 0,>6*-V+£)

for 0 S s S v — 1, £ > 0, and 1 á ß ¿ 7/3, while a weaker estimate was given for ß > 7/3.

Comparison with (1.12) and (1.11) shows that (1.13) is rather sharp, but it has a

somewhat unsatisfactory vagueness, since it gives hardly any more information

than the result

(1.14) ©(«, ß, k, s) = C\,,>1 + £)       (UM 7/3),

which follows from (1.13) and (1.12). Our new results on S(n, A, x) enable us to

improve such inequalities in the range 1 ̂ j3á2. We can now show that

(1.15) ®(n, ß, k, s) = Oe(v2li-2n{nl<p(n)}2l>-2)   for 1 á ß < 2,0 á s $ v-1,

and we can also get results of the type

(1.16) v2n{n/<p(n)} ^ 2 ©(«, 2, k, s) = 0(v2n{n/9(n)} log n)
s = 0

for n ä 2.
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The upper bound in (1.16) can be improved when k = v= 1. In this case a=<p(n)

and the numbers h0,...,ha are the <p(n)+ 1 smallest positive integers relatively

prime to n. The method which we use to obtain (1.16) also gives the result

(1.17) Z(n,2,l,0) = o(£j[l+2p-1logP}) = 0^ log log»)

for «a 3, the sum in the middle running over the distinct prime factors of«. (1.17)

was apparently first discovered by H. N. Shapiro and M. Hausman (their paper

will probably appear in Comm. Pure Appl. Math.); it was rediscovered indepen-

dently by R. C. Vaughan (unpublished) and (somewhat later) by the present author.

For a brief discussion of its connections with a conjecture of Erdös and some

work of Hooley, see the remarks after Theorem 4.22.

Our final result concerns S(p, ß, k, s), where p is prime. In this case, v = vk(p)

= (k,p— 1), and we showed in [17, Theorem 6.8] that

(1.18) Z(p,ß,k, s) = Oe(v2e~2p)   forl ájS<2,0á Jä'.-l.

with a somewhat weaker result for ß^2 (see also [18, Theorem 5.15]). There is a

gap between (1.11) and (1.18) involving a factor of v"_1 (and, of course, a factor

depending only on ß). Since vk(p)^k, the lower and upper bounds here are virtually

indistinguishable if k is bounded (and 1 tüß<2), but we can improve (1.18) in a

way which is significant when k and v are large. In §5, we show that if Oájáv— 1,

then

(1.19) ©(/>, ß, k, s) = Oe(ve - »    for 1 Ú ß < 2, p > (k log k)16.

This is best possible except for the constant factor and the restriction on p. The

proof uses an idea of Gallagher given in §2, as well as one of Burgess's deep in-

equalities for character sums of the type (1.2) ([3, Theorem l];cf. also [4]). (Inciden-

tally, this is the only point in the paper where we use a nonelementary method or

result.) (1.11) and (1.19) suggest the possibility of an asymptotic formula of the

following type (for 1 ̂ ß<2, O^sáv-l):

S(p, ß,k,s)~ f(ß, k^y-'p   asp-^+co.

Our methods do not seem strong enough to derive such a result.

A few remarks are in order concerning notation. The following symbols always

represent integers : d, A, k, I, m, n, q, s, w. The letter/» is reserved for prime numbers.

When n ̂  2 and we have occasion to refer to the prime factorization of«, we always

write n=p,i- ■ -p?', where each a¡^ 1 and the primes/?,,...,pr are distinct (but not

necessarily listed in increasing order). <p denotes Euler's function, p is the Möbius

function, and w(m) is the number of distinct prime factors of «i. y always denotes a

Dirichlet character, y0 being the principal character to the modulus in question.

An empty sum means 0, an empty product 1, and [ß] is the largest integer ^/3.

Other notation will be introduced as needed.
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I wish to thank Professor Gallagher for his kind permission to include in §2 of

this paper his method of estimating S(n, h, x) when x is primitive.

2. Gallagher's method.

(2.1) Lemma.  Write e(t) = e2nit. If x is primitive mod n, then

(2.2)

Proof. Define

(2.3)

2 X(x + l)x(x + m) = 2 e(z(l-m)/n).
x = l l£2£n.(î,n)«l

-K«, x) = 2 x(y)e(y/n).
3/ = l

\r(n,x)\ = #i1/a

Since x is primitive, we have

(2.4)

and
n

(2.5) 2 X(y)e(my/n) = x(m)r(n, x)
y = i

for all m (see [14, Vol. I, pp. 483-486, 492-494]). By an obvious change of variable,

the left-hand sum in (2.2) is

n

2 x(y+i-m)x(y) = 2'
y = i

say. Now, (2.5) yields an expression for y(j + /-w). Substituting this and inverting

the order of summation, we get

n (       I n

2=2 x(z)e(z(l-m)/n)\ 2 x(y)e(zy/n)
2=1 lT\">  X) V = l

By (2.5), the expression in braces is v(z), and we get the right-hand side of (2.2).

Q.E.D.
Our next result generalizes (1.5).

(2.6) Theorem. Suppose that n> 1, x is primitive mod n, and l¿n^n. Then

v        sin2 (nzh/n)
(2.7) S(n, h, x) = nh — h2 —

i<z<raí,n)>i sin2 (nz/n)

Proof. Taking w= 1 in (1.1) and using Lemma 2.1, we get
h n

S(n,h,x) =22 x(x + l)x(x + m)
l.m = l x=l

=   2    2 e(z(l-m)/n)-        2 I e(zl/n)
l,m = l2=l 152Sn,(j,n)>l  "

h

2¡=i
= nh-h2- 2 e(zll")

!<2<n,(2,n)> 1  "

h

2¡=i Q.E.D.
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In particular, if «> 1 and x ¡s primitive mod «, then

(2.8) S(n,h,x) < nh   for A ̂  1.

It was remarked by Gallagher that (2.8) can be used to obtain an inequality for

S(n, A, x) when x ¡s merely assumed to be nonprincipal mod «. Let K be the con-

ductor of y, let X be the primitive character mod K induced by x, and let N be the

product of the distinct primes dividing « but not K. By [18, (4.12)],

S(n, A, x) S 2^nK-1 2 c"1°2 S(K, [(z + h)/c], X).
c|Af z = 0

Applying (2.8) and using the elementary identity 2j=o [(z + A)/c] = A, we get

(2.9) S(n,h,x) < «A2ra(n)-M(/0   TJ  (l+p'1).
pln.pJfK

Th's is a definite improvement on Burgess's inequality (1.7) but is still not as good

as (1.8). A proof of (1.8) seems to require more complicated methods; these will be

discussed in the next section.

3. Estimation of S(n, A, y) (x arbitrary). Unless stated otherwise, the results of

this section apply to any character mod « (even the principal character). Our main

objectives are Theorem 3.32 and Theorem 3.52.

(3.1) Lemma. Let «^2, AS: 1, and let x be a character mod «. Write n=pfi- ■ p?'

and x = Xi • ' ■ Xr, where xj is a (uniquely determined) character mod pp for each j.

Then S(n, A, x)=<p(«)A+ V(n, A), where

V(n,h)=       J       U"í XÂx + l)Ux + m).
l,m= 1:14m   i = 1 x= 1

Proof. We have

5(«,A,x) = I  I |y(-v + /)|2+     I       I x(x + l)x(x + m).
I = li = l l,m = 1:14'm * = 1

The first double sum on the right equals <p(«)A. If « = 2, the second double sum is

clearly the same as V(n, A), while if « >: 3, it can be written in the form

2       S xdx + lXx + mr»-1).
l.m = 1:14m x = l

The inner sum here can be factored as in the proof of [2, Lemma 7], and the result

follows.   Q.E.D.

For any integers «, m with « positive, we define Ramanujan's sum c(n, m) as

follows :
n

c(n, m) = 2 exP (2Trikm/n).
lSfcS7i,(fc,n) = l

(The usual notation is cn(m), but this would be typographically awkward below.)
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We need two facts about c(n, m) :

(3.2) Lemma.  We have

(3.3) c(nn',m) = c(n, m)c(ri', m)   if(n,n') = 1,

(3.4) c(n,m) = ^";(m))f).
<p(n/(n,m))

Proof. See [10, Theorems 67, 272]. (The identity (3.4) is due to Holder.)

(3.5) Lemma. Let x be a character modpa with conductor p" (where o^l,

O^b^a). Write

(3.6)

and let

h(p,q) = l-p  1     ifp\q,

= l-2p-i   ifp\q,

p

x = l

0=2 x(x + l)x(x + m).

Ifx is nonprincipal, then

(3.7) Q=pa-»c(p\l-m).

Ifx is principal, then

(3.8) Q = pa'bc(p\ l-m)o(p, l-m).

Proof. If x is nonprincipal, then x can De regarded as a primitive character

modp" and, by periodicity,

P»

Q =Pa'b 2 x(x + l)x(x + m).
x=l

(3.7) thus follows from (2.2) and the definition of c(n, m). (A different proof of

(3.7), due to Burgess, can be obtained easily from (3.4) and [17, Lemma 5.3].)

Now suppose that x is principal, so b = 0. Then clearly pa— Q is just the number

of integers x such that 1 Sx^pa and (x + l)(x + m)=0 (modp), and (3.8) follows.

Q.E.D.
It is convenient to define an auxiliary function T(n, h, m) by

(3.9) T(n,h,m)=     2     (h-mq)Y\h(p,q)
l=Qáh¡m P\n

for all positive integers n, A, m.

(3.10) Lemma. Let n ä 2, let x be a character mod n with conductor K, and define

(3.11) 7V=/V(«,A0=   n   P-
P\n,PiK
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If V(n, h) is defined as in Lemma 3.1, then

(3.12) V(n, A) = 2« 2 p(w)w~1T(N, h, Kw-1).
W\K

Proof. As in Lemma 3.1, write n=p\i- ■ -p?r and x = Xi'Xr, where x¡ is a

character mod pp. For convenience, let K' = nK~1. Let s be the number of y for

which Xj is nonprincipal, so Oái^r. Without loss of generality, we may assume

that xi, •••>Xs are nonprincipal and Xs + i> • •-, Xr are principal. Let p)t be the

conductor of x¡, so ¿>3 = 0 for j>s, K=p\i- ■ -pb^, and N=ps + 1- ■ -pr. By Lemma 3.5

and (3.3),
r      vV

Et I XÀx + l)xÂx+m) = K'c(K, l-m) l\ 8(p, l-m).
j=l x = l v\N

Substituting this result in the formula defining V(n, A) and collecting terms for

which l-m has a fixed value, we get V(n, h) = 2K' J£=i c(K, t)B(t), where (tempo-

rarily) B(t) = (h — t) Y\r>\N §(/>, t). Collecting terms for which the greatest common

divisor (A', /) has a fixed value and noting that c(K, t) = c(K, (K, t)) by (3.4), we

obtain

(3.13) V(n, h) = 2K' 2 c(K, d) 2 B(dm).
d\K lSmShld,(Kld,m) = l

The inner sum in (3.13) is

2     B(dm)      2      H(v)=    2   Vto      I      B(dqv).
ISmShId v\{Kld),v\m v\(Kld) lSgsnldv

Since (N, AT)=1 by (3.11), it follows that if p\N and dv\K, then 8(p, dqv) = 8(p, q).

Using (3.13) and (3.9), then grouping terms for which dv has a fixed value, we get

V(n, A) = 2K' 2 c(K, d)   2   n(v)T(N, h, dv)
d\K vt(Kld)

= 2K'Z T(N, A, w) 2 p(v)c(K, w/v).

To evaluate the inner sum on the right, we use (3.4) and the well-known fact that

(3.15) If g(m) is multiplicative, so is G(m) = 2 #(0-
t|m

For w dividing K, we get

V     <,^<IC-   w/„ï M(WP(*) Y H-2(V)2 Kv)c(K, w/v) =     ^K/w)     ^mmiW¡

<p(K/w)     Piwt-pK\,w)p-l

Substituting this result in (3.14), we obtain (3.12).    Q.E.D.

In order to apply Lemma 3.10, we need to estimate the function T(n,h,m)

defined by (3.9). Bounds for similar functions were obtained by Erdös [8, p. 170]
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(no proof was given) and by Hooley [11]. In the next lemma, we shall refine

Hooley's method so as to obtain a certain identity for T(n, A, m).

(3.16) Lemma. For each ncSl, define

«o=l    ifn is odd,

= 2   if n is even;
(3.17)

(3.18) nx=    UPI
p\n,p>2

(3.19) too- n /t
p|n,p>2 P~ z

For eacA rea/ z, wn'ic

(3.20) /(z)= f(b]-^+i)£fy.
Jo

Then for any positive integers n, A, m, we have

(3.21) T(n, h, m) = {9(«)/«}2(A2/2w) - M«)/«}(A/2) + {«,/£(«)} 2 iWWnjnt).
dm

Proof. It is convenient to introduce the function

(3.22) 9(n)=    fi   il+^-2)-1}.
p|n,p>2

Observe that the greatest common divisor of« and q has the property (n, a), = («1( q)

for each £7. With 8(p, q) defined by (3.6), it follows that

7 à(p> q) = 0 if « is even and q is odd,
(3.23) Pin

= {«0£(«)}  19[(n1, q)] otherwise.

A combination of (3.23) and (3.9) yields

(3.24) T(n,h,m) = {n0è(n)Yl      2      (h-n0mq)9[(nx,q)].

Keeping n fixed, we define F(x) = J4l1kqikx 0[{nu q)] for real x^O. Clearly

(3.25) 2     (h-mq)9[(nx,q)] = hF(h/m)-m\     xdF(x) = m\     F(x) dx
lSqShlm JO JO

for any m21. Now if« is odd and squarefree, then by (3.15),

Therefore,

so

(3.26)

o(n) = nv+p-it(p)} = 2'-1«').
Pin (|n

F(x) =22   '_1«0 = 2 r^iOtxr1],
lSQSx tin!,(I? (|m

/•him rhlmt

F(x) dx=2 m        [y] dy
Jo dm Jo

= 2 è(t){(h2l2m2t2)-(h/2mt) + I(h/mt)}.
dm
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For the reader's convenience, we list here three identities which follow from

(3.15) and which hold for each positive n:

(3.27) KIM}-1 2 t~lm = «"Vi").
«mi

(3.28) {«§£(«)}-x 2 t-2Í(t) = »"VW,
i|ni

(3.29) {K«»-12 m = 2^>«-V(«).
tl»l

We shall use these identities repeatedly.

The identity (3.21) follows from the results (3.24) to (3.28).   Q.E.D.

We can now state an identity for S(n, A, x)-

(3.30) Theorem. Let « and A be positive integers. Let x be a character mod «

with conductor K, and define N=N(n, K) by (3.11). Write

E(x) = 1    if x Is principal,

= 0   otherwise.

Then (in the notation of Lemma 3.16)

(3.31)     S(n, A, x) = E(x)n-192(n)h2 + {2nK/aN)} 2 «0 I P-(w)W-2I(hw/N0Kt).
t\Ni V>\K

Proof. (3.31) is obvious if «=1, since S(l, h,x) = h2 and /(A) = 0. If «>1, we

combine (3.21) and (3.12), noting the identities

2 m(w) = E(x),       (NK) - MNMK) = n ' ^(n).
w\K

The result then follows from Lemma 3.1.    Q.E.D.

Thus 5(«, A, x) depends only on «, A, and the conductor of x-

(3.32) Theorem. Let n, A be positive integers, and let x be a character mod «. //

X is principal, then

(3.33) 0 ¿ S(n, h, x)-«" V(«)A2 ^ <?>(«) min {A, 2M(n)-2}.

// x 's nonprincipal, then

(3.34) S(n, A, x) < (9/8)«A.

Proof. In order to apply Theorem 3.30, we begin with some simple facts about

the integral I(z) defined by (3.20). The integrand is periodic with period 1, and

since /(1) = 0, we can assert that

(3.35) I(z) is periodic with period 1.

Also,

(3.36) I(z) = z/2-z2/2   forO^zá 1,
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and it follows that

(3.37) 0 è I(z) Í min {(z- [z])/2, (1 -(z- [z]))/2, ¿}       (z ^ 0),

(3.38) l(m) = 0,   I(m+i) = ¿       (m = 0, 1, 2,...).

Suppose now that x is principal. We apply Theorem 3.30, taking K=l, N=Y~[p]np,

N0 = n0, N1=n1. We get

(3.39) S(n, h,x)-n- V(«)A2 = {2#i/f («)} 2 ê(t)I(h/n0t).
dm

The left-hand inequality of (3.33) follows since 7(z)^0. If we use the inequality

I(z)^z/2 and (3.27), we find that the right-hand side of (3.39) is ^q>(n)h, and it is

also ^9>(n)2M(n)-2 by (3.29) and the inequality I(z)^%. This proves (3.33).

The proof of (3.34) is more delicate. We define

g(x) = gK(x) = 2 n(w)w-2I(w/x)       (x real, x > 0).
w\K

We seek a simple upper estimate for g(x) to insert in (3.31). Using (3.36), we can

write

(3.40) g(x) =     2     Kw)w-2{w/2x-w2/2x2}+    2     Kw)w~2I(w/x) = Tx + T2,
wlK.w^x w\K.w>x

say. Now,

(3.41) 2x2r1=     2     Kw)[xM+    2     nM{x/w-[x/w]-l).
w\K,wàx w\K,wûx

The first sum on the right is

IK»)  2   i= 2   2   Mho=     2    i-
u>|ir mSx,w\m m S x w\K,w\m m¿x,(m,K) = l

If x2:l, the second sum on the right of (3.41) does not exceed x — [x] — 1

+ J.w\K.wsx.uíw)= -i L But the sets {w : w^x and (w,K)=l} and {w : w^x,_w\K,

and fi(w)= -1} are disjoint, so (3.41) yields

(3.42) Tx Ú (2x2)-1(x-[jc]-1 + [x]) = (2x2Y1(x-l),       x > 1.

On the other hand, since 0 ^ I(z) á £ for all z ä 0, we have

(3.43) r2á 2 (8W2)-1 ¿Ai 2  l^)|w-2+ 2 Mw)w-2).
UJlff ,W> X,li(W) = 1 \w>x w>x J

Clearly,

(3.44)     2 l/*(w)k_a á 2 M;~2-   2   w"2-   2   w-a+   2    w"2-
w > x w>x w>x,4\w w>x,9\w w>x.36\u>

It is easy to see that for x > 0,

^r!<r2+f C°t-2dt = x-í+jc-2,

while

2 H>~2 ̂ f     r2<# > x-^-x-2.
w> x Jx+1
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Thus (3.44) yields

(3.45) 2 Hw)\w~2 < lßx + 4/x2       (jc real, Jt> 0).
W> X

We could use (3.45) and the inequality

T2 â i 2 H^)\w-2
W> X

to get (3.34) with the constant 9/8 replaced by 7/6. To obtain the better constant,

we observe that Moser and MacLeod [15, p. 305] have given a fairly simple proof

of the inequality

(3.46) 2 Kw)w ^ l/3x + 8/3x2       (a: real, x > 0).

They actually proved this only for x^2, but when 0<x<2, it follows from the

equation 2£=i p-(w)w'2 = 6tt'2.

Combining (3.43), (3.45), and (3.46), we obtain T2< l/16x + 5/12x2, so that by

(3.40) and (3.42),

(3.47) g(x) < 9/16*

for x>: 1. (3.47) also holds for 0<x< 1, since the inequality 0a/(z)f££ gives

(3.48) g(x) < i 2  Im(w)|w-2 < i       (x real, x > 0).
w = l

Taking x = N0Kt/A in (3.47), substituting the result in (3.31), and applying (3.27),

we find that

(3.49) S(n,h,x)<(9ß)nhN-1<p(N) = (9ß)nh   T~[   (1-p"1).        Q.E.D.
p]n.pJrK

In this paragraph, let x be nonprincipal mod « with conductor K. It seems

reasonable to conjecture that S(«, A, x)<«A for all AS: 1, but we are able to prove

this only in some special cases. First, Theorem 2.6 shows that this result holds if x

is primitive. Second, if we start from the identity

(3.50) 2       w~" - 2l/2n2,
U>£ l,ll(w) = l

then it is easy to verify that 2«.>*.«<«»-i tv_2<4x~2for 1 fixe 12, so that by (3.40),

(3.42), (3.43), and (3.48), g(x)<(2x)~1 for 0<x¿ 12. Taking x = N0Kt/h and using

(3.31), we find that S(n, A, x)<«A ifh^KN/12 (where Ais defined by (3.11)). (This

result can often be improved by using Theorem 3.52 below.) For our third example,

we observe that by (3.43),

T2 < (8X2)-1      2      1 = (8x2)-12CÚ(K)-1,
w\K,u(w) = l

so that g(x)<(2x)-1 if w(K)ú3; hence S(n,h,x)<nh if w(K)S3. Finally, if
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hú NqKYY^kP'1, then each of the numbers I(hw/N0Kt) in (3.31) can be calculated

exactly by (3.36), and the result S(n, h, x) = <p(n)h follows from (3.27). This last

example suggests the possibility that S(n, h,x) = 0(y>(n)h), and indeed such a

result was proved in [17, Lemma 5.10] for the case in which n is a prime power,

but it does not hold in general. To see this, let p be the smallest prime factor of K,

and suppose h>NK/p. If t\NX and x = N0Kt/h, then x^NK/h<p, so that the sum

Tx in (3.40) has only one term, namely that corresponding to w=\. Thus Tx

= (2x2)-\x-l). Using (3.45) and (3.46), it is easy to show that r2>-l/16x

-5/12x2, and by (3.40) and (3.31), we obtain

S(n,h,x) > (lß)nhN-1<p(N)-(ll/6)nh2K-iN-2<P2(N)

for A > NK/p. In particular, let n ̂  133 be odd, let x De any primitive character

mod n (such characters exist; see [16, §6]), and suppose that n/3 < A^ 15«/44. Then

5(«,A,x)>(l/4)«A.
The inequalities given in (3.33) are also quite precise in some cases. Write

S = S(n, A, x) — n~1<p2(ri)h2       (x principal mod ri).

Hooley [11, p. 345] has shown that

(3.51) S = çp(n)A + 0(/r V(«)A log (2A)),

so that if we take

n = Y\p   an<i    1 = h = l°g l°g «)
PS!/

we get

S = ̂ {'+O(^F0-")}

when j is large (see [10, Theorems 429, 414]). Thus cp(n)h is a sharp upper bound for

S in some cases; it is also superior to the upper bound given by (3.51). Finally, if

n is even and A is an odd multiple of nr (defined by (3.18)), then (3.38) and (3.39)

show that 5=<p(«)2w(n)"2. (This should be compared with (3.56) below.)

We can give another estimate for S(n, A, x) which is interesting when x has small

conductor :

(3.52) Theorem. Let n, A be positive integers, and let xbe a nonprincipal character

mod « with conductor K. Then

(3.53) S(n, h, y) < (2lßn2)nK2"™-°>™   TJ   (l-p"1).
P\n,m

Proof. Since 0g/(z)^£ for all z^O, (3.31) yields

S(n, h, x) < {2nK/Ç(N)} 2 ¿(0       |       (8w2)"\
UN i wël,u(w) = l

and the result follows from (3.50) and (3.29).   Q.E.D.
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There are cases in which (3.53) cannot be improved by more than a constant

factor. For example, let « be even, and let x be nonprincipal mod « with odd

conductor K. Let A be an odd multiple of KN1 = KTJpln pm p. Using (3.38) and

(3.31), we get

S(n,h,x) > (3/2TT2)nK2»™-»m   TJ   0-/>_1)
Pln.pfK

in this special case.

If x and H are posjtive integers, then the formula

H

1
h = l

(3.54) % I(h/x) = (H/l2)(l-x-2)       \fx\H

follows easily from (3.36) and the periodicity of/(z). Taking //=« and combining

(3.54) and (3.31), we find that if x is nonprincipal mod « with conductor K, then

|%a)X)=^2*»-« n (i-z^na-/*-2)
(3.55) h=1 P\n,plfK p\K

> TT-2n2K2^ri)-MK)   n   (l-p-1).
pln.pJfK

It is interesting to compare this with (3.53). There is an analogous result for the

principal character xo mod « :

(3.56) Z{S(n, h, Xo)-«-V(»W} = ̂ Sf^{l-J^y

4. Applications. In this section, we shall be concerned with the distribution of

power residues, and in particular with the gaps between successive power residues.

We shall use the notation given in the fifth paragraph of the introduction. Each

result in this section holds for arbitrary positive integers n, k unless otherwise

stated.

(4.1) Lemma. For O^i^v—1 and integers m,h with ASO, let Ns(m, m + h)

= Ns(n, k; m,m + h) be the number of x satisfying m+l^x^m + h and x e gsCk(n).

Write xo for the principal character mod «, and let >p denote the typical character

mod « such that <Pk = Xo- Then

(4.2) there are exactly v = vk(n) characters </> mod «,

and

(4.3) Ns(m, m + h) = v-^n- V(")¿ + Rn(m, m + h) + As(/n, m + A)},

where

(4.4)

Rn(m,m + h) = ¿ Xo(m + x)-n \(n)h
x = i

- Z KdMm + h)/d] - (m + h)/d- [m/d] + m/d},
d\n

(4.5) As(«j,m + A)=   2  **(&) 2 Mm + x).
tïxo
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Furthermore,

(4.6) \Rn(m,m + h)\ < 2W<',, = Oe(ne)   for each e > 0,

2 R2n(m,m + h) = S(n,h,xo)-n'V(n)h2,
m = l

v-1

2 As(m, m + h) = 0,
s = 0

(4.9) VfA2(m,m + h) = v 2
s = 0 rllïxo

Proof. (4.2) follows from [16, (3.5) and (3.3)]. The remaining facts (except for

(4.7)) are proved in the same way as [16, Lemma 3.9]: as a consequence of some

simple facts about characters of finite abelian groups, we obtain the identity

h

(4.10) Ns(m,m + h) = v"1 2 Xo(tn + x) + v~1A.s(m, m + h),
x=l

and the rest follows easily. (4.7) is an elementary deduction from the first part of

(4.4).    Q.E.D.
We note in passing that by (4.7) and (3.56),

max \Rn(m, m + h)\ > {2ain)<p(n)/l2n}112   for n ä 2,

where the maximum is taken over all integer pairs m, A with 0 á m ?¿ n - 1, 1 ̂  A ̂  n.

Erdös [7, Theorem 3] gave a direct but rather tricky proof of the stronger result

max  \Rn(0, h)\ > {^^(n^Un)112   for« ^ 2,
ISfiSn

while Vijayaraghavan [19] showed that there are values of n and A with co(«)

arbitrarily large for which \Rn(0, h)\ almost attains the upper bound 2ra(n) given

in (4.6).

Using (4.10) and (4.5), we get «_1 2m = i As(m, m + h) = (vn)~1(p(n)h. In other

words, if A is fixed, then (vn)~x(p(n)h is the average of the periodic function

Ns(m, m + h) over one period. Define

(4.11 ) G?»(n, k,h)=  2 {N,(m, m + h)- (vn) " VWA}2"
m = l

for w= 1, 2,..., and for typographical convenience, write G^1}(«, k, h) = Gs(n, k, A).

In statistical terms, n'^G^n, k, A) is the variance of the numbers Ns(m,m + h)

(1 ^m^n), while n~1G(sw)(n, k, A) is their central moment of order 2w. The basic

idea of Hooley's method [11] (as adapted in [17] and [18]) is to estimate <S(n, ß, k, s)

in terms of G¡w)(n, k, A). In this paper, we shall need only the special case w= 1 ;

the result is as follows:

(4.7)

(4.8)

h 2

2 Hm + x)   ■
x=l
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(4.12) Lemma. Ifß is real and S: 1, m is any positive integer, and Oús^v-l, then

©(», ß, k, s)

(4-13) = 0e(m^n+(^2m^GÁn,k,m)+(^\j+i l^Gs(n,k,l)\

where

(4.14) M = M(n, k, s) = max {A,(«, k, 5)-A,_1(«, k, s) : 1 5s j á « = 9>(rt)M-

Furthermore,

(4.15) "f Gs(«, /c, A) = , - ̂ i«, A, xo) - " - V2(n)Aa + 2 S(«, h' *)}.
s = 0 \ it4X0 J

in the notation of Lemma 4.1.

Proof. (4.13) is obvious for ¿3=1 (see (1.10)). When ß> 1, it follows from [17,

Lemmas 4.5, 4.7]. To obtain (4.15), we substitute (4.3) in (4.11) and sum over j to

get

2 GS(«,A:,A) = v-1 J R2n(m,m + h) + 2v-2 ¿ Rn(m,m + h) 2 As(w,m + A)
s=0 m= 1 m=l s=0

n     v-1

+ v~2 2   2 Af(m, OT + A).
m=1s=0

By (4.8), the middle term on the right is 0. The proof of (4.15) is now completed

by applying (4.7) and (4.9).    Q.E.D.

(4.16) Theorem. For 1 Sß<2 andO^s^v- 1,

Z(n,ß,k,s) = 0>2""2«{«M«)P-2).

Proof. By (4.15), Theorem 3.32, and (4.2),

(4.17) 2 Gs(n, k,h) = 0(v-\(ri)h + ( 1 - v-*)«A) = 0(«A).
s = 0

Using this as an estimate for Gs(n, k, A) in (4.13), estimating the sum on the right

of (4.13) by an integral (in the obvious way), and minimizing by taking

m = [{vn/<p(n)}2] + 1, we obtain the result.    Q.E.D.

In the case k = v=l, (4.17) yields the inequality G0(n, 1, A) = 0(<p(n)h), and we

get Hooley's result [11]

3(«, ß, 1, 0) = OMn/rtn)}11-1),        1 Ú ß < 2,

which is best possible except for the constant. The same methods yield the

estimates

®(n, 2, k, s) = 0(v2n{n/cp(n)}2 log «)       (0 <¡ s a v-1)

S(«, 2, 1, 0) = 0((«2/9(«)){l +log M(n, 1, 0)}) = 0((«2M«)) log log «).
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(As remarked in [8] and [11], a sieve method can be used to get the estimate for

M(n, 1, 0).) However, these latter results can be improved a little by considering

2svr¿ ©(«, ß, k, s). We proceed to this problem, considering first the case 1 ¿ß<2.

Note that by (1.11),

(4.18) 2 S(«, ß, k, s) ^ ^«{«/cK«)}""1   for ß ^ 1.
s = 0

(4.19) Theorem. For 1 á)S<2, 2Uo ®(n, ß, k, s) = 0B(vßn{n/<p(n)}211-2).

Proof. Write

(4.20) G(n,k,h)= 2Gs(n,k,h).
8 = 0

Using (4.13) and the trivial inequality M(n, k, s)^n, we get

2 ©(«, J8, Ar, í)
(4.21)   s = °

for any /3ä 1 and any positive integer m. Combining (4.21) and (4.17), then taking

m = [v{n/<p(n)}2]+ 1, we get the result.    Q.E.D.

There is a very small gap between (4.18) and Theorem 4.19, but this gap seems

difficult to close.

We could, of course, use the same methods when ß = 2. The result would be

2s Zo ©(«, 2, k, s) = 0(v2n{n/<p(n)}2 log «) for n^2. We shall improve this slightly

in the next theorem by using the identity (3.31) instead of the inequalities (3.33)

and (3.34).

(4.22) Theorem.  We have

(4.23) 2 ®(«, 2, k, s) = 0(v2n{n/<p(n)} log «)   for n £ 2,
s = 0

and a better result for k = v=l:

(4.24) @(«,2,,,0) = o(^{l + 2/-1log^}).

Proof. Define G(n, k, A) by (4.20). We apply Lemma 4.12, taking /3 = 2 and w = 1,

replacing M— 1 by «, and using the first part of (4.17) to estimate G(n, k, 1). The

result is

/, ,«    v^ ~,    -  , „Ivn2    v(v—l)n3    I vn \2 i ,  -_.    .   _\
(4.25) 7 S(n,2,k,s) = 0[—r-+ K  „, '.    + -—J   2 '    G("> M) •

/=-o V(«)       <P»       W«)/   ,=-2 7
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From (4.15) and Theorem 3.30, we can get an identity for G(n, k, I), and inversion

of the order of summation yields

2l~2G(n,k,l)
(4.26)   l-2

= 2«,"1 2 {K/i(N)} 2 «0 2 ^)w'2 2 l-2I(lw/N0Kt),
* t|7Vi i»|isr 1 = 2

where </> runs through all characters mod « with the property that </>k is principal.

It should be noted that in (4.26), the quantities K, N, N,, N0 all depend on </< (cf.

(3.11) and Lemma 3.16); in order to simplify the notation, we have not written

K(4>), N(n, K), etc.

Now if x is an integer and l^x^n, then by (3.36) and (3.37),

2 l~2I(l/x) = 2 l-2(l/2x-l2/2x2)+   2   0(1 "2) = (2X)'1 logx + 0(x~1).
1=2 1=2 l=X+l

We use this estimate in (4.26), taking x—N0Kt/w. We also use the obvious estimate

2w\k |/x(w)|vv-1 = 0(A'M/:)) and the identity

- 2 MhV"1 log w = K-\(K) 2 (p-iy1 log a
W\K P\K

which follows from logarithmic differentiation of the function 2u>ik p(w)w~s

= TIp\k(1-P-s)- We obtain

Zp(w)w-2Zl-2I(lw/N0Kt)
w\K 1 = 2

= (2N0K2ty ̂ (K)! log (Kt)+ 2 (p-iy'logpX + Oat^K)}-1).
I P\K J

Next we multiply this quantity by K{(t)/t;(N) and sum over the divisors t of N,,

using the identity

Zat)t-iiogt = \zt(t)t-l\\l(P-iyliogp\
t|Nl UIWj. J   \p\Ni J

(a result of logarithmic differentiation), as well as the identities (3.27) and

(KN)~1(p(K)(p(N) = n~1(p(n). Substituting the result in (4.26) and using (4.2), we

get

2/"2G(«,M)
1 = 2

= v-\(n) 2 log K+cp(n) 2 (P- D"1 logp + oiv-^n) 2 {K/<p(K)}2).

Combining this with (4.25) and using the fact that K/cp(K) = 0(log log /Q for K^3,

we obtain

,4.27,   |^,,2,M)-a(^{l.^+|log*+v|,rMo,,}).
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(4.23) follows from (4.27), (4.2), and the trivial estimates log K¿log«,

2pin/>_1log/>álog«. Finally, if k = v=l, then 2*log*"=0 by (4.2), and (4.24)

follows from (4.27).    Q.E.D.

In the case k = v— 1, we have a = <p(n), and A0,..., ha are the <p(n)+1 smallest

positive integers relatively prime to «. Erdös [6] conjectured that

(4.28) ©(«,2, l,0) = O(«2M«)),

which would be best possible by (1.11). Hooley [11] obtained a best possible

estimate for ©(«, ß, 1,0) when 1 Sß<2 (see our remarks after Theorem 4.16), and

in [12], he obtained the asymptotic formula

(4.29) ©(«, ß, 1, 0) ~ T(ß + lMnM«)}"-1       (0 è ß < 2),

which is valid if « -> +oo through a sequence of values such that n/<p(n) -> +oo.

(See his paper [13] for work on another related problem.) Hooley [11] was able to

prove only a slightly weaker result for ß = 2, namely

(4.30) ®(«, 2, 1, 0) = 0(«(log log «)2)   for n £ 3,

and his proof of (4.30) required a sieve method to estimate

M(n, 1,0) = max {*,-*,_! :lâjâ ?(«)}.

Contrary to an assertion of Erdös [9, p. 207], Hooley's method in [11] (as it stands)

will not even prove

(4.31) ©(«, 2, 1, 0) = 0((n2/<p(n)) log log «)   for « ^ 3.

In this context, the result (4.24) is interesting for several reasons. In the worst

cases (e.g., when « is the product of all primes ^x and x is large), it is no better

than Hooley's estimate (4.30), but it usually gives more information. In the first

place, (4.24) implies (4.31), since for «3:3,

2;>"1log/>â    2    P'1 logp + Qogn)'1 2 logp = log log« + 0(1);
p|n p^logn p|n

hence (4.24) implies (4.30) (and no sieve method is needed in proving (4.24), since a

trivial estimate for M(n, 1, 0) suffices). We can also deduce from (4.24) that if/(«)

is any real function tending to infinity with «, then

(4.32) the number of n á x with ®(«, 2, 1, 0) > (n2/<p(n))f(n) is o(x).

In other words, Erdös's conjecture (4.28) is "almost true for almost all «". (How-

ever, (4.24) is not strong enough to show that ©(«, 2, 1, 0) á An2/<p(n) for almost all

«, where A is an absolute constant. For suppose that c>0, and let q-q(c) be the

smallest prime for which Ips«,/*-1 log p>c. If « is divisible by the product Q(c)

of all primes ^q, then F(n) = JiP]np~1 logp>c, so that the number of n^x with

F(n) > c is at least x/2Q(c) for large x.)
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Another fact which follows easily from (4.24) is that

(4.33) 2 @(". 2, 1, 0) = 0(x2) = o( 2 -£rl
ntX \nS* <p(n)/

so that Erdös's conjecture is true "on the average". For another proof of (4.24),

as well as derivations of (4.32) and (4.33), see the paper of Shapiro and Hausman

referred to in the introduction.

5. An estimate for 3(p, ß, k, s ). In this section, we restrict ourselves to the

case in which n=p is prime. In this case, v = vk(p) = (k,p— 1) (see [16, Lemma 4.2]).

By Theorem 4.16, &(p, ß, k, s) = 0B(v2ß'2p)for 1 ̂ ß<2, Oásáv- 1, and Theorem

4.19 shows that for any p, k, ß with 1 S=/S<2, there is at least one s = s(p, k, ß) for

which 2>(p, ß, k,s) = Oß(vß~1p). By (1.11), this is best possible except for the

constant. We shall now show how to obtain an inequality of this latter type for

each s (Oásáv— 1), provided that p is larger than an appropriate function of k

(or v). We shall again rely on Lemma 4.12, so that it is essential to have a good

estimate for the sum Gs(p, k, A) defined by (4.11) (with w= 1). To obtain such an

estimate, we shall use a method very similar to that of §2, as well as a deep result

of Burgess [3].

(5.1) Lemma. For any prime p and any positive integers k, A,  we have

v2Gs(p,k,h) = o(p+     2 I    î Um + x)Um+y) ),
\        'ln±Xo*<tz   X,y = lm = l ]

where v = (k,p—l) and <p,, </>2 run independently through the nonprincipal characters

X mod p such that xk = Xo '* principal.

Proof. By (4.11), (4.3), (4.6), and a trivial inequality,

v2Gs(p,k,h) ^22 ¡R2P(m, m + h) + A2(m, m + h)\ = o(p + 2 A2(«7,«i + A)V
• = H J V m=l /

The result now follows from (4.5).    Q.E.D.

The next lemma is proved by Gallagher's method.

(5.2) Lemma. Let x, 0 be nonprincipal characters mod p, and define

(5.3) Wp(l, m, x, 9) =  2 x(x + l)8(x + m).
x = l

Then

Wp(l,m,x,x)=P-l    ifp\(l-m),
(5-4)

= -1      ifp\(l-m).
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Furthermore,

(5.5) Wp(l, m, x, 9) = T(P\e£P-¡ P) (x6)(l-m)   ifx* 6,

where r(p, x) is defined by (2.3).

Proof. As in the proof of Lemma 2.1,

wp(i,m,x,6)= 2 x(y+i-m)9(y)
V = l

= MM»"1 2 X(z)e(z(l-m)lp)9(z)r(p, 9).
2=1

(5.4) is now immediate, and (5.5) follows from (2.5).    Q.E.D.

(5.6) Lemma. Let p be prime, and let k, A, t be any positive integers. Then

(5.7) v2Gs(p, k, A) = 0(vph + v2pll2h2),

(5.8) v2Gs(p, k, A) = O^A + ^A2-1";/2'2-^1"4'2 log/?).

Furthermore, ift^2 and 1 ̂ h<p(2t + 1}lit, then

(5.9) v2Gs(p, k, h) = 0(^A + v2A2-1/f/7(2i2+i+1)'«2).

Proof. Since Ns(m, m + h+p) = Ns(m, m + h) + v~1<p(p), it follows that Gs(p, k, A)

is periodic in A with period p. Thus we may assume throughout this proof that

lúh^p.

By Lemma 5.1 and (5.3),

(5.10) v2Gs(p, k, h) = o(p+     2 2   W,{x, y, fc, ¿2) ).

Now, (5.4) yields

(5.11) 2   Wv(x, v, </-!, « = ph-A2 = O(ph)   if fa # xo-

When ipx ¥"p2 (and both characters are nonprincipal) it follows from (5.5) and (2.4)

that

2   Wp(x,y,^xA2)
x.y = 1

= p112

(5.12) = 2/>
1/2

2  (M2)(x-y)
y = l

2 = 1

fl-1

= V,22   2(-AiMz)
t)=l      2 = 1

Using the trivial estimate for the inner sum on the right, we get

(5.13) J   Wv(x,y,txA2) = 0(pV2h2)   if xo ï 4>x ï >1>2 Ï Xo-
x.v = l



224 K. K. NORTON [May

Also, Burgess [3, Theorem 1] has shown that if x is nonprincipal modp and A, t

are positive integers, then

2 x(x+i) = oiA^y+wiogp)
i=i

for any integer x (the implied constant is absolute). Applying this result to the inner

sum on the right of (5.12), we get

(5.14) 2   wp(x,y, 0i, «Aa) = 0(Aa-iyata + , + 1)/4,1,Iog/>)
xty = 1

if XoT^i^V^Xo- The result (5.7) follows from (5.10), (5.11), (5.13), and (4.2),

while (5.8) is obtained similarly by the use of (5.14) instead of (5.13).

Burgess [4] also established the following result: if x is nonprincipal modp,

t is any integer 5:2, and 1 ̂ h<p(2t + 1)lit, then

2 x(/) = 0(A1-iy + 1),4t2).
1 = 1

(Note that this follows from the trivial estimate if 1 gA¿//t + 1),4!.) Hence (5.9)

follows in the same way as the previous results.    Q.E.D.

The results of Lemma 5.6 should be compared with the inequality

(5.15) Gs(p,k,h) = 0(ph),

which appears in [20, p. 207, Problem 10a(y)] and was also proved in [17, p. 416].

This inequality (with Lemma 4.12) is sufficient to prove that £>(p, ß, k, s)

= Oe(v2ß~2p) for 1 gj8<2, but it will not yield the stronger result we seek.

(5.16) Theorem. Let p be prime, and let k be any positive integer. Suppose that

\uß<2, Oáí^v-1, andp>vi. Then

(5.17) <S(p,ß,k,s) = 0/,(v"-V + »'max{2-2',-iy3ß + 1,,8(log/7)2),

and in particular,

(5.18) ®(/7, ß,k,s) = Oß(vß - »    ifp > (v log ,)16.

Proof. We can assume ß> 1 by (1.10). We wish to combine the estimates (5.7)

and (5.8) with Lemma 4.12. Preliminary investigations indicate that the best result

of the type (5.18) can be obtained by taking t = 2 in (5.8); for simplicity, we shall

do this from the outset. Note that if t=2, then (5.7) is better than (5.8) roughly for

h^p3l8(logp)2 = H,, say. We shall also need the fact that there is an absolute

constant A such that for O^sáv— 1,

(5.19) M = M(p, k, s) ^ min {p, Av2pm(logp)2} = H2,

say. For a proof of (5.19) see [18, Lemma 5.11]; the proof is a straightforward

application of [3, Theorem 1] and the method of proof of [17, Theorem 3.23].
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In (4.13), we use the estimate (5.7) when l=m and when m<l^Hx (of course,

we could have m^Hx), and we use (5.8) with <=2 for Hx<l^M-l (<H2). The

resulting sums are estimated by integrals in the obvious way. Taking m — v and

using our assumptions 1 <|S<2 and p> vi to simplify the result, we get

®(p,ß,k,s) = Oí(v*-1/»+^3* + 1>'8n

where

F= v2(logp)2B~2        if 1 < ß < 3/2,

= v2(logp)2 if/3 = 3/2,

= v2ß-1(logp)2ß-2   if 3/2 < /3 < 2.

This yields (5.17), and (5.18) follows easily.    Q.E.D.

In particular, the inequality of (5.18) holds whenever p> (k log k)16, since vá k.

Unfortunately, it does not seem easy to get the result with a much less restrictive

condition on p, although we can make a trifling improvement on Theorem 5.16

when p and v are both large. In fact, there is a positive absolute constant B such

that if \<tß<2, OáJgv-1, and p > B(v log vf, then

(5.20) ®(P,ß,k,s)  =   Oí(ví-l/, + vmax{2.2í-iy3/I + l)/B fog^

and in particular,

(5.21) <B(p, ß, k, s) = 0B{v»-ip)   ifp > Bvl6(log vf.

The proof is very similar to the preceding proof. We can assume ß> 1 and v^2.

We use (5.9) instead of (5.8), again taking t = 2. This time, we take Hx=p3ia and

H2 = Av2paia(log p)2, where A is the constant of (5.19). If B is large enough, the

assumption p>B(v log v)a implies that H2fíp5ia, so that the condition for (5.9) is

satisfied when h<H2. We now proceed as before to get (5.20) and (5.21).

If we use the technique of Theorem 5.16 when ß = 2, we find that for 0 S í á v — 1

a.nd p>v*,

(5.22) <S(p, 2, k, s) = 0(vp logp + v^^logp)2).

When p is large relative to v, this result is worse than the inequality

(5.23) ©(/>, 2, k, s) = 0(v6p),

which was proved in [17, Theorem 6.8] (note that (5.23) was improved under

certain circumstances in [18, Theorem 5.15]). When p is not so large, (5.22) is of

some interest. Similar techniques could be used for ß>2, but here it seems better

to use the methods of [18].

It appears to be difficult to extend these results to ©(«, ß, k, s) when « is not

prime. The reason is that Lemma 5.2 is hard to generalize to the case of composite

modulus, since the characters we are dealing with need not be primitive. While

the generalization may not be completely out of reach, the calculations involved

seem extremely complicated.
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