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INTEGRAL DECOMPOSITION OF FUNCTIONALS ON

C*-ALGEBRAS

BY

HERBERT HALPERNO

Abstract. The spectrum of the center of the weak closure of a C*-algebra with

identity on a Hubert space is mapped into a set of quasi-equivalence classes of

representations of the C*-algebra so that every positive cr-weakly continuous func-

tional on the algebra can be written in a central decomposition as an integral over

the spectrum of a field of states whose canonical representations are members of the

respective quasi-equivalence classes except for a nowhere dense set. Various questions

relating to disjointness of classes, factor classes, and uniformly continuous func-

tionals are studied.

1. Introduction. It is now well known that normal (i.e. a-weakly continuous

positive) functionals on a von Neumann algebra can be written as integrals of

fields of functionals over a base space. (It is not surprising then that many of the

convergence theorems of the theory of integration have natural analogues in the

theory of normal functionals.) Of significance are the structures of the base space,

the measures and the fields of functionals involved in the integration. Since every

C*-algebra can be embedded as a weakly dense subalgebra of a von Neumann

algebra so that the dual of the algebra is isometric isomorphic with the predual

(i.e. the space of all a-weakly continuous functionals) of the von Neumann algebra,

every positive functional on a C*-algebra can be written as an integral of a field

of functionals on a base space. Here the field is obtained by restricting the field

for the von Neumann algebra to the C*-algebra.

For separable C*-algebras a rather complete theory exists. Here the base spaces

have been taken to be the state space of the algebra [25] or the set of quasi-

equivalence classes of factor representations [16]. For the latter the measures

which come from decompositions have been described [5]. The nonseparable case

seems more difficult, however, probably since integration is essentially a countable

process. An integration over the state space can be obtained, and Choquet's

theorem, in a form proved by Bishop and de Leeuw, may be used to show that

the measures involved vanish on Baire sets disjoint from the set of primary states

(i.e. those states whose canonical  representations  give  factor  algebras)   [29].
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However, such a condition still allows very pathological behavior [15] since Radon

measures are not defined with respect to Baire sets only.

In this paper we also study integral decompositions. The viewpoint will be

governed by global considerations developed in earlier work ([10]-[13]). Given a

C*-algebra sé with identity represented on a Hubert space H, it is shown that

there is a map £ -> (£) of the spectrum Z of the center of the von Neumann algebra

sé" generated by se on H into the set of quasi-equivalence classes of representations

of sJ such that every normal functional f (i.e. the restriction to s/ of a normal

functional on sé") can be written as an integral f(A) =\f(A) dv(t) and except on a

nowhere dense set the canonical representation of sé induced by the state/ç is in

class (£). At present we cannot tell what the classes (£) are except in a type I algebra

where the (£) are factor classes except for a nowhere dense set. For a von Neumann

algebra si on H, the classes (£) and (£') are disjoint whenever £#£'. Further, it is

shown that each class (£) may be taken to be a factor class if sé is semifinite. This

is an extension of a result of H. Takemoto, who considered a certain class of

normal functionals on type I algebras [28].

Finally, some theorems concerning the separable case are stated without proof

in order to place the foregoing material in proper perspective with the work of

Mautner, Mackey, Dixmier, Sakai, Effros and Ernest (cf. Bibliography). Actually,

central decompositions over the state space and over the set of quasi-equivalence

classes of factor representations are the same. The decomposition obtained here

is over the spectrum Z of commutative separable C*-algebra on a Hubert space.

Every point £ e Z corresponds to a quasi-equivalence class (£) of representations.

The measures which are important are spectral measures. There is a set X in Z

such that Z—X=N is a null set for every spectral measure, such that every (£) in

Y is a factor class and the classes in X are mutually disjoint. Further each positive

functional on the algebra may be written as an integral of a field of {/J of positive

functionals over Z to form a central decomposition so that/{ is in class (£) for all

£ in an A„-set whose complement has measure 0. This fits in with E. Effros' result

[5] showing that those measures on the quasi-equivalence classes of factor repre-

sentations with the Mackey-Borel structure which produce integral decompositions

of the separable representations of the algebra are those measures for which there

is a set M of measure 0 such that the Borel structure on the complement of M is

induced by a Borel isomorphism of the complement and a complete metric space.

In Effros' result M might vary from measure to measure. Here, however, the com-

plete metric structure on Z is given and a set N of measure 0 with respect to all

significant measures exists so that Z—N consists of disjoint classes of factor

representations.

2. Decompositions. Of primary importance in the following work are the

following ideas. Lets/be a type I von Neumann algebra with center 5ona Hubert

space H. Let E be an abelian projection in sé with central support P. For each
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As se there is a unique element te(A) in 2£P such that EAE= te(A)E. The function

te is a (7-weakly continuous ¿F-module homomorphism of the áf-module sa into

J^-module 2CP. Now suppose A is a maximal abelian projection (i.e. an abelian

projection whose central support is 1). For each maximal ideal £ in the spectrum Z

of S, the relation fi(A) = TE(A)~({.) defines a state of sé. Here C~ denotes the

Gelfand transform of C in ¿ST. Now for any positive functional / on a C*-algebra

38 with identity, the set L(f) = {A e B \f(B*B) = 0} defines a closed left ideal of 38.

The factor 38-module 38-L(f) has a natural inner product {A -L(f), B-L(f)} =

f(B*A). The completion of 38—L(f) in this inner product is a Hubert space

H(f). For each As 38, the function B—L(f)-> AB-L(f) defines a bounded

linear operator on the prehilbert space 38—L(f). This operator may be extended

uniquely to a bounded linear operator trf(A) on H(f). The map A -*> ̂ (/l)

is a representation of a? on //(/). It is called the canonical representation of 38

induced by/. If x, is the vector xf=l—L(f) in H(f), then wXftTf=f. Here wX/

denotes the functional wXl(A) = (Axf, xf). Now returning to the type I algebra sé,

we let [£] be the smallest closed two-sided ideal in sé containing the maximal ideal

£. Then we have

[£] = uniform closure -j ̂  {A¡B¡ | 1 £ / £ n}   A{ e sé, Bt e £, n = 1, 2,.

For each ^e^ let A(t) denote the image of A under the canonical homomorphism

of sé onto sé\[l\ and, for a subset S of sé, let £(£) = {/!(£) | ^ e S}. The algebra

j/(£) is a C*-algebra under the norm |¡^(£)]¡ =glb{||^+5|| | Be [£]}. For future

reference we notice that

\A<£)\ = gib {||^P|| | A is a projection in % wit» A~(£) = 1}.

Now the linear space séE(Ç) is a Hubert space under the inner product (AE({),

BE(Q) = TE(B*AT(t), and A^A(Q is a representation </.c of sé on //(£). Here

A(Ç)(BE(Ç)) = ABE(l). The representation </i{ has kernel [£]. Furthermore, there is

an isometry U of H(fi) onto H(Q such that U(l -L(f)) = E(t) and Uttu(A) = ttk(ä)U

for every ^e^.

The following theorem on metric convergence is needed.

Lemma 1. Let E be an abelian projection in a type I von Neumann algebra sé on

the Hilbert space H. Let A ese and let {An} be a sequence in sé such that lim AnE

= AE (strongly). For every xe H and e > 0, there is a projection P in the center 2£

of sé and a subsequence {An¡} of {An} such that \\x—Px\\ <e and lim An¡EP=AEP

(uniformly).

Proof. Let Bn = TE((An-A)*(An-A))112 for w=l, 2,..., and let 38 be the von

Neumann algebra on H generated by the Bn («=1,2,...) and 1. Because 38 is

contained in 3£, the functional wx is a gage on 38 in the sense of I. E. Segal [27].

Thus by employing his Corollary 13.1, we may find a projection P in 38 and a

subsequence {Bn,} of {Bn} such that ||x — Px\\ < s and lim BniP = 0 (uniformly) since

{Bn} converges strongly to 0. This means that lim AUiEP = AEP (uniformly).
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Remark. Lemma 1 may be derived from an earlier result on algebraic con-

vergence of J. von Neumann [20].

Two representations ttx and n2 of a C*-algebra sé on the Hubert spaces Hx and

H2 respectively are said to be quasi-equivalent (denoted by tTX~-n-2) if there is an

isomorphism <f> of the von Neumann algebra generated by ttx(s/) on Hx onto the

von Neumann algebra generated by -n2(sé) on H2 such that <p(trx(A)) = TT2(A) for

every A ese. A. representation -nx of sé on Hx is said to be a subrepresentation of-n-

on H if there is a projection £in the commutant ir(sé)' of -n-'sé) such that E(H) = Hx

and tt(A)E=itx(A) for every A in sé. If ttx and ir2 are subrepresentations of -n

corresponding respectively to the projections Ex and E2 in -n(sé)', then 771~7r2 if

and only if Ex and E2 have the same central supports in -n'sé)'. Then it is clear that

ttx and 7T2 are quasi-equivalent whenever -nx is quasi-equivalent to a subrepresenta-

tion of 7T2 (in symbols, 7i-i<7r2) and 7r2 is quasi-equivalent to a subrepresentation

of irx. If there is no nonzero subrepresentation of irx which is quasi-equivalent to a

subrepresentation of 7r2, then -nx and tt2 are said to be disjoint. Since the notion of

quasi-equivalence is an equivalence relation, the set of representations of sé may

be partitioned into quasi-equivalence classes of representations. If -n is a factor

representation of sé, then every element in the quasi-equivalence class determined

by 7T is a factor representation. Since every factor representation is quasi-equivalent

to each of its nonzero subrepresentations, two quasi-equivalence classes of factor

representations of sé are either equal or disjoint ([16], [17], [3, §5]).

Lemma 2. Let sé be a C*-algebra with identity, let -n be a representation of sé on

the Hilbert space H(tr), and let f be a normal functional on the von Neumann algebra

■n(sé)" generated by -rr(sé). If -nf is the canonical representation of -n(sé)" on H(f)

induced by f then -tt¡-tt is quasi-equivalent to a subrepresentation of-n.

Proof. Let ■nx = -ns--n and let tt0 be the direct sum tt0 = ttx@tt of nx and -n on the

Hilbert space H=H(f) © H(n). Let x he a cyclic vector in H(f) under -n^Tr'sé)")

such that wx-iTf=f Since ir(sé) is weakly dense in -n'sé)" and since Trf is a-weakly

continuous on -n'sé)", the vector x is a cyclic vector under -nx(sé). Let {xj be a

sequence in H(-n) such that 2 ¡*t[|2 < +00 and/=2 wx¡- Now the projections is and

F of H on H(f) and H(tt) respectively are in the commutant of tr0(sé) on H. Let

P and Q be their respective central supports.

Suppose ttx is not quasi-equivalent to a subrepresentation of n. Then the pro-

jection R=P — PQ is a nonzero central projection of tr0(sé)". But n0(sé) is strongly

dense in -n-0(sé)" and so there is a net {An} in sé such that lim -n-0(An) = R (strongly).

Because RE^O and because

E(H) = closure {tr0(A)x \ A e sé} = closure {ttx(A)x \ A e sé},

we have that Rx^O. However, we have

(Rx, x) = lim wx(n0(An)) = Hm wx-n,(n(An))

= limf(n(An)) = lim 2 wXi(F7T0(An)) = 2 ^(FR) = 0.

This is a contradiction. Thus, we must have that trx<-n.   Q.E.D.
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Remark. The representation wf-w=7rx on the Hilbert space H(f) is unitarily

equivalent to the canonical representation irg of g=f-tr on the Hilbert space H(g).

Indeed, for A, B, C in sé, we have that

(nx(A)(ir(B)-L(f)),n(C)-L(f))

= f(n(C*AB)) = g(C*AB) = (ng(A)(B-L(g)), C-L(g)).

Thus the relation U(B—L(g)) = ir(B)—L(f) defines a linear isometry U of the linear

manifold sé —L(g) in H(g) onto the linear manifold Tr(sé)—L(f) in H(f). We

show that n(sé)—L(f) is dense in H(f). Since -n'sé)"—L(f) is dense in H(f), it is

sufficient to show that -ir(sé)—L(f) is dense in -n'sé)"—L(f). If A e -n'sé)" there is

a bounded net {An} in -n(sé) which converges strongly to A by the Kaplansky

density theorem [14]. Then we have that

lim ¡(A-L(f))-(An-L(f))\\2 = limf((A-An)*(A-An)) = 0

since lim (A — An)*(A — An) = 0 (strongly) and / is strongly continuous. So -n(sé)

—L(f) is dense in -n'sé)" —L(f) and hence dense in //(/). Because sé—L(g) is

dense in H(g), the map U may be extended to a linear isometry, which we also

call U, of H(g) onto H(f). By the extension of equalities, we obtain that Utrs(A)

= ttx(A)U for every A in sé.

Theorem 3. Let sé be a C*-algebra wih identity on a Hilbert space H, and let

sé" be the von Neumann algebra generated by sé. Let Ex and E2 be maximal abelian

projections in the commutant ¿X' of the center 3£ of sé. For each £ in the spectrum

Z of 2£ let fK(A) be the state of sé given by fK(A) = TEl(A)~(Q for every A ese

(1 áiá2). Let ttk be the canonical representation inducedbyfK (1 ¿¡ í^2). Then there

is a nowhere dense set N such that -nxt,~ir2t,for every £ £ N.

Proof. Let EX = E and E2 = F and let C/be a partial isometry in 3f' with domain

support E and range support F. Let P be a nonzero projection in 2£. First we show

that there is a nonzero projection Q in 2CP such that 7rK-<7r2Ç for every £ in

{£ eZ | ß~(£)= 1}. There is no loss of generality in assuming that PE is a cyclic

projection corresponding to the subspace closure {Ax \ A e 3?} for some unit vector

x in P(H). There is a bounded sequence {Bn} in the *-algebra generated by séP and

¿/T such that {Bnx} converges to Ux since this *-algebra is strongly dense in 2£'P

[14]. Therefore, the sequence {BnE} converges strongly to UP. Using Lemma 1 and

taking a nonzero projection in 2ÍP and a subsequence of {Bn} if necessary, we may

assume that lim BnEP= UP (uniformly). Thus, the sequence {te(B^ABu)} of

Jf-module homomorphisms converges uniformly to tf(A) on the unit sphere of

sé"P.

Let n he a fixed positive integer and let B = Bn. Let {A¡\ l^i^m} and

{C¡ | 1^/^m} be finite subsets of sé and sé'P respectively with '2,AiCi = B. We

have that

te(B*AB) = ^{^(AfAAiCtC,) \lúi,jú m},
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for every A in sé". Since each CfC} can be written as a linear combination of

positive elements in sé'P and since te(AC)^te(A)\\C\\ for every A insé"+ whenever

C is in sé' + , by the Radon-Nikodym theorem for module homomorphisms [12, §2]

there is no loss of generality in assuming that there is a finite subset {A¡ | 1 Ûiik2m}

of elements of sé"P such that te(B*AB) = Z {TE(AfAAi + m) | lgi'^m} for every A

in sé". For each At there is a bounded sequence {Atj} of elements of sé such that

lim Aijx = Alx. By choosing subsequences of each sequence {A^},- if necessary, we

may find projections Pnj in 2£P such that \\Pn]x — x\\ á4""(2w)_1 and such that

Urn jAijEPni = AiEPni (uniformly). Let Pn=Pni • • ■ Pn2m- We have that \\Pnx — x\\

S4~n and lim AijEPn = AiEPn (uniformly) for /= 1, 2,..., 2m. Now letting n vary,

we set Q = glb{P1P2- ■  Pn \ n=l, 2,...}. Since

||ßx-x|| =lim \\Px---Pnx-x\\

g lim sup 2 {\\Po ■ ■ ■ Pix-Po ■ ■ ■ Pj-ix\\ | 1 á j á »}

g24-» = 3-1,

where P0=P, we have that Q¥=0.

Now let Y={£eZ| 0~(£)=1}. In the preceding paragraph we showed that

given any «=1,2,... then there are {A¡\ lg i^2m} in séP such that

W-2WA*Mt,)l lúiúm} s «

< n-

]AR\\

}A(Q\\

for every A in ¿a^"<2. Thus for every A in .a*"' and every projection R in ^0, we

have that

(rF(A)-2r^A*AAi^))R

Thus for every £ in A' we have that

(rF(A)-jtTE(ArAAi+m)Ya)

for every A in se" (cf. remarks at beginning of §2).

Now let £ be fixed in X. Let 0 = 0j De the representation of 2£' with kernel [£]

on the Hubert space H(t,) = 2£'E(t) given by i¡j(A)BE(l) = ABE(t). Let K(Q be the

subspace of H(l) given by K(Q — closure {<p(A)E(t,) \ A ese}. Then the projection

G of //(£) on /i(£) is in the commutant sé(t,)' of sé(t). Let ^ = ^(0 = ^^(0

(1 ̂ i^m), let yi = Al+mE(r.) (1 g/gwt), and let «„ be the functional

on the algebra J? of all bounded linear operators on i/(£). Let « be the functional

on fe given by h(A) = (A£/(£), £/(£)). It is clear that hn->fi(A) = Z rE(AfAAi + mr(0

and « ■ </i(^) = Tf(/1)^(£) for all yl e J?". But for every A in sé, we have that

|/¡(<A(^))-«n(</.(^())|g«-1|¡^(£)||=«-11|004)||. By the Kaplansky density theorem

[14], \h(A) — hn(A)\^n~1\\A\\ for every Ae>p(sé)" since « and «n are o-weakly

continuous on ¡¡¡(sé)". Because the x¡ and y¡ are in K(Q, we have that hn(A) = hn(GA)
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= hn(AG) for every A in <¡¡(sé)". Let R be the central support of G in <p(sé)''. We

have that \hn(AG)-hm(AG)\ = \hn(AR) - hm(AR)\ = \hn(AR) - h(AR)\ + \h(AR)

-hm(AR)\ ^(n-1 + m-1)\\AR\\=(n-1 + m-1)\\AG\\.Setting gnequal to the restric-

tion of hn to >j)(sé)"G for every n= I, 2,. .., we obtain a Cauchy sequence {gn} in the

predual of i¡>(sé)"G. Since the predual of >p(sé)"G is a complete normed linear space,

we may find two square summable sequences {z¡} and {/;} in A"(£) such that {#„}

converges uniformly to 2 w2iiti on 4>(sé)"G. Hence, for every A in sé we have that

tf(ATH) = KMA)) = lim hMM = lim hn(-P(A)G) = 2 ^,MA)G).

This means, first of all, that g = 2wsi,¡¡ is positive on <p(sé)G, and since every

positive element in xf)(sé)"G is the a-weak limit of positive elements of tp(s/)G, that

g is positive on <¡>(sé)"G. Hence, there is a square summable sequence {m¡} in K(t)

such that g=~2wu. on ifi(sé)"G. Now, let n be the representation of sé on ÄY£)

given by n(A) = >(i(A)G for every ^4 in sé. We have that/=g|7r(¿/)" = 2 wu, is normal

on it'sé)" and by Lemma 2 we have that Trf-Tr<.Tc. But Try-w is unitarily equivalent

to the canonical representation 7r2Ç oí sé induced by/-7r=/2C [remarks and Lemma

2]. Also 77 is unitarily equivalent with 77U. Indeed, for every A, B, C in sé we have

that

(tt(C)AE(O, BE(0) = TE(B*CAT(t) =f1K(B*CA)

= (^(C)(A-L(fxd),B-L(fxd).

Since {AE(t) \ A ese} and {A-L(fx¿) \ A ese} are uniformly dense in K(Ç) and

H(-nx¿), respectively, we have that -n and 7ru are unitarily equivalent. This proves

that TTac^TTjc. Because £ is arbitrary in X, we have that 7r2Ç«<7rlc for every £e X.

This completes the first part of the proof.

The rest of the proof requires a maximality argument. Let {P,} be a maximal set

of nonzero orthogonal projections in 3£ such that for each £ e (J {£ eZ | iJP(£) = 1}

the relation 7r2C«<7r1!: holds. If 1 — 2 Pi = P is not zero, then there is a nonzero pro-

jection Q in J?.P such that -n-2K<TTx^ for every £e{£eZ | Ô"X£)=1}. This comes

from the first part of the proof. However, such a situation contradicts the maxi-

mality of the set {P¡}. Therefore 2 A = 1 and 7i = IJ {£ e Z | PC(0 = 1} is an open

dense set of Z.

By a similar argument, there is an open subset Y2 of Z such that 7rlç^7r2ç for

every £ e Y2. Therefore for every £ in the open dense subset Yx n Y2 we have that

TTxç~-rr2ç.     Q.E.D.

The following lemma is known for primary functionals [16].

Lemma 4. Let sé be a C*-algebra with identity and let {f} be a sequence of positive

functionals such that the partial sums {2 {fi \ lúiUn}} converge to the positive

functional f. If each canonical representation T,f. induced byfi lies in the same quasi-

equivalence class, then the canonical representation tt¡ induced by f lies in this same

class.
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Proof. Let ir = 2 0 t/( on //=2 © H(fi) and let x¡ be a vector in H(fi) cyclic

under trfi(s/) such that »>*,•*■/,—.& Then 2 ||*i||2 = 2./î(l)< +00- Because the pro-

jection E¡ of // on //(/¡) is in the commutant of -n(sé), we have that wx-n(A)

= 2 wXl(-n-(A)) = 'Zfi(A)=f(A) for every A esé. Here x is the vector in H given by

x = 2 x¡. Let £ be the projection of H on the subspace A^=closure {tt(A)x \ A e sé}

of H. Then E is in the commutant of -n(sé) on // and the central support P of E

majorizes the central support of each E¡ since Px{ = x¡ for each /. Let -nx be the

representation of sé on A'given by ttx(A) = tt(A)E. Then ^ is unitarily equivalent

to the representation nf of sé on H(f) because/= wx ■ -rrx and x is cyclic for K under

TTx(sé). So it is sufficient to show that ir1~ir/i. However, the fact that all the tt/(

(i = 1, 2,...) are quasi-equivalent implies that all the projections E¡ have the same

central support. The common central support must be 1 since 2 E¡= 1. Hence, we

must also have that P= I. This means that tt~ttx.    Q.E.D.

Let sé be a von Neumann algebra with center Si on a Hubert space H. If fis a

normal functional on sé, then there is normal module homomorphism <j> of the

^-module sé onto 2£ such that j> (1)=1 (i.e. 0 is a state) and f=(f\2£)-<p. If Pis

the support off\5f, then P<p is uniquely determined [12].

Now let sé be a type I von Neumann algebra with center 2£ and let sé'„ be the

Banach ^-module of all cr-weakly continuous .áT-module homomorphisms of sé

into 2£. If <p is a positive element of sé„, there is a decreasing sequence {A¡} in

££+ which converges uniformly to 0 and whose partial sums are bounded above

and a sequence {E¡} of orthogonal abelian projections whose central supports P¡

are equal to the supports of the At respectively such that <t>(A) = '£ A¡te¡(A)

(strongly) ([11], [12]).

Now let sé be an arbitrary von Neumann algebra with center S on H. Let sé„

be the set of all a-weakly continuous áT-module homomorphisms of sé into 2£. If

<p is a positive element of sé„, then <j> may be extended to a positive a-weakly con-

tinuous .^-module homomorphism of the commutant 3£' of 2£ into 3£. Since 2£'

is type I, the preceding representation of the extension induces a representation of

the homomorphism itself.

In the sequel, a functional on a C*-algebra sé with identity on a Hubert space

H will be called normal if it is the restriction to sé of a (necessarily unique) normal

functional on the von Neumann algebra generated by sé on H.

The following lemma extends Theorem 3.

Lemma 5. Let sé be a C*-algebra with identity on the Hubert space H, let sé" be

the von Neumann algebra generated by sé and H and let S be the center of sé. Let

<j>x and 02 be states in the space set of a-weakly continuous positive module homo-

morphisms of sé" into 2£. For each £ in the spectrum Z of' 2£ let fK be the state of sé

given by fK(A) = <f>i(A)~(£) for every A esé (lá/^2). Let wa be the canonical

representation of sé induced by fK (1 g/^2). Then there is a nowhere dense subset N

ofZ such that irx^TT2t_for every £ £ N.



1972] DECOMPOSITION OF FUNCTIONALS ON C*-ALGEBRAS 379

Proof. It is sufficient to find a maximal abelian projection E in the commutant

S' of Sí and a nowhere dense set N of Z such that for every £ £ N the representa-

tion 7TU is quasi-equivalent to the canonical representation induced by the state f

of s/ defined by te(A)~(Q (Theorem 3). We proceed to do this. By the remarks

preceding this lemma the function <j>x may be written

<Px(A) = 2{AlTEi(A)\i= 1,2,...}

(strong limit), where {At} is a summable sequence in -2T+ (in the strong topology)

that converges monotonically to 0 and {£¡} is a sequence of mutually orthogonal

abelian projections such that the central support P¡ of each Et is related to the sup-

port of Ai by {£eZ | Pp(£)= l} = closure {£ eZ | A^(Q>0}. There is a nowhere

dense subset N0 of Z such that 2 ^P(£) = (2 AX^d) whenever £ £ N0. If gna(A)

= An(Q-rEn(AT(Q (A ese), because ||gnC|| =g„?(l) = ^C(£) for every £ and «, it is

clear that the partial sums {2 {gnu I 1 ún£m}} converge in the uniform topology

of the dual of sé to the functional /u for all {$N0. But gxt.(l) is nonzero for

li N0 since gitO) = £ncO) and/lc(l)=l for all £eZ. This means that the central

support Px of Ex is 1. We show that E=Ex has the desired properties. Let 7rc be

the canonical representation of sé induced by the state fi(A) = te(A)~(Z,) of sé. For

every i=2, 3,... there is a maximal abelian projection F¡ such that F(^£(. By

Theorem 3, for every i=2, 3,... there is a nowhere dense set N{ of Z such that the

canonical representation induced by the state TF.(A)~(t) is in the same class as n^

whenever £ £ 7Vt. However, the set N=N0 u ((J Nf) is nowhere dense in Z [1]. For

every £ f N and every /'= 1, 2,... either gK = 0 or the canonical representation of

sé induced by gK is in the same quasi-equivalence class as 7rc. However, the func-

tional gu is nonzero for every £ £ N. By Lemma 4 we may conclude, therefore, that

the canonical representation iru of sé induced by/lc is in the same quasi-equiva-

lence class as the canonical representation irç of sé induced by/ç. Q.E.D.

The next theorem is the main decomposition theorem.

Theorem 6. Let sé be a C*-algebra on a Hubert space H. Suppose sé contains

the center 2£ of the von Neumann algebra sé" generated by sé on H. Then there is a

one-one map £ -> (£) of the spectrum Z of 2£ into a set of mutually disjoint quasi-

equivalent classes of representations of sé with the following properties: If f is a

normal functional on sé, then there is a field {fi | £ e Z} of states of sé indexed by Z

and a Radon measure v on Z such that

(1) v is the spectral measure on Z obtained by restricting f to Si;

(2) the canonical representation trf of sé induced by f is in class (£) except

perhaps on a nowhere dense set ofZ;

(3) f¿A) = A~(t)for every Ae2£ and le Z;

(4) £ -^fi(A) is continuous on Z for fixed A in sé; and

(5) f(A) =jfr(A) dv(Q for every A ese.

Remark 1. In particular, a von Neumann algebra se on H satisfies the hypoth-

eses of the theorem.
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Remark 2. If {/c' | £ e Z} is a second field of states indexed by Z, and if v' is a

second Radon measure on Z which satisfy properties (l)-(5), then v' = v and

fi¿=fi for all £ in the support of v. Indeed, v' is then the spectral measure determined

by f\5f while {f¿ | £ e support v) determines the element 0 of sé„ with/ = (/|Z)-0.

Remark 3. This theorem also gives a decomposition of the Hubert space H(f)

into the direct integral of Hubert spaces H(f).

Proof. Let £ be a maximal abelian projection in the commutant ¿2" of Sf. For

each £ e Z, let (£) be the quasi-equivalence class of representations of sé determined

by the canonical representation of the positive functional te(A)^(Q on sé. Then

(£) and (£') are disjoint whenever £ and £' are distinct points of Z. In fact, if tt and

tt' are nonzero subrepresentations of the canonical representations induced by

te(A)^(0 and te(A)^(1'), respectively, then there exists no isometry U of the

underlying Hubert spaces such that Utt(A) = tt'(A)U for every A ese since tt(A)

= /r(£)ir(l) and 7r(A) = A~tt'y(l) for every AeS.

Now there is a state 0 esé„ such that f=(f\2i)-$. Since f\3f is normal on 2£,

there is a vector x e H such that/| 2£ = wx. Let v be the spectral measure on Z which

corresponds to wx by the relation wx(A)=j A~(t,) dv(Q for every Ae2£. Then

setting fi(A) = <p(A)~(Q for every £eZ, we obtain f(A) =Jfi(A) dv(Q for every A

in sé. Since ¡p(A) e Sf for every A ese, the function £ ->-^(y4) of Z into the complex

field is continuous for each fixed A in sé. Thus {fi(A) | £ e Z} satisfies property (4).

Also /ç(^) = 0(^(0 = ̂ "(000 HO = ̂ "(0 for every AeSf. Thus, /c satisfies

property (3). Finally, property (2) follows from Lemma 5.    Q.E.D.

To apply Theorem 6 to a C*-algebra sé with identity which does not contain the

center 5f of the von Neumann algebra which it generates, one might work with the

C*-algebra sé+% generated by sé and S. The objects in the representation for

sé + 2£ may then be restricted to sé. One would then obtain a function £ -> (£) of

Z into the set of quasi-equivalence classes of representations of sé such that to each

normal functional / there corresponds a field {f | £ e Z} of functionals and a

measure v on Z satisfying (l)-(5). At present we cannot tell whether £->(£) is

one-one or whether even the functionals f are distinct.

We now obtain some information on the quasi-equivalence classes.

Theorem 7. Let sé be a type I C*-algebra with identity, let 3$ be the enveloping

von Neumann algebra of sé, and let <f> be a state of 38„. For each £ in the spectrum Z

of the center ^ of 38 let fi be the state of sé defined by fi(A) = <j>(A)~(Ç) for every A

in sé. Then the set {{eZ\fi is not a primary functional} is nowhere dense in Z.

Remark. Since Theorem 7 will not be applied to von Neumann algebras, it is

stated in terms of the enveloping algebra.

Proof. By Lemma 5 it is sufficient to find a particular maximal abelian projection

F in 38 such that {£ e Z \ TF(A)^(t.) is not primary} is nowhere dense in Z. We

actually construct a maximal abelian projection Fin 38 such that {£ eZ \ tf(A)~({)

is not a pure state} is nowhere dense. Using the same proof as [13, Theorem 6
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(part al implies a2)] extended to the GCR case from the CCR case, we may find

an increasing net {P¡ | OsSiai'o) of projections in £f indexed by the ordinals with

the following properties: (1) P0 = 0; (2) P,0=l; (3) if y is a limit ordinal, then

lub {P¡ | i<j}=Pf; and (4) given (there is an abelian projection Ft of central support

Pi+x—Pi and a positive element A¡ in 3f(Pi + 1-Pi) with closure {£ eZ | /4p(£)>0}

= {£ eZ | PP(£) = 1} such that AtF¡ is in ja/(P,+1-/»,)•

Now using Lemma 3 of [13], we may find by a maximality argument a net {Q¡}

of orthogonal central projections of sum 1 such that each algebra s/Qi contains an

abelian projection Ft of 38 of central support Qt. For each £eZ with ÖP(£)=1,

we show/ç(^) = TFj(y4)"(£) is a pure state of sé. Indeed, let A¡ be an element of sé

with AlQi=Fl. Then by taking the appropriate function of Ait we may assume that

O^Aj^l and thus/(l — A¡) = 0. Now let/be a positive functional on sé which is

majorized by f. This means that f(A)=f(AiAAi) for every A e sé. By the Schwarz

inequality we obtain that \f(A)\ ^fi(A*A)112 for every A in sé. However, the func-

tion p(A) = (te(A*A)~({,))112 is aseminorm on 38, and by the Hahn-Banach Theorem

the functional /has an extension to a functional g on 38 such that \g(A)\ Sp(A) for

every Ae33. However, the seminorm p vanishes on the smallest closed two-sided

ideal [£] in 38 which contains £. This means that g also vanishes on [£]. But AtAAt

—fi(A)Ai is an element of [£]. So we obtain that

fi(A) =f(AiAAi) = g(AiAAi) = f(A)g(Ai)

for every A in sé. Thus/ is a pure state. Now let F be the maximal abelian projec-

tion of 38 given by F=2 Ft. Then for £ eZ with ßp(£) = 1 for some Qt we have that

tf(A)~(Ç) = (tf(A)QÙ~(1) = TFi(A)~(t). So tf(A)~(0 is a pure state except perhaps

on the nowhere dense set (~) {£eZ | £>P(£) = 0}.    Q.E.D.

Corollary. Let sé be a C*-algebra with identity, let 38 be its enveloping von

Neumann algebra, let 3f be the center of 38, and let Z be the spectrum of 2£. For every

maximal abelian projection E in the commutant 3£' of S and for every £ in Z let

(£)£ be the quasi-equivalence class of representations of sé determined by the canonical

representation of sé induced by the functional te(A)~(Q. Then sé is a type I C*-

algebra if and only if the set XE = {t,eZ \ (£)b does not contain an irreducible repre-

sentation} is nowhere dense in Z for every maximal abelian projection E in 2£'.

Proof. If sé is type I, then the corollary follows from the proof of Theorem 7

and from Theorem 3.

If sé is not type I, then there is a state/of sé such that irs is a factor type III on

H(f) [31]. There is a minimal projection P in 2£ and a maximal abelian projection

Fin 3£' such that f(A)P= tf(A)P for every A in sé. Thus XF has a nonvoid interior

and, by Theorem 3, XE has a nonvoid interior for every maximal abelian projection

in %'.    Q.E.D.

Remark. P. Fillmore and D. Topping [8, §3] state without proof that the

functionals/ are irreducible provided there is an abelian projection F of central

support 1 in sé and 2£ is contained in sé. Here 2£ is not assumed to be in sé.
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The next theorem might be considered as a generalization of a result of H.

Takemoto [28]. He showed that the field of functionals {/} in a representation

given by the present author was in fact a field of primary functionals.

Theorem 8. Let sé be a semifinite von Neumann algebra on the Hubert space H.

Then there is a one-one map £ -*■ (£) of the spectrum Z of the center Sf of sé onto a

set of mutually disjoint quasi-equivalence classes of factor representations of sé with

the following properties: If f is a normal functional on sé, then there are states

{/ | £ 6 Z} of sé and a measure v on Z which satisfy properties (l)-(5) of Theorem 6.

Proof. There is no loss in generality in considering the type I and the type II

cases separately.

If sé is type I, then let £ be a maximal abelian projection of sé. For each £ in Z

the functional f(A) = TE(AY'(r) is a pure state of sé [10, Proposition 2.1]. Thus,

the result follows from Theorem 6 for this case.

Now let sé be a type II algebra. Let F be a finite projection in sé of central

support 1 and let A* denote the i^-valued canonical trace of an element A in

EséE [2, III, §5]. The function on s? defined by <p(A) = (EAE)# is a state in sé„

because the map A -* EAE is a positive a-weakly continuous linear function of

sé onto EséE. We show that fi(A) = <f>(Ay(Ç) is a primary functional for every £

in Z. Indeed, let -nK be the canonical representation of sé on //(£) induced by/.

Let xc be a cyclic unit vector for //(£) under -n^sé) such that wXc-irt=/. Then

||irc(£)xc|| = 1 implies irç(£)x{ = xt. This means that the central support of irç(£) in

the von Neumann algebra -n¿sé)" generated by -n-^sé) on 77(£) is 1. Now let A be

an element in the center of ir¡-(sé)". Then An^E) is in the center of irc(£)irç(.s/)"u-t(£)

on TT¿E)H(t) = K(t). But irc(£)7rç(j/)"irc(F) is the von Neumann algebra on K(Q

which is generated by tt^Es/E) on A"(£). Also the vector xc is in K(t) and xt is

cyclic under -nK(Es/E). This means that the representation -n^EséE on F(£) is

unitarily equivalent to the canonical representation induced by f ¿EséE. However,

the functional /| EséE is a primary functional ([30], cf. [22, II, §7]). This implies

that 7TÇ(£)7rc(ti/)"7rc(£) is a factor and hence AtrK(E) is a scalar multiple of the

identity. Since irç(£) has central support 1, the element A itself is a scalar multiple

of the identity. Hence TtK(sé)" is a factor and so the functional / is primary. If (£)

denotes the quasi-equivalence class of representations which contains the canonical

representation induced by/, then £^(£) is a one-one map of Z onto a set of

mutually disjoint quasi-equivalent factor representations of sé. Then Theorem 8

follows from Lemma 5 and Theorem 6.    Q.E.D.

3. Separable algebras. We now state some results for separable C*-algebras to

indicate the relation between the present decomposition and the usual central

decomposition.

Proposition A. Let sé be a separable C*-algebra with identity on a Hubert space

H and let E be a maximal abelian projection in the commutant of the center 2f of the
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von Neumann algebra generated by sé. For each £ in the spectrum Z of 2£ let / be

the state of sé given by fi(A) = TE(A)~(i). Then the set {£eZ |/ is not a primary

state of sé} is nowhere dense in Z.

Passing to the enveloping von Neumann algebra, we obtain the following

theorem :

Theorem B. Let sé be a separable C*-algebra with identity, let 38 be the enveloping

von Neumann algebra ofs? and let 2£ be the center of 38. Let E be a maximal abelian

projection of the commutant of 2£ and let <€ be the separable abelian C*-algebra

generated by {te(A) \ A e sé}. Let Z be the spectrum of£. For each £ e Z let (£) be

the quasi-equivalence class of representations of sé determined by the canonical

representation induced by the state te(A)^(Q. Then there is a set X in Z such that

Z—X has measure 0 for every spectral measure on Z with respect to H and such that

if O and £2 are distinct points of X, then (0) and (£2) are disjoint classes of factor

representations of sé. Now let f be a positive functional on sé. Then there is a field

{/ | £ e Z} of states on sé indexed by Z, a Radon measure v on Z, and an Fa-set Y

on Z with v(Z) = v(Y) such that

(1) v is a spectral measure Z obtained by restricting to (€ the unique normal

extension of f to 38;

(2) the canonical representation induced by / is in class (£) for all £ e Y;

(3) for each fixed A in sé, the function £ -^fi(A) is an essentially bounded

v-measurable function ofZ;

(4) the set {£->fi(A) \ A ese} is dense in the set of essentially bounded v-measur-

able functions ofZ in the w*-topology; and

(5) there is a linear function 0 of Z into the essentially bounded v-measurable

functions on Z such that

f(AB) = ^(A)(l)f¿B)dv(l)

for every A in S and B in sé. Here H is the Hilbert space of 38.

Remark. The properties listed for the measures and fields of Theorem B are

enough to determine an essentially unique representation over Z.

The last proposition corresponds to the theorem concerning smooth duals.

Proposition C. Let the hypotheses be the same as Theorem B. Then the algebra

sé is of type I if and only if X, in addition to its other properties, may be chosen so

that each class (I) for le X contains an irreducible representation.

Added in proof on January 27, 1972. S. Strätilä and L. Zsidó (C. R. Acad.

Sei. Paris Ser. A-B 272 (1971), A1452-A1456) have announced a result similar to

Theorem 8.
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