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THE FIX-POINTS AND FACTORIZATION OF
MEROMORPHIC FUNCTIONS

BY

FRED GROSS(') AND CHUNG-CHUN YANG

Abstract, In this paper, we use the Nevanlinna theory of meromorphic functions

and a result of Goldstein to generalize some known results in factorization and fix-

points of entire functions. Specifically, we prove

(1) If/and g are nonlinear entire functions such that/(^) is transcendental and of

finite order, then fig) has infinitely many fix-points.

(2) If /is a polynomial of degree ä3, and g is an arbitrary transcendental mero-

morphic function, then f(g) must have infinitely many fix-points.

(3) Let p(z), q(z) be any nonconstant polynomials, at least one of which is not

c-even, and let a and b be any constants with a or è^O.

Then h(z) = q(z) exp (az1 + bz) + p(z) is prime.

I. Introduction. A meromorphic function h(z)=f(g(z)) is said to have f(z)

and g(z) as left and right factors respectively, provided that/(z) is meromorphic

and g(z) is entire (g may be meromorphic when/is rational). Such a composition

f(g) is called a factorization of h. h(z) is said to be prime (pseudo prime) if every

factorization of the above form implies that one of the functions f or g is bilinear

(a polynomial or f(z) is rational). h(z) is said to be £-prime (/5-pseudo prime) if

every factorization of the above form into entire factors implies that one of the

functions for g is linear (a polynomial).

Let/(z) be a nonconstant meromorphic function in the whole finite plane. A

point z0 is a fix-point off if and only if f(z0) = z0. In 1926 Fatou [4] announced

that when/is entire, then f(f) has infinitely many fix-points unless/is a polynomial.

This result was proved and generalized by Rosenbloom [12] as follows:

Theorem A. If fand g are transcendental entire functions, then either f or f(g)

has infinitely many fix-points.

In the same paper, Rosenbloom also showed

Theorem B. Let p(z) be a polynomial of degree k^2, and g(z) be transcendental

entire, then p(g) has infinitely many fix-points.
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The first author proved the following generalization of Theorem A.

Theorem C [6]. Let F (F*) denote the family of entire (meromorphic) functions

with at most a finite number of fix-points. Then (i) every entire function has at most

one factorization f(g(z)), f transcendental, fe F, g entire; (ii) every meromorphic

function has at most two distinct factorizations /(g¡), / meromorphic, / not rational,

f e F*, gt entire.

In particular, iff is transcendental meromorphic and g and h are transcendental

entire then one of f(z), f(g(z)), f(g(h(z))) has infinitely many fix-points.

It was conjectured in [1, p. 542] that if/is transcendental entire and g is nonlinear

entire, then /(g) has infinitely many fix-points. The conjecture was also made

when/is meromorphic [5]. However, nothing was stated about the case when/

is rational and g meromorphic.

The purpose of this note is to generalize Theorem B to meromorphic functions

and to point out that a recent result of Goldstein [10] yields a partial answer to

the above conjecture. We shall also obtain some interesting results on the factor-

ization of entire functions. Specifically, we shall prove

Theorem 1. Let f and g be entire and nonlinear and such that F=f(g) is trans-

cendental and of finite order, then F has infinitely many fix-points.

As a generalization of Theorem B, we prove

Theorem 2. Let p(z) be a polynomial of degree « ä 3, and let f be transcendental

meromorphic, then p(f) has infinitely many fix-points.

When « = 2, we prove

Theorem 3. Let p(z) = z2, f transcendental meromorphic, then p(f) has only

finitely many fix-points if and only if

_ Qtz1'2) exp (y(z1i2))+Q(-z1'2) exp (y(-z^2))

JK)      iQizll2)/z112) exp (y(zll2))-iQ(-z1>2)/z1'2) exp (y(-z112))'

where Q(z) is a polynomial, and y(z) is entire.

Remark. When p(z) is an arbitrary nonlinear polynomial quadratic form, a

similar result holds.

Definition 1. Let c be any complex number. A polynomial p(z) is said to be

c-even if and only if p(z)=p( — z — 2c).

Theorem 4. Let p(z) and q(z) be any nonconstant polynomials, at least one of

which is not c-even, and let a and b be any constants (at least one of them different

from zero). Then h(z)=q(z) exp (az2 + bz) + p(z) is prime.

In particular, we have

Corollary. Let P(z), Q(z) be two polynomials, Q(z)^0, P(z)^constant. Then

Q(z)ez+P(z) is prime.
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This extends an earlier result of the first author and Baker [1, p. 34]. We remark

here that by using arguments similar to the proof of Theorem 4, one can obtain

the following two results.

Theorem 5. Let hx be a nonzero polynomial, and h2 (^constant) be an entire

function of order less than the degree of the polynomial p(z). Then the only possible

factorization of hx(z)eptí) + h2(z) is of the form hx(z)ep(-z) + h2(z)=f(Q(z)), where Q(z)

is a polynomial of degree no greater than the degree ofp(z).

Theorem 6. Let hx(z) be a nonzero polynomial, and h2(z) (^constant) be an

entire function of order less than one. Then hx(z)ez + h2(z) is prime.

Remark. hx, h2 can be assumed to have a finite number of poles. It follows that

Q and P in the corollary of Theorem 4 can be replaced by rational functions.

The tool we employ here is Nevanlinna's theory of meromorphic functions but

the approach will be entirely different from Rosenbloom's. It is assumed that the

reader is familiar with the fundamental concept of Nevanlinna's first and second

fundamental theorems as well as with its usual symbols: N(r,f), T(r,f), o(r,f),

etc.

II. Preliminaries.    We shall need the following lemmas.

First, we state the following definition:

Definition 2. A differential polynomial in / means a polynomial in / and its

derivatives with the coefficients b(z) meromorphic and satisfying T(r, b(z)) = S(r,f),

where S(r,f) denotes any quantity satisfying S(r,f) = o{T(r,f)} for all r outside a

set of finite measure.

Lemma 1 (Tumura-Clunie [9, p. 69]). Suppose that f(z) is meromorphic and

not constant in the plane, that g(z)=fn(z)+pn.x(f), where pn-i(f) is a differential

polynomial in f of degree at most n—l, and that N(r,f) + N(r, l/g) = S(r,f). Then

g(z) = hn(z), h(z)=f(z) + (l/n)a(z) and hn~\z)a(z) is obtained by substituting h(z)

for f(z), h'(z)forf'(z), etc., in the terms of degree n—\ in pn-x(f).

Regarding this lemma we would like to remark the following:

(i) If Pn_x(f) = a0(z)fn-1 +terms  of degree n-2 at most,  then hn-\z)a(z)

= a0(z)hn~1, therefore a(z) = a0(z), and in this case we have g(z) = (f(z) + (a0(z)/n))n.

(ii) If F is transcendental with a finite number of poles, then the following

identity,

Fn(z) + ax(z)Fn-1(z)+ ■ • • +an(z) s 0,

holds (a¡(z) are rational functions) if and only if ö7z) = 0 for /= 1, 2,..., «.

Our next result follows from a proof of Goldstein [10].

Lemma 2. Let p(z) be a polynomial of degree k^l, hx be a nonzero polynomial,

and h2 (^0) be an entire function of order less than k. Then F=hx(z)ep{2) + h2(z) is

E-pseudo prime.
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Proof. Suppose F=f(g) with / g transcendental entire. We rewrite

F = hx(z)e^ + h2(z) = h2(z)((hx(z)/h2(z))e^ + l).

Then H(z) = (hx(z)/h2(z))eMz)+l is a meromorphic function of regular growth of

order k with S(— 1, //)= 1. Then the estimate [2, p. 280] holds for H and since

h2(z) is entire with order less than k, the estimate holds when H is replaced by F

and — 7J-/16 replaced by — ir/16 + e for some constant £>0 but less than 7r/16. The

remainder of the proof will be exactly the same as Goldstein's so we omit the details

here.

Lemma 3 [7]. Let f be entire and nonperiodic, then f is prime if and only iff is

E-prime.

Remark. It is easy to verify that all the functions we have considered in Theorems

4, 5, 6 are nonperiodic entire functions. Therefore, according to Lemma 3, we shall

only need to consider factorizations with entire factors.

Lemma 4 (Borel [2]). Let a{(z) be an entire function of order p, let g¡(z) also

be entire and let gj(z) — gi(z) (i^j) be a transcendental function or polynomial of

degree higher than p, then

n

2 a,(z) exp (g¡(z)) = a0(z)
¡ = i

holds only when a0(z) = ax(z) = ■ ■ ■ = an(z) = 0.

Remark. This lemma was first stated by Borel, but the first complete proof was

given by Nevanlinna [11].

III. Proofs of the main results.

3.1. Proof of Theorem 2. Suppose the theorem is false, i.e. p(f) has only

finitely many fix-points. Then according to Lemma 1,/(/») also has only finitely

many fix-points.

Let us first observe that if/and g are entire, or/is meromorphic and g is a poly-

nomial, then/(g) has infinitely many fix-points if and only if g(f) has infinitely

many fix-points. For let z0 be a fix-point of/(g). Then/(g(z0)) = z0, and hence

gifigizo)))= g(zo). This shows that giz0) is a fix-point of g(f). Now let zx, z2 be any

two distinct fix-points of/(g). If g(zx)=g(z2) then z2=f(g(z2))=f(g(zx)) = zx a

contradiction. Hence, we have a one-to-one map from the set of fix-points of/(g)

into the set of fix-points of g(f) and vice versa.

Let

(o fiz) = fiizmiz),

where / and f2 are entire functions. Then it is easy to verify from this and the

above observation that fx[p(z)] — zf2[p(z)] and f2(z)p(fx/f2) — zf2(z) are entire func-

tions with a finite number of zeros. Consequently,

(2) fi[piz)]-zf2[piz)] = Qiz)e^
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where Q is a polynomial and a is an entire function, and

(3) fS(z)p(fx/f2)-zMz) = R0(z)e^\

where R0 is a polynomial and ß is an entire function.

Replace z by p(z) in (3), use (2) to obtain

(4) fSÍPÍz))p{z + (Qe«/f2(p))} -P(z)fS(p) = s(z)e^\

where s is a polynomial and y is an entire function.

By Taylor's Theorem, we have

(5) p'(z)Qe"frx(p) + y"(z)(Qe«)2fr2(p)+ ■ ■ ■ +(l/n\)p™(z)(Qe"y = «'.

The left-hand side of (5) is a homogeneous polynomial in f2(p) and Qea with

degree «—1.

Dividing (Qe")n on both sides of (5) and setting

(6) F(z)=f2(p)/Qe"

we obtain

(7) p'(z)F« - \z) +*M F»" 2(z) + • • • +1 p<«(2) = -g e**> - »«

or

»r w   Q(zy

W e     (z) + 2p'(z)t     (Z)+ n\p'(z)     K(Z)e      '

where R(z) = s(z)/Qn(z)p'(z), a rational function.

The- left-hand side of (8) is a polynomial in F with rational functions as its co-

efficients. Thus, Lemma 1 is applicable unless Fis a rational function.

Suppose F is a rational function. Then from (6), it follows that

(9) f2(p) - Q(z)Rx(z)e\

where Rx(z) is a rational function.

Then from (2), we have

(10) fx(p) = R2(z)e^\

where R2(z) is a rational function.

Thus, we have yiC/')//^(/») = ^2/0^1 = rational function, which of course, is

impossible.

Alternately, we conclude that F is transcendental. We note that T has only

finitely many poles, thus applying Lemma 1 to the identity (8) and noting remark

(i), of Lemma 1, we have

F(z) + -1-^
n — 1 2p'(z)

R(z)ey
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Combining this with (8), we obtain

[June

(11) Fiz) +
1     P"(z)

n — 1 2p'(z) 2p'(z)
= Fn-1(z) + ^rr\Fn-2(z)+ ■ ■ ■ +

Pnjz)

nlp'(z)

By remark (ii) of Lemma 1, equating the coefficients of both sides of (11), we

obtain

(12)

or

1       P"iz)

2(»-l) p'(z)

Pln)iz) _

n\p'(z)

[p-iz)]"'1 = d(2(n J^'1 AP'iz)]"-2,

where d=pm(z) is a constant.

Hence, by a simple degree argument, p'(z) = c(z — a)"'1, where c is a constant.

It follows that p(z)=i,cx(z — d)n + c2 for some constants cx, c2.

Substituting in equations (3) and dividing through both sides of (3) by/2n(z), we

get

(13) cx(f(z)-dT + c2-z = (R0(z)/fS(z))e^.

Let us change variables in (13), by setting z = c2 + cxwn, and f(z) — a = H(w). We

have

(14) cx(H"(w)-w*) = (Ric2 + cxw«)/f2(c2 + cxwn)) exp (ß(c2 +cxw")).

When «5t 3, (14) implies that

(15) H(w)/w-Pi = 0

ipi, ?2, Pi, ■ ■ ■, Pn are n distinct roots of unity) has only finitely many zeros, for

i= 1, 2, 3,..., n.

According to Nevanlinna's second fundamental theorem, or Picard's theorem

we conclude at once that H(w) must be a rational function. This contradicts our

hypothesis that f(z) is transcendental. The theorem is thus proved.

Proof of Theorem 3. Let/(z)=/(z)//2(z). Suppose that (f(z))2 has only finitely

many fix-points. Then we have

(16) fiiz)-zfiiz) = coy»,

where ßo(z) is a polynomial and a(z) is an entire function.

Replacing z by z2 in the above identity, we have

(17) fl(z2) - z2ß(z2) = Qo(z2) exp (a(z2))

or

ifiiz2) + zf2iz2)][fx(z2)-zf2(z2)] = ß0(z2)exp(a(z2)).
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Hence, we conclude

(18) fAz2) + zf2(z2) = Q(z)e^\

Change z into — z to obtain

(19) fx(z2)-zf2(z2) = ß(-z)e*-a),

where Q(z) is a polynomial, and y is an entire function.

Therefore

Á(z) - UQ(z112) exp (y(zy>2)+ Q(-z"2) exp (y(-z)1'2)),

and

f2(z) = (l/2z^2)(Q(z"2) exp (yiz1'2))- Q(-z^2) exp (y(-z"2))).

Finally, we observe that if one chooses f(z)=fx(z)/f2(z), with

fi(z) = i(Q(z112) exp (y(zll2))+Q(-z1'2) exp (y(-z1'2))),

and

/2(z) = (l^z1'2)^1'2) exp (y(zll2))-Q(-z^2) exp W-z1'2))),

then f(z2) has only finitely many fix-points. Hence, (f(z))2 also has only finitely

many fix-points. The theorem is thus proved.

Proof of Theorem 1. Suppose that F=f(g) has only finitely many fix-points.

If one off or g is a polynomial, then Theorem B together with the observation in the

beginning of the proof of Theorem 2 yields the assertion. Now, suppose both /

and g are transcendental, and f(g) has only finitely many fix-points. This yields

f(g) — z = P(z)eQ{z\ where P, Q are polynomials. Hence, P(z)eQiz) + z=f(g). This

is impossible according to Lemma 2, and the theorem follows.

Proof of Theorem 4. Suppose that the assertion is false. By virtue of Lemma 3,

it suffices to show that h(z) is E-orime. Assume that there exists a pair of nonlinear

entire functions/and g such that

(20) f(g) = q(z) exp (az2 + bz)+p(z).

According to Lemma 2, either/or g must be a polynomial.

Suppose that / is a polynomial, Qx, say, and suppose that g is transcendental

entire.

Then we have

(21) Qi(g)-P(z) = q(z) exp (az2 + bz)

where Qx(g) is a polynomial of degree =ï2. Applying Lemma 1, one easily arrives

at a contradiction. Thus, we need only show that (20) cannot hold when g is a poly-

nomial and /is transcendental entire. Since the right-hand side of (20) has infinitely

many zeros (see e.g. Nevanlinna [11, p. 76]),/must have infinitely many zeros. We

may assume without loss of generality that a=l and b = 0 (if a = 0, we assume
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Re b > 0). Then it is easy to verify that the zeros of q(z) exp (z2) +p(z) will be asymp-

totic to two half rays, say Rx and R2. Now if the degree of g is greater than 2, then

one can find a sequence of zeros a¡ off and a corresponding sequence of zeros p¡

of g(z) — a¡ such that the sequence p¡ is not asymptotic to either Rx or F2, a contra-

diction.

To verify the latter statement simply note that whenever q and p are of different

degrees, the equation (21) implies either exp (z2) -> 0 or exp (z2) -> co, i.e. either

Re z2 < 0 or Re z2 > 0. The case where the degrees of q and p are the same can be

reduced to the above by differentiating (21).

Thus we conclude that the degree of g is two and we may assume that g has the

form g(z) = (z + c)2 + d.

Then

f((z + c)2 + d)= q(z) exp (az2) +p(z).

Hence

q(z) exp (az2) +p(z) = q( — z — 2c)exp(a( — z — 2c)2)+p( — z — 2c).

By virtue of Lemma 4, this is possible only when p(z)=p( — z — 2c), b = 2ac,

q( — z — 2c)=q(z), contrary to our hypotheses. Theorem 4 is thus proved.

Corollary of Theorem 4 immediately follows since Lemma 4 implies that g

cannot be of second degree.

In conclusion, we note that by using Lemma 2, one can verify that iff(z) is a

transcendental meromorphic function with only finitely many poles, then R(f)

has infinitely many fix-points, where R(z) is a rational function but not of bilinear

form. More generally, we conjecture that if R(z) is any rational function of weight

greater than 2 and/is transcendental meromorphic, then R(f) has infinitely many

fix-points. However, it can be shown by Lemma 2 and Picard's theorem that when

/is a meromorphic function with its number of poles satisfying N(r,f) = S(r,f),

then for any rational function R(z) of weight greater than 2, R(f) must have

infinitely many fix-points.

Remark. Using a different argument, the present authors have been able to

obtain some generalizations of Theorems 4, 5 and 6. These results will be published

in a subsequent paper.
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