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PRIMITIVE IDEALS OF C*-ALGEBRAS

ASSOCIATED WITH TRANSFORMATION GROUPS
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ELLIOT C. GOOTMAN

ABSTRACT.   We extend results of E. G. Effros and F. Hahn concerning their

conjecture that if (C, Z)  is a second countable locally compact transformation

group, with  G amenable, then every primitive ideal of the associated  C -algebra

arises as the kernel of an irreducible representation induced from an isotropy sub-

group.  The conjecture is verified if all isotropy subgroups lie in the center of G

and either (a)  the restriction of each unitary representation of  G  to some open

subgroup contains a one-dimensional subrepresentation, or (b)  G has an open

abelian subgroup  and orbit closures in  Z  are compact and minimal.

1.   Introduction.   E. G. Effros and F. Hahn have conjectured in  [8, §7.4] that

if (G, Z) is a second countable locally compact transformation group, with  G

amenable, then every primitive ideal of the associated  C*-algebra   U(G, Z) arises

as the kernel of an irreducible representation induced from an isotropy subgroup.

They have verified their conjecture for the case of a discrete group acting freely

[8, Corollary 5.16], and in this paper we extend their results.

§3 contains preliminary results concerning positive-definite measures on

groups.  In  §4 we verify the above conjecture when all isotropy subgroups lie in

the center of G  and the unitary part V (see §4) of each irreducible representa-

tion of   lI(G, Z) satisfies   (*):  the restriction of  V to some open subgroup of G

contains a one-dimensional subrepresentation.   Each unitary representation of a

group which is either totally disconnected or has a compact open abelian sub-

group satisfies  (*).

In §5  we prove that if orbit closures are compact and minimal, isotropy sub-

groups are central and  G has an open abelian subgroup, then every irreducible

representation of ll(G, Z) weakly contains  (in the sense of [9, p. 426])  a repre-

sentation whose unitary part satisfies  (*).  The results of  §4 imply that in this

case also, the conjecture of Effros and Hahn is true.

§6 contains examples and a brief discussion of the relevance to our problem
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of a generalized imprimitivity theorem, due to a number of authors.

Although the use of transformation groups to define both operator algebras

and function algebras is well established (see, for example, [l9, pp. 192—209],

[20]  and  [5, pp. 310—321]), the explicit construction of an algebra ll(G, Z) whose

representations correspond to the representations of a transformation group (G, Z),

and the study in this context of induced representations, first appears in  [s]  and

[ll].  The construction and many results of [8] and  [ll]  have been extended to

the case of twisted group actions on objects more general than a locally compact

space Z  (see  [4], [7], [l0], [2l]   and  [22]), but except for Corollary 5.16 of [8]

and Theorem 5.15 of [22], both valid only for G  discrete, little is known even in

the transformation group case concerning those representations of the constructed

algebra which are not obtainable as induced representations.   Our aim in this paper

is to obtain results concerning such representations.  We purposely avoid the

complications inherent in the more general situations and also the question of

whether or not our results extend, and consider only transformation groups  (G, Z)

with both G  and  Z  second countable locally compact Hausdorff spaces.  All rep-

resentations are on separable Hubert space  K  and all representations of algebras

are nondegenerate.

This paper forms the major portion of the author's doctoral dissertation writ-

ten at the Massachusetts Institute of Technology under the direction of Professor

Roe W. Goodman.

2.  Notation and preliminaries.  If X is a second countable locally compact

Hausdorff space, we denote by K(X) the continuous functions on X  of compact

support, with the inductive limit topology, and by  M(X) the dual space of Radon

measures on  X  with the weak*-topology.   For x e X,   ¿5    £ M(X) is the probability

measure on X  concentrated at x.

K(G x Z)  is a topological *-algebra  [8, p. 33Í, and  v £ M{G x Z)  is called

positive-definite if vif* * f) > 0 for all / £ K{G x Z).  The closed convex cone

D{G x Z)  of positive-definite measures defines a partial ordering -< on  M{G x Z).

We identify  G with the trivial transformation group  G x Z„, where  Z„  is the one-

point space, and write  D(G) lot D{G x Zq), etc.

For g £ G,   k £ Jv(Z) and / £ K(G x Z), we define g • k £ J\(Z) and g • f,

k • f £ K(G x Z)   by

(2.1) (g-*)(0) = *(g~V).

(2.2) (g - f)(t,cp) = f(g-1t, g-lcp)    and

(2.3) (k - f)(t, cp) = k(cp)f(t, <p),        t£G,cp£Z.

We will assume the reader is somewhat familiar with the basic results
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concerning  C*-algebras associated with transformation groups, as developed in

[8], primarily §§1, 3, 4 and 5.

3. Positive-definite measures on groups. Let G be a locally compact group,

H a closed normal subgroup, dg and dh fixed choices of left Haar measure on G

and  H, respectively, and $  the map of J\(G) into K(G/H)   defined by

(3-D (<D/)(ifi) =    f   f(th)dh,        t£G,   f £K(G).
J H

0 is linear, continuous and onto, and there is a left Haar measure da  on  G/H

such that

(3-2) fc f(g)dg = fc/H (<i>f)(a)da        [16, §33].

The following two lemmas generalize Lemmas 4.40 and 4.41 of fe]. Although

their proofs are easy and they are probably well known, we have not seen them in

the literature and we include them for completeness.

Lemma 3.3.  <I>  is a *-algebra homomorphism of j\(G)  onto J\(G/H).

Proof.   For each g  in  G, there is a unique positive real number  6(g) such

that

fH f(gbg-l)dh = 6(g)fHf(b)dh,     f £ K(G),

and furthermore,

AG/H(gH) = AG(g)/d(g),

where  AG and  AG,„ ate the modular functions of  G and  G/H, respectively. The

proof of the lemma involves a routine application of  (3.1), (3-2), the above two

formulae and Fubini's theorem, and we omit the details.

Corollary. $*, the map dual to $, is a continuous linear map of M(G/H) into

M(G), and maps D(G/H) into D(G). In particular, <fr*(da) = dg and $>*(oeH) = dh,

considered as a measure on G.

Lemma  3.4.  Let  G be an amenable group.   There exists a net of measures

v    in D(G) and positive scalars  a    such that v    -< a  8    and v    —* dg  in  Al(G).

Proof.   By the proof of [8, Lemma 4.41], we need only verify that for each k £

K(G), there exists  K > 0 such that

8 (k**l**l*k)< K8 (I** I), tot all / £ K(G).
e —       e

Since for any h, I £ K(G),

8e(h* * I) = Jc h(g)l(g)dg = </, h)     in L2(G),
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it suffices to show that the operator  T(k), defined on the dense subspace Jv(G) of

L  (G) by  T(k)l = / * k, is bounded in the  L2-norm.   T(k) has an integral represen-

tation  as   fG k(g-r)R   dg, where  (R  /)(/) = l(tg) for  / £K(G) and  7 £ G.  Since

||ß   I = A(g~1)1/2 and  k is in K(G), we have

\\T(k)\\< fG\k(g~l)\A(g-l)^dg<^

and we are done.

Corollary. Let G be an amenable group and H a closed normal subgroup.

There exists a net of measures va in D(G) and positive scalars a such that

v     -<,aadk (considered as a measure on  G) and v    —> dg  in zM(G).

Proof.  Apply Lemma 3-4 to the amenable group G/H and then apply the Cor-

ollary to Lemma 3-3 to lift the resulting measures to measures on  G.

Remark.  We use the above Corollary in  §4 to prove a weak containment rela-

tion between two representations.   For this purpose alone, [13, Theorem 5.l]  is

more than sufficient.  See also  [9, §5].

4.   Primitive ideals in   U(G, Z).  The correspondence  L =   \V, M)   between

representations   L  of   ll(G, Z) on a Hubert space  H and representations    \V, TVl)

of (G, Z) on H (see  [8, pp. 36—37])  is completely determined by

(4.1)        (L(f)x, y) =   [(Mf(g, ■ )V(g)x, y) dg,       f £ K(G x Z), x, y £ H.

Each p £ D(G x Z) determines a representation which we shall denote, unless

explicitly stated otherwise, by  Lp = (Vp, Mp)   on Hp (see   [8, §4] for the con-

struction).  As in  [8, §5], we compare the kernels of different representations by

considering representations determined by positive-definite measures and using

the following result [8, pp. 65—66]:  if /  is a closed two-sided ideal in   U(G, Z),

then

Dj(G x Z) = \p £ D(G x Z): kernel   Lp D J\

is a closed convex cone in M(G x Z)  and also a face of D(G x Z).

Throughout this section and the next, we let  L = (V, M) be a representation

of   il(G, Z) on a Hilbert space  K  such that

(a) M(Q) = / for some quasi-orbit Q  in Z  [8, pp. 5—6],

(b) all points in Q  have the same isotropy group  H and  H  is central in

G, and

(c) there is a character c  on H with  V(h) = c(h)l for all  h £ H.

Note that if  L  is a factor representation, (a) is automatically satisfied for

some quasi-orbit 0.   If (b) holds also then  (c) is automatically satisfied.  For

any  cp £ 0, the positive-definite measure  c dh x 8,, defined by
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cdh x S0(/) = fHc(h)f(h, <p)dh,       f £xi(Gx Z),

determines an irreducible induced representation of   U(G, Z) which we shall denote

by  L* = (V^, Al*)   on K*.   If  r¡ £ Q, then kernel L* = kernel Lv [8, Corollary

5.13].  Conditions  (b) and  (c) are a mild generalization of free action, and they

serve to provide almost automatically an irreducible induced representation, L®,

whose kernel we can try to compare with kernel L.  We note that if 0  is actually

an orbit, then  L  is unitarily equivalent to a multiple of  L   .

Theorem 4.3.   Let  G be an amenable group and let  L = (V, Al)   be an irreduc-

ible representation of  U(G, Z)  on si, satisfying  (4.2).   Then kernel L D kernel L   .

Proof.   The proof of Theorem 5.14 of [8]  can be repeated almost exactly.

Simply replace the measure  8    used there by dh  (considered as a measure on G)

and observe that (with the notation of [8, Theorem 5.14]) dh ® p = cdh x a. .  The

reasoning in the second half of the proof is justified by the Corollary to Lemma 3.4.

Theorem 4.4.   Let  L = (V, Al)  be a representation of U(G, Z)  on M, satisfy-

ing (4.2).  If there is an open subgroup  K of G such that  V restricted to  K has

a one-dimensional invariant subspace i., then kernel L     3 kernel L.

Remark.   We assume neither that  L  is irreducible nor that  G  is amenable.

Proof.   Let x „be a unit vector in it and  ß the probability measure on Z

defined by

(4.5) /3(A) = (M(A)x0, x0),       A Borel Ç Z.

By  (4.2),    "¡r] £ 0 n supp ß.  Since kernel L* = kernel L^, we need to verify that

c dh x 8    £ D ÂG x Z), where / = kernel L.  By a standard separation theorem for

closed convex sets in dual pairs  [3, Chapitre IV, §1, n. °3, Proposition 3l, it suf-

fices to show that if Re(cdh x 8  )(/) > 0 for / £ K(G x Z), then  Re p(f) > 0 for

some p £ D .(G x Z).  Accordingly, fix / as above, with supp / Ç A x B, A  and B

compact subsets of  G  and Z, respectively.

By (4.2) we may assume without loss of generality that  K D H and that

therefore the continuous character d on  K, given by

(4.6) V(k)xQ = d(k)xQ,       k £ K,

equals  c on  H.  By the dominated convergence theorem,

(4.7) F(k, O = d(k) f c(h)f(kh, Ç)dh,       k£K, cf 6 Z,

defines a continuous function  F  on   K x Z.   Furthermore, F(kh, ¿;) = F(k, ¿;)  tot

h £ H, so  F may also be regarded as a continuous function on  K/H x Z.  Since

Re (c dh x 8   )(f) = Re F(e, n) > 0, there exist open neighborhoods N    and  N     of
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e and  27, respectively, in  K and Z such that  Re F > 0 on TVe x TV   .   A n (N H)'

is a compact set in G disjoint from H (the isotropy subgroup of r¡ £ Q) and an

obvious compactness argument implies the existence of a neighborhood   77 of  77

such that  U CNV   and g(7 n 77 = 0 for all g £ A n (TV g//)'.   Choose / 6 K(Z)

such that 0 < / < 1, supp / Ç 77 and l(r¡) = 1.  As p in D(G x Z), defined by

p(a) = <L(a)iM(Z)x0. M(l)xQ),       u £ U(G, Z),

determines a subrepresentation  Lp of L, it follows that  p £ D .(G x Z). We now

show that Re p(f) > 0.

By (4.1),

p(/) =   fG(Mf(g, .)V(g)M(l)x0, M(l)x0)dg.

As in the proof of Theorem 5.15  of [8], the above integrand can be rewritten  (see

(2.1)) as   (Mf(g, ■)M((g-l)l)V(g)xQ, xQ).  Since supp / Ç A x S   and supp(g •/)/Ç

gT7 O Í7, the integrand is zero outside of TV   H.   Using this, the fact that M(gh ■ I) =

M(hg ■ I) = M(g- 1) tot h £ H,   g £G and  / £ K(Z), and formulas  (3.1) and  (3.2),

we have

p{fU fG/HLXNeHiehHMf{gh' -)M(ig " 1)l)V{Sh)xo- xç)dhda.

Letting  77 denote the canonical map of G onto G/H, and recalling that N   H C K,

we see from the above, (4.5) and  (4.6) that

PU)= frriN   )ÍHÍzd(g)c{h)f{8h- OAg-'OKOdß^dhda

= Ln Jzp^OAg~lc:mOdß(Oda.
e

The second equality follows from Fubini's theorem and  (4.7).  Thus

Re M/) = / ,M  , fjRe F)ig, OAg-'OnOdßiOda.
J !7(N    ) J Z

Since  Re F > 0 on  n{N ) x N     and  supp / C U C TV   , the above integrand is a

continuous function on G/H x Z, > 0 everywhere and > 0 at {n{e), 77)) e

suppiz/ax dß). Thus Re pif) > 0 and we are done.

Corollary.  Le7  (G, Z) èe? a transformation group with  G amenable and all

isotropy subgroups central.   If G  is either totally disconnected or has a compact

open abelian subgroup, all primitive ideals of  u(G, Z) arise as the kernels of

irreducible representations induced from isotropy subgroups.   If G also acts freely

and minimally on Z, ll(G, Z) is a simple C*-algebra.

Proof.  Let G be totally disconnected, V a representation of G on the Hubert
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space K,  x a unit vector in H and  N a neighborhood of the identity in  G  so that

V« e N, V(n)x £ \y £ si: ||y - x|| < Vi !, which is a closed convex set not containing 0.

N contains a compact open subgroup  K, and the norm-closed convex hull of

jV(&)x : k £ K\ contains a vector, clearly not   0, which is left fixed by  K.  The

rest follows obviously.

5.  The case of compact  minimal orbit closures.  We assume throughout

this section that  L = (V, M)  is an irreducible representation of   U(G, Z) on a

Hubert space  H satisfying  (4.2), that the quasi-orbit Q  is compact (an equiva-

lent condition is that the orbit closure of any point in Q  be compact and minimal

closed  G-invariant) and finally that  G  has an open abelian subgroup A.  We prove

Theorem 5.1.  With the above hypotheses, kernel L*1 3 kernel L.

Remarks.  If G  is amenable, Theorems 4.3 and  5.1   imply that kernel L =

kernel L   . We prove Theorem 5.1   by constructing, in the following sequence of

lemmas, a representation  LT of   U(G, Z) such that kernel Lr 3 kernel L  and  LT

satisfies all the hypotheses of Theorem 4.4.

For a £ A  and / £ S\(G x Z), define

(5.2) (Taf)(t,0 = aG(a)f(a-ha, a~lO,       t £ G, Ç £ Z.

Lemma 5.3.  Each  T    extends uniquely to define a  *-algebra automorphism

of  U(G, Z), which we also denote by  T .  a —> T    is a continuous group homo-

morphism of A   into the automorphism group of  u(G, Z), provided with the strong

topology.  For any representation  R = (W, P)   of Ti(G, Z),  R(T u) = W(a)R(u) •

Wia'1), a £ A, u £ 'U(G, Z).

Proof.  All the relevant facts may be verified easily enough for / £ 3\(G x Z)

first, and then extended to   U(G, Z) by continuity.  We omit the details.

Remark.  Lemma 5-3 holds for any closed subgroup A  of G.

We also denote by T    the natural action of A  on the dual   u   (with the

weak  *-topology) of 11(G, Z): (T p)(u) = p(T      ,u), a £ A,   u £ TJ(G, Z),   p £^'.
a a    l

The state space  P  of  il(G, Z), consisting of positive functionals of norm less

than or equal to one, is clearly a compact convex A-invariant subset of   U  .

Lemma 5.4. Let ] be a closed two-sided ideal in ll(G, Z), H a closed cen-

tral subgroup of G, c a character on H and F a closed G-invariant subset of Z.

Then

S = 0 U [q £ P: q ¿ 0 and (a)  kernel  Lq 3 /, (b)  supp AI" Ç F and

(c)  Vq(h) = c(h)l, for all h £ H\

is a compact convex A-invariant subset of P.   Furthermore, SA  and PA> the set
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of A-invariant elements of S and P, respectively, are compact convex sets, and

S A  is a face of P..

Proof.   By the construction of representations from positive-definite measures

[8, §4]  it follows easily that  (a), (b) and  (c) are equivalent, respectively, to

(a') qiv* * u* * u * v) = 0 for all  u £ ],   v £ ^(G, Z),

(b') qiik ■ f)**{k • /)) = 0 for all / £K(G x Z)  and  k £ X(Z) with supp k Ç F'

(see  (2.3)) and

(c' ) q[{h . / - c(h)f)* *(h - / - c(h)f)] = 0 for all / £ K(G x Z) and h £ H

(see (2.2)).

With these reformulations, plus the fact that by Lemma 5.3 closed two-sided ideals

in   U(G, Z) are  A-invariant, verification that S   is compact, convex and A-invari-

ant, and that SA  is a face of  PA, involves only routine calculations,which we

omit.

A priori, P.   may contain only  0.   We have, however,

Lemma 5.5.   Let S  be defined as in Lemma 5.4, with ] = kernel L,   F = Q

and 77 and c as in (4.2). S .   contains a nonzero element.

Proof.   Let x be a unit vector in K  and define  p(u) = (L(u)x, x),   u ell(G, Z).

As   L  is irreducible, L  is unitarily equivalent to  Lp, and clearly  p £ S.   A   is an

abelian group and thus has a normalized left-invariant mean 772  [12, p. 5]. Since

by Lemma 5.3 a —> p(T  u) is a bounded continuous function on A   for each  u £

U(G, Z), we have that  q, defined by q(u) = m(p(T  u)),  u £ U(G, Z), is an A-invar-

iant positive functional on   li(G, Z).   It can be readily verified that q £ S, so q £

S ..  To show q j¿ 0, we construct an element  zz £ 11(G, Z) such that  p(u) = p(T  u)

/ 0, for all a £ A.   A   is open and   ||x|| = 1, so there exists  / £ Jv(G) with  supp /

ÇA   and   fG 1(g) (V(g)x, x) dg ^ 0.   Since  0   is compact, there exists  h £ K(Z)

with  h = 1   on 0,   and since supp M C Q it follows that   M(h) = /.   / ® h £ K(G x Z)

ç11(G, Z) and

p(T (I ®h))= (L(T(l®h))x, x)

=   <L(7 <S>h)V(a-1)x, V(a~l)x),     by Lemma 5.3,

./(g)<TVl(¿)V(g)V(fl-1)x, V{a-l)x)dg,    by (4.1),
G

Hg) (V{g)x, x) dg,     since  supp ¡ÇA  and  A  is abelian,'G

= p{l ® h) /. 0,     by construction.

Thus  q £ S .,   q / 0.

By Lemma 5.5  and the Krefti-Milman theorem, S .   contains a nonzero extreme

point r, which is at the same time an extreme point of  P.. Since  supp TVlr C 0

and 0  was assumed to be a minimal closed  G-invariant set, it follows that
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suppAlr= 0, that is, Mr is actually concentrated on the quasi-orbit Q.  Thus  LT

satisfies  (4.2) and kernel LT 3 kernel L.  We now prove Theorem 5.1 by verifying

that  Lr satisfies the hypotheses of Theorem 4.4.

Lemma 5.6.  Let  LT = (VT, Mr) be as above.   The restriction of Vr to A  con-

tains a one-dimensional invariant subspace.

Proof.  Since  r is  A-invariant, one can define  (as in Theorem 5.3 of [20])  a

unitary representation  T of A  on Kr such that  Lr(T u) = T(a)Lr(u)T(a~ ),  a eA,

u £ ll(G, Z).  Furthermore, there is a unit vector x  in SX   such that r(u) = (LT(u)x,

x),   u £ 1I(G, Z), and also  T(a)x = x for all a £ A.   As in [20, Theorem 5-3], the

fact that r is an extreme point of  P„   implies that the commutant of the algebra

generated by \T(a), LT(u): a £ A,   u £ TJ(G, Z)} reduces to the scalars. Since

V(a)x = Vr(a)T(a~ l)T(a)x = Vr(a)T(a~ l)x, we shall be done once we verify that

for each a  in A, VT(a)T(a~ ) commutes with every operator in the above algebra.

By the construction of representations of   ll(G, Z) from positive-definite measures

[8, §4], it suffices to verify the following equalities for any /, g £ K(G x Z):

a- T _j(/*g) = /*(<*• T _ g),       a eA (see (2.2) and (5.2))
a a

and

a ■ T _ j / = Th(a . T _J),       a, b £ A (see (2.2) and (5.2)).
a      b a~

These can be checked by routine calculations  (the second equality alone uses

commutativity of A), and we omit the details.

Corollary.  // G  is an amenable group with an open abelian subgroup and acts

freely and minimally on a cpmpact space Z, then   U(G, Z)  is a simple C*-algebra.

6.  Examples.

Example 1.   Let  6 be an irrational real number and define an action of the

reals  R  on the two-dimensional complex vector space  C    by  t • (z, w) =

(eltz, el  lw),  t £ R,   z, w £ C.   Since the abelian group  C    is self-dual, the

C*-algebra of the semidirect product group R x C    (Mautner's   5-parameter non-

type-I solvable Lie group) is isomorphic to the  C*-algebra   u(R, C )  associated

with the transformation group (R, C  ).   Points of the form (z,  0)   or  (0, w) have

compact orbits but points of the form  (z, w) with z ¿ 0 and  w ^ 0 have compact

minimal orbit closures  0(z, w) which are not orbits. Q(z, w) = !(a, ß) £ C   : |a| =

lzl» \ß\ = \w\^> ar,d  ^   acts freely on each such set.   By Theorems 4.3 and  5.1  all

irreducible representations  L = (V, M)  of 1i(R, C )  satisfying  M(Q(z, w)) = /

have the same kernel.   It follows that the conjecture of Effros and Hahn is true for

this example.  A listing of all the primitive ideals shows easily that the primitive

ideal  space  is   T,   in the Jacobson topology [6, §3].
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Remarks.  The primitive ideals of ll(R, C  ) may also be determined by com-

bining Corollary   5.16 of [8]  with the observation of Fell  [10, pp. 144—145]  that

if rr: C    —>C is defined by rr(z, w) = z and an action of R  on C is defined by

t • z = eltz, then  77 is a continuous   P-equivariant map and the image of every

quasi-orbit in  C    is an orbit in  C.  Since every nonzero point in  C has  K =

,27277: 72  an integer! as an isotropy subgroup, it follows (see  [l, Chapter II, Theo-

rem 2]  and Theorem 16.2 of  [lO])  that every irreducible representation  L =

(V, M)  oí ll(P, C2)  with  M(Q(z, »))=/,   z / 0, w 4 0, is   "induced"  from an irre-

ducible representation of   U(K, C  ).  Here by  "induced"  we mean the construction

given in [21, §3]  and  [10, §11], which is a generalization of Mackey's construc-

tion of induced representations of groups  [17, pp. 539—540],  Since   K is discrete

all the primitive ideals of tl(rv, C2) are determined by Corollary   5.16 of [8],  The

primitive ideals of   \1(R, C  ) are then completely determined by the following

theorem.

Theorem 6.1.   Let (G, Z)  be a transformation group, H a closed subgroup of

G, L  and R  two representations of 11(77, Z) with kernel L 2 kernel R.   Let  ind L

and ind R  be the representations of ll(G, Z)   "induced" from  L  and R.   Then

kernel (ind L) D kernel (ind R).

Proof.  Theorem 1  of [2]  and the discussion preceding it can be repeated

with only minor modifications to yield the following: if p £ D(H x Z) and a mea-

sure p   is defined on G x Z  by

/y(/) = p(/A^A-'/2|wxz),      f£K(GxZ),

then  p  £ D(G x Z) and   Lp   is unitarily equivalent to ind Lp.  Since every repre-

sentation can be written as the direct sum of cyclic subrepresentations, which are

automatically defined by positive-definite measures, the conclusion follows by a

routine use of the results in [6, §3.4] and the proof of Theorem 5.11   of [8],

The remaining examples make use of the  27-adics and the adeles.  We refer

the reader to [15].  For each prime integer p, we let Q     denote the completion of

the rationals under the  p-adic valuation, and we denote by A  the ring of adeles,

formed as a restricted direct product of all the  0   's.  The additive group of A   is

a locally compact totally disconnected self-dual abelian group.

Example 2.   Let G  be the group of all upper triangular  3x3  matrices with

entries in A   and  l's  along the diagonal.  An element of  G  can be represented as

a triple  (a, b, c) and the group law is given by  (a, b, c)(a , b , c  ) = (a + a ,

b + b + flc , c + c ).  G can be formed as the semidirect product of A   with A x A

(the direct product), the action of A  on A x A  being given by a • (b , c ) =

(b' + ac , c ).  Since A x A  is self-dual, the  C*-algebra of the group G  is iso-

morphic to the transformation group C*-algebra  ll(A, A x A),  The hypotheses of
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Theorems 4.3 and  4.4 are satisfied by every irreducible representation of

u(A, A x A) and the conjecture of Effros and Hahn is true for this example. We

note that general results concerning the primitive ideal space of nilpotent groups

have been obtained in  [14].

Example 3.  The group G of Example 2 acts on M(A, 3), the space of all

3x3  matrices with entries in A, by matrix multiplication on the left.   The behav-

iour of the isotropy subgroups is too irregular for our theorems to apply.  However,

let x = (p y p2, ■ " , p  ,•••) £ A, where p    is the nth prime.  Then

:  a, ß,y £ A

is a minimal closed G-invariant subset of A1(A, 3) on which G acts freely. Theo-

rems 4.3 and 4.4 imply that ll(G, X) is a simple C*-algebra. Note that X is not

compact and is not an orbit.
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