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MAXIMAL REGULAR RIGHT IDEAL SPACE

OF A PRIMITIVE RING

BY

KWANGIL KOH AND JIANG LUH

ABSTRACT.   If  7?  is a ring, let  X(R) be the set of maximal regular right

ideals of 7?  and   £(7?)  be the lattice of right ideals.   For each A £ £(7?),

define  supp(/l)  = J7 £ X(R)\A (7 /}.   We give a topology to X(7?)  by taking

[supp (A) | A £ £(R)\   as a subbase.   Let  7?  be a right primitive ring.   Then

X(R) is the union of two proper closed sets if and only if  R   is isomorphic to

a dense ring with nonzero socle of linear transformations of a vector space

of dimension two or more over a finite field.   X(7?)  is a Hausdorff space if

and only if either  7?   is a division ring or  7?  modulo its socle is a radical

ring and  R  is isomorphic to a dense ring of linear transformations of a vec-

tor space of dimension two or more over a finite field.

Introduction.  For a ring  R, define  X(R) to be the set of maximal regular

right ideals of  R.   Then  X(R)  is a nonempty set if and only if  R  is not a radical

ring.   If A  is a right ideal of a ring   R, define the support of  A  to be the set of

maximal regular right ideals of  R which do not contain A.   We topologize   X(R)

by defining that a subset is open if and only if it is an arbitrary union of finite

intersections of the supports of right ideals in  R; that is, the supports of the

right  ideals form  a subbasis for this topology.   We will call  X(R) together with

this topology the maximal regular right ideal space of the ring  7?.   Recall that a

topological space is irreducible (refer to [3, p. 13]) if it is not the union of two

proper closed subsets, and it is reducible if it is not irreducible.   Our main results

in this paper are as follows:   Let   R be a (right) primitive ring.   Then  X(7?)  is

reducible if and only if  R  is isomorphic to a dense ring with nonzero socle of

linear transformations of a vector space of dimension two or more over a finite

field.   X(R) is a Hausdorff space if and only if either  R  is a division ring or  7?

is isomorphic to a dense ring of linear transformations of a vector space over a

finite field such that   R  modulo  its  socle is a radical ring.   If  R has 1, then

X(R) is a Hausdorff space if and only if either   R  is a division ring or a finite

ring.

1.   Preliminaries.

1.1   Definition.  If  A  is a right ideal of a ring  R, the support of A  is the
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set of maximal regular right ideals of  R which do not contain  A.   It will be de-

noted by supp(A).

1.2 Definition.  For a ring  R, let  XÍR) be the set of maximal regular right

ideals in  R.   We give a topology to  X(R) which is generated by the subbasis con-

sisting of all supports of the right ideals in  R.   We will call  X(R) together with

this topology the maximal regular right ideal space of  R.   It will simply be denoted

by  X(R).

1.3 Definition.  If x  is an element of  X(R) for some ring  R, then x is also

a right ideal of the ring  R.   Therefore, it is convenient to make a distinction by

writing   j(x)   for the right  ideal x and  if   Y   is  subset of   X(R), j(Y) =

n</(x)|x £ Y\.   If F is a subset of R, we define  MF) = U £ X(R)|/(x) D E\.   h(E)

is called the hull of  E and we write  supp(E) = X(R)\h(E).

1.4 Definition. A topological space is called irreducible [3, p. 155] if it is

not the union of two proper closed subsets. A space which is not irreducible is

reducible.

1.5 Definition. If X is a set which is a finite union of subsets   Y., Y', • • • ,

Y , we say that  X is an irredundant union of   Y. provided that  X 4 Y, U Y2 u

• • • U y.       u V.      u •■•   (jy    for every   i such that   1 < i < n.

1.6 Proposition.  // R  is a ring and ](R)  is the Jacobson radical of R  then

X(R)  is homeomorphic to X(R/](R)).

Proof.  Straightforward.

1.7 Proposition.   // R  is a ring with a unit element, then X(R)  is a compact

space.

Proof.   In view of the Alexander subbase theorem, it suffices to show that if

X(R) = Uisupp(Aa)|{Aa!a fl ¡sa family of right ideals indexed by a set Ai,

then there exists a finite subset {c^, a2, ■ ■ ■ , a \ in A such that X(R) =

U^suppUoT).   Since  X(R)= (J!supp(Aj|aeA!,  K2aeAA^ =fl \h(A¿\a £ A} =

0, and hence ^aexAa= ^'   Thus 1 = zJq, + zz^ + • • • + a^ fot some   a^. £ A^. , i —

1, 2, ..., 72, and ni*=lh(Aai) = 0-   Therefore, X(R) =U %lsupp(ACH).

1.8 Proposition. // Y is an irreducible subset of X(R), then the closure Y

of  Y  is equal to h(j(Y)).

Proof.  Clearly, Y C hijiY)).   Let  x £ hijiY)).   If x 4 Y, then there exists a

finite number of right ideals  A,, A2, • • • , A^  in  R  such that x £ C\" = lsuppiAt)

and   Y n((l" = 1supp(A.)) = 0.   Hence   YCU* = ,è(A.).   Since   Y is irreducible,

Y C h(A.) fot some  A¿.   Hence   A¿ C /(Y) C /(x).   This is impossible since  x £

supp(A¿).
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1.9 Corollary.   X(R)  isa   T.-space.

Proof.  Let x £ X(R).   Then [x[ = h(j(x)) = [71 by 1.8.

1.10 Example.  It is not true, in general, that if   Y is a subset of  X(R) then

Y = h(j(Y)).   For example, let  R  be the ring of 2x2 matrices over the field of

real numbers and let  x = {("    b)\a, b    ate teal numbers! and y = }(°    d)\ c, d ate

real numbers!.   Then  \x, y\ = \x, y\, but  h(j(\x, y\)) = X(R).

1.11 Proposition.  X(R)  is reducible if and only if there exists a finite number

of right ideals Ay A2, • • ■ , A^, 72 > 2, 272  R such that  X(R)  is an irredundant

union of h(Ay), h(A2), ■ ■ ■ , h(A  ).

Proof.  Straightforward.

1.12 Proposition.  If R  is a primitive ring and A   is a right ideal of R, then

either supp(A) = 0   or /(supp(A)) = {0¡.

Proof. Suppose supp(A) ¿ 0 and /(supp(A)) / {0\. Let B = j(suppiA)). Then B is a

nonzero proper right ideal of R, supp(A) C h(B) and supp(ß) n supp(A) = 0. Since   73  is

a nonzero right ideal of a primitive ring, supp(ß) / 0 and X(R) = h(B) U h(A).

Let  M be a faithful simple (right)  P.-module.   Since for each  0 / m £ M,   m    =

\r £ R\mr = Oj is a maximal regular right ideal of R, either 772A = 0 or 77273 =0.

Let  Mj = ¡772 £ M\mA = 0¡ and AL = \m £ M\mB = Oj.   Then Mx  and  M2  are sub-

groups of M and M = Al, U AL. Hence either A4 = A41  or M = Al2.   Therefore either

MA = 0  or  MB = 0.   This is impossible since   M is faithful.

1.13 Remark.  If   7?  is a ring with 1 and  X(R)  is irreducible, then  R  is

isomorphic to the ring of global sections of the simple R-sheaf over X(R) (refer

to [3, p. 45] for the definition of a simple sheaf).   Hence   R can be identified

with the ring of all continuous functions from  X(R) to  R.   To see this, let

r\x) = (x, r) tot every  r £ R and  x  in  X(R).   Then r is a global section of the

simple sheaf over X(R).   It f is an arbitrary global section, then f(X(R)) =

X(R) x \r\ fot some  r £ R  since   X(R) is irreducible (hence it is connected).

Thus  f = r.   Clearly,   r m r is an isomorphism of  R  onto the ring of all global

sections.

2.   Primitive rings with reducible maximal regular right ideal spaces.  In this

section, we will give a structure theorem of primitive rings whose maximal reg-

ular right ideal spaces are reducible.   The basic facts about a primitive ring,

which we will use freely in this  section, could be found in [2].

2.1    Lemma.   Let  V  be a vector space over a division ring D.   Assume that

V = V.   U- • -U   V , where the   V.  are subspaces of V,   n> 2, and the union is

'irredundant.    Then D   is a finite field, and the dimension of V/(V.   fl- • -H   V )

is finite.
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Proof.  The fact that D  is a finite field follows from Lemma 2 of [1, p. 32].

Suppose that the dimension of   V/(V.   PI- • -O   V ) is infinite.   Since   V/fY?_,V.
1 77 ■    "Z  — I      Z

is the irredundant union of proper subspaces   V ./("")" _. V., we may assume, without

loss of generality, that f\" _,V. = Í0J.   Since   V is infinite dimensional, there is

a subspace   Vtl  for some   tv   I < t, < n, such that   Vt,   is infinite dimensional.

Let   i be a positive integer less than or equal to  72 such that   i 4 t..   Let  v. £

V¿\\Jk¿iVk-   Let Nit1) = ivi + w\w 6V,,|.   Since  /V(f t) H Vtl =0 ,  Mi,) Ç

U^ .    V, .   Since  Nit.) is an infinite set, there is a subspace   Vi2  for some   t-

such that  1 < Z    < 72 and  z"2 ̂  ¿,   and   Vt2  contains infinitely many  v. + w's, say

v. + w,, v. + w2, • • ■ , where w . £ N(tA.   It follows that w   - w . = (t>. + w.) -

iv. + w.) £ Vt-  fot infinitely many  w.'s  in  Vt..   Hence   Vt. O VtJ  is an infinite

set and hence it is infinite dimensional since   Vt. n Vt2  is a vector space over

the finite field  D.   Now assume that   Vt   D Vt2   r\- ■ .p\ Vt,   is infinite dimension-

al for some distinct positive integers   t., t2, • • • , t,   each of which is less than

or equal to  72.   Let   z be a positive integer less than or equal to  72 such that

i 4\tv t2, ... , tk\.   Let  v. £ Vi\\Jt/:iVt.   Define   Nitv t2, ■ ■ ■ , tk) =

\v{ + w\w £ C\k=1Vt.\.   Then  N(/1( t2, • • •, tk) n Vt. = 0  for every  t.,  1 < j < k.

Hence there is a subspace   Vt,+.    for some   1 < t,+. < n such that   Vt, +,   con-

tains infinitely many elements of  Nitl, t2, • • • , /, ); hence f| . _. V' ti is infinite

dimensional.   Thus, by inductive argument, (|"_. V.  is an infinite dimensional

space, which is absurd.

2.2 Remark.  If  V is a vector space over a finite field, say  D, such that

dim V > 2, then  V is a finite union of proper  subspaces.   Let  v., tu  be linearly

independent elements in   V and let  AI be a subspace such that   V = Dv. © D77

©  N.   For every pair (a, ß) £ D x D, define   t7(a, /3) = Diav, + ßi^) © N.   Then

2.3 Lemma.   Let  V  be a vector space of dimension at least 2  over a finite

field D.   Let R  be a dense ring of linear transformations of V, such that the

socle  S  of R   is not zero.   Let  v and w  be linearly independent vectors of V.

Then there is a subspace  W  of V such that

(a) V = W © Dv © Dw;

(b) for each a, ß  in D,   U(a, ßt  4 0, where   U(a, ß) = W © D(at2 + ßw)

and  U(a,ß)L = \r £ R\U(a, ß)r = 0\;  and

(c) X(R)=\JaßeDh(U(a,ß)l)uh(S).

Proof.  Since S is also a dense ring of linear transformations of   V, and  v,

w ate linearly independent, there is an s in S such that vs = v and ws = 0.

Since   Vs  is a finite dimensional subspace of  V, there exist  v2, t/,, • • •, v    in

Vs  such that \v, i>, v,, ■ ■ • , v   \ is a basis for  Vs.   Let  t £ R  such that  vt = v
2       3 72
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and v.t = v for all  i such that 2 < i < n.   Let a = st.   Then  Va = Dv,  va = v

and wa = 0.   In a similar manner, we can choose   b in  R  such that   Vb = Dw, wb

= w and u7> = 0.   Let  W = Ker a n Ker 7>.  Then  W  =  Ker(« + b) since  Dv O Dw

= [Oi.   Since  va = v,  wb = w,  and  wa   =   0 = vb, fot any x  in  V,  (x(a + b) - x)

• (a + b)= 0.   Hence   V = W © Df 0 Dw and  W"1" 3 U, &!•   For a, ß in D, let

U(a, ß) = W © D(av + /S«*).   We claim that the right ideal  U(a, ß)1 =

[r e R\U(a, ß)r = 0\ is not zero.   It is clear that if either  a = 0 or ß = 0, then

either  a or  b is an element of   U (a, ß).   So assume  a/0 and  ß / 0.   Then

/32¿'¿> 7^ 0  and there exists  7 in  fi  such that  ßwbr = ava.   Now  (av + ßw)br =

/St/'cV = ai2fl = (cu; + ßw)a.   Hence  (av + tSt^) (br - a) = 0 and  br - a £ U(a, ß)'1.

If   ¿)7 = a, then 0 = vbr = va = v and this is impossible.   Thus   br - a ■/ 0.   We

assert now that X(P.) = UaßeDh(U(a, ß)1 ) U h(S).   Indeed, if x e X(/?) then

either   j(x) D S or  R//(x) = V as R-modules.   Hence if x ^ h(S), then  /(x) =

[7 e R|2yr = 0} for some 0 / v £ V.   In this case, v £ U(a, ß) tot some a, ß in

D and  /(x) D Í7(a, /3)"1".

2.4 Theorem.   Let  R   be a (right) primitive ring.    Then X(R)  is reducible if

and only if R  is isomorphic to a dense ring with nonzero socle of linear trans-

formations of a vector space of dimension two or more over a finite field.

Proof.   Assume that X(R) is reducible.   Then by 1.11, there exists a finite

number of right ideals   A., A,, • • • , A   ,   72 > 2,  in  R  such that  X(7?) =

\Jn-,h(A ) and such that this union is irredundant.   Let   V be a faithful simple

(right) R-module and let  D = End_(V).   Then  D  is a division ring, V is a left

vector space over  D and   R  is a dense ring of linear transformations of   V over

D.   For each  i,   1 < i < n, define   V. = \v £ V\vA . = 0!.   Then   V. is a subspace

of   V and   V. /=  V for every   i since  A . / 0 and   V is faithful.   For any 0 7= v £

V,   vl = {r £ R\vr = 0\ is a member of  X(R).   Therefore   v1-   is a member of some

h(A .) and hence   v £ V. and   V = U" = ,V..   Thus, by 2.1, D  is a finite field and

the dimension of   V/f]" = .V. is finite.   Therefore, there is a finite dimensional

subspace   Al. such that  Al. © V. = V7 for each   i and dim V > 2  since   V. / V.

Thus every element in the right ideal  A .  is of finite rank and the socle of  R

is not zero.   Conversely, assume that  R is isomorphic to a dense ring with non-

zero socle  S  of linear transformations of a vector space   V of dimension two or

more over a finite field  D.   Then by 2.3(c), X(R) = \J^ßeDh(ü(a, ß)1) U h(S)

and hence  X(R) is reducible.

2.5 Theorem.  Let R  be a primitive ring and S  be the socle of R.   If X(R)

is a Hausdorff space, then either R   is a division ring or R/S  is a radical ring

and R   is a dense ring of linear transformations of a vector space over a finite

fie Id.
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Proof.  If X(R) is a Hausdorff space and  R  is not a division ring, then cer-

tainly  X(R) is reducible.   Hence by 2.4, R  has nonzero socle and it is isomorphic

to a dense ring of linear transformations of a vector space   V of dimension two or

more over a finite field D.   If R/S is not a radical ring, then h(S) /0.   Let x, y be two

points in X(P.) such that x 4 h(S) and  y £ h(S).   We shall show that x  and  y

cannot be  separated  in X(R).   Since  x 4 h(S),  j(x) - v     tot some  0 / v £ V.

Suppose there exist right ideals  S y S2, • • • , S , T., T2, • - - , T    such that x £

nf = 1supp(5¿), y en? = 1supp(T.) suchthat  (f|f = 1 supp^.)) nVlJ=1supp(T.)) =

0.   First we note that the separation still holds if we replace  S. by  S S fot

every   i, 1 < i < p, since  x 6 supp(5 .) n supp(S) = supp(S S).   Thus, without loss

of generality, we may assume that S. C S fot every   i.   Since  ;(x) = v*-   and  x £

fr=1 supp(S .),  f5   ,= 0  for every   i.   Let  s . £ S . suchthat  vs./O for every   2.

Since each  s.  is of finite rank,   V/Ker s.  is finite dimensional.   Thus, V/fY ~.Kets.

being a subdirect sum of the vector spaces   V/Ker s .  is finite dimensional.   Note

that   T. <t j(y) tot every  7,   1 < ;: < q, and  S C j(y).   Therefore   T.\5 /. 0 for every

j.   Let  i.eT.V andlet  W . = \w £ flf = 1 Ker s^wt. £ S* = 1 Dvt.\ fot every  7,

1 < ;'< íj.   We claim that M-=] Kers./W.  is infinite dimensional for every   /.   For

if  P|._, Kers./W. is finite dimensional for some   2 and if f|  _. Kers. = W.©  (J.■ '1 -1 2     j ' '2 -1 2 7 7

for some finite dimensional subspace   U ., then  (|)  _, Kers.)r. = W .i. + U .t. is a? 7 2-1 27        7 ;        ; 7

finite dimensional subspace of   V.   Since   V/f|-=i Kers.  is finite dimensional,

there is a finite dimensional subspace   W  such that   V = (f*)?_.Kers ) © W.

Then  VZ. = (fl--, Kers.)/. + Wi.  is also finite dimensional and   t. £ S.   This is
7 '2 -1 2' 7 7 7

impossible since, by choice,   t. 4 S.   Thus  M   _, Ker s ,/W.  is infinite dimension-

al for each  7 and 0-=1 Kers   ¡= U^ = i ^    by 2.1.   Hence there exists  w £

IK-, Ker s .  such that w 4 \. \q -, W ••   This means that ws . = 0  for every   i,   1 <
2-1 2 vy7_l7 2 —

2 < p, and wt. 4 S'_. Dvi. for every  /,   1 < 2 < ^.   Now, we consider the vector

v + w.   Then  (tv + w)s . = ws. ,¿ 0  for every   i such that  1 < 2 < p and  (v + 222)2". ?=

0  for every  /,   1 < 7 < <?■    For if (77 + 122);. = 0  for some   7, then wt. = - vt. £

X«=1 Dvty   Thus  (12 + 222)-"-  e(Of = 1supp(S.)) n (fly =1 supp(T.)) = 0.   This is a

contradiction.

2.6 Theorem. Lei R be a primitive ring and S be the socle of R. If R/S

is a radical ring and R is isomorphic to a dense ring of linear transformations

of a vector space  V over a finite field D, then X(R)  is a Hausdorff space.

Proof.  Let  x, y be two distinct members of X(R).   Since  R/S is a radical

ring, there exist  v and w  in  V such that j(x) = v1, j(y) = w     and  Dv C\ Dw =

\0\.   Moreover,  vL C\S<^wl   and  wl   C\S^vl.   Let  a £ (wl   r\S)\vl  and   b £

(vl n S^w1.   Then wa = vb = 0,  va ¿0,  and wb / 0. Since a £ S, Va= Dva © U

tot some finite dimensional subspace   U of  V.   Hence there is  r in  R  such that
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Ur = 0  but  var = v.   Therefore, Var = Dv,  war = 0, and   V = Ker ar © Dv.   Like-

wise there is  rQ  in  R  such that   VbrQ = Dw,  vbrQ = 0, wbrQ = w, and   V =

Ker brQ © Dw.   Since  Ker ar 4 Ker èrQ  and the codimensions of  Ker  ar and

Ker brQ ate 1,   V = Ker ar + Ker brQ.    Thus  dim(Ker ar/Ker ar n Ker èr0) =

dim(V/Ker brQ) = 1.   Hence codim(Ker  ar n Ker èr0) = dim(V/Ker brQ) +

dim(Ker ar/Ket ar n Ker brQ) = 2 and therefore,   V = (Ker ar n Ker èt-g) © Dv © Dw.

For every  a, ß  in D, define   U(a, /3) = (Ker ar O Ker brQ)  ® D(av + ßw).   Then

V = Ua.^eD ^a' ß)-   We sha11 show that   U(a,ß)X   4 0  for each pair  (a, ß) £

D x D.   Clearly  ar £ 1/(0, ß)L   and   fa"0 e (7(a, 0)x .   Assume  a/ 0 and  /3 4 0.

Then there is  c e R such that awe = z3ita   Consequently,  iav + ßw)arc = avare

= atze = ßw = íav + ßw)brQ since  yar = v and wbrQ = w.   Hence Diav + ßw) •

iarc - brQ) - 0.   Clearly, arc - brQ 4 0 since itzazr = 0 and wbrQ = w / 0.   Thus 0 ¡¿  arc

- r2r0 e Uia, ß)1.   Let

Öj = fi        supp(í7(a,,3r)    and    ©2 = f)        supp (U(a, ßf ).
(a,ß)eDxD {a,ß)eD*D

ßtO a-fto

Recall  jíx) = vl and  /'(y) = m/X. If x ¿ Ö,   then   (7(a, /3)"1 C y1   for some   ß 4 0

in  D.   For every  / e (/(a, /3)   ,  vf = 0.   Consequently,  wf = 0 also since  /3 = 0

and hence   V/= 0.   This means that   (7(a, /3)    = 0,  a contradiction.   Thus  x e 0,.

A similar argument shows that  y £0,.   We now claim that 0. H 0   = 0.   For

if z £ (J   D U2 then /(z) = zvQ   for some  v0 £ V and  vQ - v'  + av + z3izz for some

v'   £ Ker ar n Ker er«  and a, ß £ D.   It follows that zv¿ 3 17(a, )8)    and z ^

0. H U     a contradiction.   Therefore, X(R) is Hausdorff.

2.7 Corollary.   // R   is a primitive ring with I, then Xi!«)  is a Hausdorff

space if and only if either R   is a division ring or R   is a finite ring.

Proof.    If  R is a finite ring or a division ring then certainly  X(R)  is a

finite  T.-space.   Hence it is a Hausdorff space.   Conversely, ifXÍR) is a

Hausdorff space, then by 2.5, R  is either a division ring or a dense ring of line-

ar transformations of finite rank of a vector space over a finite field.   In the

latter case, since 1 £ R,   R must be the complete ring of linear transformations

of a finite dimensional vector space over a finite field.   Thus, R is a finite

ring.

2.8 Example.  Let % be the ring of integers and let   V be the set of finite

sequences over 2/(2).   Then  V  becomes an K -dimensional vector space over

% 4(2).   Let  R  be the ring of linear transformations on   V and  S be the ideal of

linear transformations of finite rank.   Then  R/S is a simple ring with 1 (refer to

[2, Theorem 1, p. 93])-   Hence by 2.5,  X(R) is not a Hausdorff space.   However,

X(R) is a reducible space by 2.4 and X(S) is a Hausdorff space by 2.6.
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2.9   Example. Let R be the ring of infinite row finite matrices of the fol-

lowing form:

i A *N

0
0

v°

where A is an n x n matrix over Z/(2) for some 72. Then R is a dense ring of

the vector space of sequences over Z/(2). If S is the socle of R then R/S is a

radical ring.

3.   Finite dimensional maximal regular right ideal space of a primitive ring.

If X is a topological space, then the combinatorial dimension of X, dim X, is

the supremum of the positive integer  72 such that there is a strictly ascending

chain of nonempty closed irreducible subsets of  X, 0 / F„ Ç F, Ç . . . Ç F

(refer to [4, p. 156]).

3.1   Theorem.  // R   is a dense ring of linear transformations of a vector space

M  over an infinite division ring D, then dim M = 72 + 1   if and only if dim X(R) = n.

Proof.   Assume  dim M = n + 1   and let  (272,, 72z2, • • • , m  +1l be a basis for the

vector space  M.   Then  f^^mj = <°>-   Hence  Xi& = hi (Xtl^ 2 h{^itlmf 2

• • • 7J  him^r n 222, ) 5 him\ ) = J272T j.   Since   R  is a simple artinian ring, if x £ X(i?)

then t;(x) = v1 fot some vector v / 0 in M.  Hence if x £ ¿(0"*/ mf>, then v £ 1"^ Dm..

Therefore, if  biÇ\n_   m1) were reducible, then, as in the case of proof of 2.4, the

vector space  2"      D272. would be a finite union of proper subspaces and  D would

be a finite field by 2.1.   Thus dim X(R) > 72.   Now let  Fn + 1 2 F„2 ■ • ■ ̂  F1 f F 0

= 0 be a strictly descending closed irreducible subsets of  X(R).   Let  A. =

jiF), 0 < 2•< 72+ 1.   Then A   ., Ç A„ Ç ... Ç A   Ç A    is a strictly ascending

chain of right ideals of R since   H/XFJ) = r. fot each  z by 1.8.   Since R  is a

simple artinian ring, every right ideal of  R  is a direct summand of  R.   Hence

Ar, = K. © A,,  A, = K- © A_, • • • , A    = K   ,. © A   .,   for some nonzero right0 1 1 1 2 2' '        ZZ 72+1   w 7Z+1 °

ideals  Kj, K2, • • ■ , r<n + 1, and R = KQ © Kj   ©• • • ©   K^ + 1 © A^ + 1  for some

right ideal  KQ  of  R.   This means that  R   is a direct sum of at least 72 + 2 min-

imal right ideals.   This is impossible since  R  is a direct sum of 72 + 1 minimal

right ideals and the number of summands is unique.   Conversely, let us assume

now that dim XÍR) = 72.    Let  B  be a basis for the vector space  M.   If  B  is a

finite set then, by the first part of the theorem, the number of elements in  B  must

be  72 + 1.   So suppose that dim M = <x>.   Let   Y = [722   \m £ M, m 4 0\.   Then   Y is

a nonempty subspace of X(R) and dim Y < dim XÍR) = n by [4, 9.3, p. 156].
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Let b., b-, ■ ■ ■ , b,, • • •  be distinct elements in 73.   Then the chain of subsets

h(b\) r\YÇ h(b\ Dbl2) DY Ç.. . C h(Ç\ki=l b\) n Y Ç • - •   is strictly ascending.

Since  D  is an infinite division ring, each  ¿(flI.-, bL) O Y  is irreducible in   Y as

in the case of proof of 2.4.   Hence dim Y is not finite and this is a contradiction.

3.2 Theorem.   Let  R  be a primitive ring.    Then R  is right artinian if and

only if X(r) satisfies the descending chain condition on the subbasic open

sets.

Proof.  If R  is right artinian, then  P.  is a simple artinian ring.   Hence if A

is a right ideal of  R, then j(h(A)) = A.   Hence if supp (A j) 2 supp (A2) 2 • • • 2

supp(A   ) 2 • • • is a chain of subbasic open sets for some right ideals  Ay, A2,

..., A , ... then A(Aj)C MA2)C ... C ¿(A^) C ... and jb(Ay) = A¡ Djh(A2) =

A2 2 • • • 2 }b(A  ) = A    2 • • • •   Thus the chain must terminate.   Conversely, assume

that the descending chain condition holds on the subbasic open sets.   Let  V be

a faithful simple right P-module.   To prove that  R  is artinian, it suffices to show

that  V is a finite dimensional vector space.   So suppose the dimension  V is

infinite.   Then there exist infinite independent vectors  Vy v2, • • • such that

supp(t7j ) 3 supp^j n i72) ....   This is a contradiction.
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