MAXIMAL REGULAR RIGHT IDEAL SPACE OF A PRIMITIVE RING

BY
KWANGIL KOH AND JIANG LUH

Abstract

If R is a ring, let $X(R)$ be the set of maximal regular right ideals of R and $\mathcal{P}(R)$ be the lattice of right ideals. For each $A \in \mathcal{P}(R)$, define $\operatorname{supp}(A)=\{I \in X(R) \mid A \nsubseteq I\}$. We give a topology to $X(R)$ by taking $\{$ supp $(A) \mid A \in \mathcal{P}(R)\}$ as a subbase. Let R be a right primitive ring. Then $X(R)$ is the union of two proper closed sets if and only if R is isomorphic to a dense ring with nonzero socle of linear transformations of a vector space of dime nsion two or more over a finite field. $X(R)$ is a Hausdorff space if and only if either R is a division ring or R modulo its socle is a radical ring and R is isomorphic to a dense ring of linear transformations of a vector space of dimension two or more over a finite field.

Introduction. For a ring R, define $X(R)$ to be the set of maximal regular right ideals of R. Then $X(R)$ is a nonempty set if and only if R is not a radical ring. If A is a right ideal of a ring R, define the support of A to be the set of maximal regular right ideals of R which do not contain A. We topologize $X(R)$ by defining that a subset is open if and only if it is an arbitrary union of finite intersections of the supports of right ideals in R; that is, the supports of the right ideals form a subbasis for this topology. We will call $X(R)$ together with this topology the maximal regular right ideal space of the ring R. Recall that a topological space is irreducible (refer to [3, p. 13]) if it is not the union of two proper closed subsets, and it is reducible if it is not irreducible. Our main results in this paper are as follows: Let R be a (right) primitive ring. Then $X(R)$ is reducible if and only if R is isomorphic to a dense ring with nonzero socle of linear transformations of a vector space of dimension two or more over a finite field. $X(R)$ is a Hausdorff space if and only if either R is a division ring or R is isomorphic to a dense ring of linear transformations of a vector space over a finite field such that R modulo its socle is a radical ring. If R has 1 , then $X(R)$ is a Hausdorff space if and only if either R is a division ring or a finite ring.

1. Preliminaries.
1.1 Definition. If A is a right ideal of a ring R, the support of A is the

[^0]set of maximal regular right ideals of R which do not contain A. It will be denoted by $\operatorname{supp}(A)$.
1.2 Definition. For a ring R, let $X(R)$ be the set of maximal regular right ideals in R. We give a topology to $X(R)$ which is generated by the subbasis consisting of all supports of the right ideals in R. We will call $X(R)$ together with this topology the maximal regular right ideal space of R. It will simply be denoted by $X(R)$.
1.3 Definition. If x is an element of $X(R)$ for some ring R, then x is also a right ideal of the ring R. Therefore, it is convenient to make a distinction by writing $j(x)$ for the right ideal x and if Y is subset of $X(R), j(Y)=$ $\bigcap\{j(x) \mid x \in Y\}$. If E is a subset of R, we define $b(E)=\{x \in X(R) \mid j(x) \supseteq E\}$. $b(E)$ is called the bull of E and we write $\operatorname{supp}(E)=X(R) \backslash b(E)$.
1.4 Definition. A topological space is called irreducible [3, p. 155] if it is not the union of two proper closed subsets. A space which is not irreducible is reducible.
1.5 Definition. If X is a set which is a finite union of subsets Y_{1}, Y_{2}, \cdots, Y_{n}, we say that X is an irredundant union of Y_{i} provided that $X \neq Y_{1} \cup Y_{2} \cup$ $\cdots \cup Y_{i-1} \cup Y_{i+1} \cup \cdots \cup Y_{n}$ for every i such that $1 \leq i \leq n$.
1.6 Proposition. If R is a ring and $J(R)$ is the Jacobson radical of R then $X(R)$ is bomeomorphic to $X(R / J(R))$.

Proof. Straightforward.
1.7 Proposition. If R is a ring with a unit element, then $X(R)$ is a compact space.

Proof. In view of the Alexander subbase theorem, it suffices to show that if

$$
X(R)=\bigcup\left\{\operatorname{supp}\left(A_{\alpha}\right) \mid\left\{A_{\alpha}\right\}_{\alpha \in \mathbb{1}} \text { is a family of right ideals indexed by a set } \Lambda\right\}
$$ then there exists a finite subset $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ in Λ such that $X(R)=$ $\bigcup_{i=1}^{n} \operatorname{supp}\left(A_{\alpha_{i}}\right)$. Since $X(R)=\bigcup\left\{\operatorname{supp}\left(A_{\alpha}\right) \mid \alpha \in \Lambda\right\}, b\left(\Sigma_{\alpha \in \Lambda} A_{\alpha}\right)=\bigcap\left\{b\left(A_{\alpha}\right) \mid \alpha \in \Lambda\right\}=$ \varnothing, and hence $\Sigma_{\alpha \in \mathbf{\Lambda}} A_{\alpha}=R$. Thus $1=a_{\alpha_{1}}+a_{\alpha_{2}}+\cdots+a_{\alpha_{n}}$ for some $a_{a_{i}} \in A_{\alpha_{i}}, i=$ $1,2, \cdots, n$, and $\bigcap_{i=1}^{n} b\left(A_{a_{i}}\right)=\varnothing$. Therefore, $X(R)=\bigcup_{i=1}^{n} \operatorname{supp}\left(A_{\alpha_{i}}\right)$.

1.8 Proposition. If Y is an irreducible subset of $X(R)$, then the closure \bar{Y} of Y is equal to $b(j(Y))$.

Proof. Clearly, $\bar{Y} \subseteq b(j(Y))$. Let $x \in b(j(Y))$. If $x \notin \bar{Y}$, then there exists a finite number of right ideals $A_{1}, A_{2}, \ldots, A_{n}$ in R such that $x \in \bigcap_{i=1}^{n} \operatorname{supp}\left(A_{i}\right)$ and $Y \cap\left(\bigcap_{i=1}^{n} \operatorname{supp}\left(A_{i}\right)\right)=\varnothing$. Hence $Y \subseteq \bigcup_{i=1}^{n} b\left(A_{i}\right)$. Since Y is irreducible, $Y \subseteq b\left(A_{i}\right)$ for some A_{i}. Hence $A_{i} \subseteq j(Y) \subseteq j(x)$. This is impossible since $x \in$ $\operatorname{supp}\left(A_{i}\right)$.
1.9 Corollary. $X(R)$ is a T_{1}-space.

Proof. Let $x \in X(R)$. Then $\{x\}=b(j(x))=\{\bar{x}\}$ by 1.8.
1.10 Example. It is not true, in general, that if Y is a subset of $X(R)$ then $\bar{Y}=b(j(Y))$. For example, let R be the ring of 2×2 matrices over the field of real numbers and let $\left.x=\left\{\begin{array}{ll}a & b \\ 0 & b\end{array}\right) \right\rvert\, a, b$ are real numbers $\}$ and $y=\left\{\left.\left(\begin{array}{cc}0 & 0 \\ c & d\end{array}\right) \right\rvert\, c, d\right.$ are real numbers $\}$. Then $\overline{\{x, y\}}=\{x, y\}$, but $b(j(\{x, y\}))=X(R)$.
1.11 Proposition. $X(R)$ is reducible if and only if there exists a finite number of right ideals $A_{1}, A_{2}, \cdots, A_{n}, n \geq 2$, in R such that $X(R)$ is an irredundant union of $b\left(A_{1}\right), b\left(A_{2}\right), \cdots, b\left(A_{n}\right)$.

Proof. Straightforward.
1.12 Proposition. If R is a primitive ring and A is a right ideal of R, then either $\operatorname{supp}(A)=\varnothing$ or $j(\operatorname{supp}(A))=\{0\}$.

Proof. Suppose $\operatorname{supp}(A) \neq \varnothing$ and $j(\operatorname{supp}(A)) \neq\{0\}$. Let $B=j(\operatorname{supp}(A))$. Then B is a nonzero proper right ideal of $R, \operatorname{supp}(A) \subseteq b(B)$ and $\operatorname{supp}(B) \cap \operatorname{supp}(A)=\varnothing$. Since B is a nonzero right ideal of a primitive ring, $\operatorname{supp}(B) \neq \varnothing$ and $X(R)=b(B) \cup b(A)$. Let M be a faithful simple (right) R-module. Since for each $0 \neq m \in M, m^{\perp}=$ $\{r \in R \mid m r=0\}$ is a maximal regular right ideal of R, either $m A=0$ or $m B=0$. Let $M_{1}=\{m \in M \mid m A=0\}$ and $M_{2}=\{m \in M \mid m B=0\}$. Then M_{1} and M_{2} are subgroups of M and $M=M_{1} \cup M_{2}$. Hence either $M=M_{1}$ or $M=M_{2}$. Therefore either $M A=0$ or $M B=0$. This is impossible since M is faithful.
1.13 Remark. If R is a ring with 1 and $X(R)$ is irreducible, then R is isomorphic to the ring of global sections of the simple R-sheaf over $X(R)$ (refer to [3, p. 45] for the definition of a simple sheaf). Hence R can be identified with the ring of all continuous functions from $X(R)$ to R. To see this, let $\hat{r}(x)=(x, r)$ for every $r \in R$ and x in $X(R)$. Then \hat{r} is a global section of the simple sheaf over $X(R)$. If f is an arbitrary global section, then $f(X(R))=$ $X(R) \times\{r\}$ for some $r \in R$ since $X(R)$ is irreducible (hence it is connected). Thus $f=\hat{r}$. Clearly, $r \mapsto \hat{r}$ is an isomorphism of R onto the ring of all global sections.
2. Primitive rings with reducible maximal regular right ideal spaces. In this section, we will give a structure theorem of primitive rings whose maximal regular right ideal spaces are reducible. The basic facts about a primitive ring, which we will use freely in this section, could be found in [2].
2.1 Lemma. Let V be a vector space over a division ring D. Assume that $V=V_{1} \cup \cdots \cup V_{n}$, where the V_{i} are subspaces of $V, n \geq 2$, and the union is irredundant. Then D is a finite field, and the dimension of $V /\left(V_{1} \cap \ldots \cap V_{n}\right)$ is finite.

Proof. The fact that D is a finite field follows from Lemma 2 of [1, p. 32]. Suppose that the dimension of $V /\left(V_{1} \cap \cdots \cap V_{n}\right)$ is infinite. Since $V / \bigcap_{i=1}^{n} V_{i}$ is the irredundant union of proper subspaces $V_{i} / \bigcap_{i=1}^{n} V_{i}$, we may assume, without loss of generality, that $\bigcap_{i=1}^{n} V_{i}=\{0\}$. Since V is infinite dimensional, there is a subspace $V_{t_{1}}$ for some $t_{1}, 1 \leq t_{1} \leq n$, such that $V_{t_{1}}$ is infinite dimensional. Let i be a positive integer less than or equal to n such that $i \neq t_{1}$. Let $v_{i} \in$ $V_{i} \backslash \bigcup_{k \neq i} V_{k}$. Let $N\left(t_{1}\right)=\left\{v_{i}+w \mid w \in V_{t_{1}}\right\}$. Since $N\left(t_{1}\right) \cap V_{t_{1}}=\varnothing, N\left(t_{1}\right) \subseteq$ $\mathrm{U}_{k \neq t_{1}} V_{k}$. Since $N\left(t_{1}\right)$ is an infinite set, there is a subspace $V_{t_{2}}$ for some t_{2} such that $1 \leq t_{2} \leq n$ and $t_{2} \neq t_{1}$ and $V_{t_{2}}$ contains infinitely many $v_{i}+w$'s, say $v_{i}+w_{1}, v_{i}+w_{2}, \ldots$, where $w_{j} \in N\left(t_{1}\right)$. It follows that $w_{1}-w_{j}=\left(v_{i}+w_{1}\right)-$ $\left(v_{i}+w_{j}\right) \in V_{t_{2}}$ for infinitely many w_{j} 's in $V_{t_{1}}$. Hence $V_{t_{1}} \cap V_{t_{2}}$ is an infinite set and hence it is infinite dimensional since $V_{t_{1}} \cap V_{t_{2}}$ is a vector space over the finite field D. Now assume that $V_{t_{1}} \cap V_{t_{2}} \cap \cdots \cap V_{t_{k}}$ is infinite dimensional for some distinct positive integers $t_{1}, t_{2}, \cdots, t_{k}$ each of which is less than or equal to n. Let i be a positive integer less than or equal to n such that $i \notin\left\{t_{1}, t_{2}, \cdots, t_{k}\right\}$. Let $v_{i} \in V_{i} \backslash \bigcup_{t \neq i} V_{t}$. Define $N\left(t_{1}, t_{2}, \cdots, t_{k}\right)=$ $\left\{v_{i}+w \mid w \in \bigcap_{j=1}^{k} V_{t_{j}}\right\}$. Then $N\left(t_{1}, t_{2}, \cdots, t_{k}\right) \cap V_{t_{j}}=\varnothing$ for every $t_{j}, 1 \leq j \leq k$. Hence there is a subspace $V_{t_{k+1}}$ for some $1 \leq t_{k+1} \leq n$ such that $V_{t_{k+1}}$ contains infinitely many elements of $N\left(t_{1}, t_{2}, \cdots, t_{k}\right)$; hence $\bigcap_{i=1}^{k+1} V_{t_{i}}$ is infinite dimensional. Thus, by inductive argument, $\bigcap_{i=1}^{n} V_{i}$ is an infinite dimensional space, which is absurd.
2.2 Remark. If V is a vector space over a finite field, say D, such that $\operatorname{dim} V \geq 2$, then V is a finite union of proper subspaces. Let v_{1}, v_{2} be linearly independent elements in V and let N be a subspace such that $V=D v_{1} \oplus D v_{2}$ $\oplus N$. For every pair $(\alpha, \beta) \in D \times D$, define $U(\alpha, \beta)=D\left(\alpha v_{1}+\beta v_{2}\right) \oplus N$. Then $\bigcup_{(\alpha, \beta) \in D \times D} U(\alpha, \beta)=V$.
2.3 Lemma. Let V be a vector space of dimension at least 2 over a finite field D. Let R be a dense ring of linear transformations of V, such that the socle S of R is not zero. Let v and w be linearly independent vectors of V. Then there is a subspace W of V such that
(a) $V=W \oplus D v \oplus D w$;
(b) fór each α, β in $D, U(\alpha, \beta)^{\perp} \neq 0$, where $U(\alpha, \beta)=W \oplus D(\alpha v+\beta w)$ and $U(\alpha, \beta)^{\perp}=\{r \in R \mid U(\alpha, \beta) r=0\}$; and
(c) $X(R)=\bigcup_{a, \beta \in D} b\left(U(\alpha, \beta)^{\perp}\right) \cup b(S)$.

Proof. Since S is also a dense ring of linear transformations of V, and v, w are linearly independent, there is an s in S such that $v s=v$ and $w s=0$. Since $V s$ is a finite dimensional subspace of V, there exist $v_{2}, v_{3}, \ldots, v_{n}$ in $V s$ such that $\left\{v, v_{2}, v_{3}, \cdots, v_{n}\right\}$ is a basis for $V s$. Let $t \in R$ such that $v t=v$
and $v_{i} t=v$ for all i such that $2 \leq i \leq n$. Let $a=s t$. Then $V a=D v, v a=v$ and $w a=0$. In a similar manner, we can choose b in R such that $V b=D w, w b$ $=w$ and $v b=0$. Let $W=\operatorname{Ker} a \cap \operatorname{Ker} b$. Then $W=\operatorname{Ker}(a+b)$ since $D v \cap D w$ $=\{0\}$. Since $v a=v, w b=w$, and $w a=0=v b$, for any x in $V,(x(a+b)-x)$ $\cdot(a+b)=0$. Hence $V=W \oplus D v \oplus D w$ and $W^{\perp} \supseteq\{a, b\}$. For α, β in D, let $U(\alpha, \beta)=W \oplus D(\alpha v+\beta w)$. We claim that the right ideal $U(\alpha, \beta)^{\perp}=$ $\{r \in R \mid U(\alpha, \beta) r=0\}$ is not zero. It is clear that if either $\alpha=0$ or $\beta=0$, then either a or b is an element of $U^{1}(\alpha, \beta)$. So assume $\alpha \neq 0$ and $\beta \neq 0$. Then $\beta w b \neq 0$ and there exists r in R such that $\beta w b r=\alpha v a$. Now $(\alpha v+\beta w) b r=$ $\beta w b r=\alpha v a=(\alpha v+\beta w) a$. Hence $(\alpha v+\beta w)(b r-a)=0$ and $b r-a \in U(\alpha, \beta)^{\perp}$. If $b r=a$, then $0=v b r=v a=v$ and this is impossible. Thus $b r-a \neq 0$. We assert now that $X(R)=\bigcup_{a, \beta \in D} b\left(U(\alpha, \beta)^{\perp}\right) \cup b(S)$. Indeed, if $x \in X(R)$ then either $j(x) \supseteq S$ or $R / j(x) \cong V$ as R-modules. Hence if $x \notin b(S)$, then $j(x)=$ $\{r \in R \mid v r=0\}$ for some $0 \neq v \in V$. In this case, $v \in U(\alpha, \beta)$ for some α, β in D and $j(x) \supseteq U(\alpha, \beta)^{\perp}$.
2.4 Theorem. Let R be a (right) primitive ring. Then $X(R)$ is reducible if and only if R is isomorpbic to a dense ring with nonzero socle of linear transformations of a vector space of dimension two or more over a finite field.

Proof. Assume that $X(R)$ is reducible. Then by 1.11 , there exists a finite number of right ideals $A_{1}, A_{2}, \ldots, A_{n}, n \geq 2$, in R such that $X(R)=$ $\bigcup_{i=1}^{n} b\left(A_{i}\right)$ and such that this union is irredundant. Let V be a faithful simple (right) R-module and let $D=\operatorname{End}_{R}(V)$. Then D is a division ring, V is a left vector space over D and R is a dense ring of linear transformations of V over D. For each $i, 1 \leq i \leq n$, define $V_{i}=\left\{v \in V \mid v A_{i}=0\right\}$. Then V_{i} is a subspace of V and $V_{i} \neq V$ for every i since $A_{i} \neq 0$ and V is faithful. For any $0 \neq v \epsilon$ $V, v^{\perp}=\{r \in R \mid v r=0\}$ is a member of $X(R)$. Therefore v^{\perp} is a member of some $b\left(A_{i}\right)$ and hence $v \in V_{i}$ and $V=\bigcup_{i=1}^{n} V_{i}$. Thus, by $2.1, D$ is a finite field and the dimension of $V / \bigcap_{i=1}^{n} V_{i}$ is finite. Therefore, there is a finite dimensional subspace M_{i} such that $M_{i} \oplus V_{i}=V$ for each i and $\operatorname{dim} V \geq 2$ since $V_{i} \neq V$. Thus every element in the right ideal A_{i} is of finite rank and the socle of R is not zero. Conversely, assume that R is isomorphic to a dense ring with nonzero socle S of linear transformations of a vector space V of dimension two or more over a finite field D. Then by $2.3(\mathrm{c}), X(R)=\bigcup_{a, \beta \in D} b\left(U(\alpha, \beta)^{\perp}\right) \cup b(S)$ and hence $X(R)$ is reducible.
2.5 Theorem. Let R be a primitive ring and S be the socle of R. If $X(R)$ is a Hausdorff space, then either R is a division ring or R / S is a radical ring and R is a dense ring of linear transformations of a vector space over a finite field.

Proof. If $X(R)$ is a Hausdorff space and R is not a division ring, then certainly $X(R)$ is reducible. Hence by $2.4, R$ has nonzero socle and it is isomorphic to a dense ring of linear transformations of a vector space V of dimension two or more over a finite field D. If R / S is not a radical ring, then $b(S) \neq \varnothing$. Let x, y be two points in $X(R)$ such that $x \notin b(S)$ and $y \in b(S)$. We shall show that x and y cannot be separated in $X(R)$. Since $x \notin b(S), j(x)=v^{\perp}$ for some $0 \neq v \in V$. Suppose there exist right ideals $S_{1}, S_{2}, \ldots, S_{p}, T_{1}, T_{2}, \ldots, T_{q}$ such that $x \in$ $\bigcap_{i=1}^{p} \operatorname{supp}\left(S_{i}\right), y \in \bigcap_{j=1}^{q} \operatorname{supp}\left(T_{j}\right) \operatorname{such}$ that $\left(\bigcap_{i=1}^{p} \operatorname{supp}\left(S_{i}\right)\right) \cap\left(\bigcap_{j=1}^{q} \operatorname{supp}\left(T_{j}\right)\right)=$ \varnothing. First we note that the separation still holds if we replace S_{i} by $S_{i} S$ for every $i, 1 \leq i \leq p$, since $x \in \operatorname{supp}\left(S_{i}\right) \cap \operatorname{supp}(S)=\operatorname{supp}\left(S_{i} S\right)$. Thus, without loss of generality, we may assume that $S_{i} \subseteq S$ for every i. Since $j(x)=v^{\perp}$ and $x \in$ $\bigcap_{i=1}^{p} \operatorname{supp}\left(S_{i}\right), v S_{i} \neq 0$ for every i. Let $s_{i} \in S_{i}$ such that $v s_{i} \neq 0$ for every i. Since each s_{i} is of finite rank, $V / \operatorname{Ker} s_{i}$ is finite dimensional. Thus, $V / \bigcap_{i=1}^{p} \operatorname{Ker} s_{i}$ being a subdirect sum of the vector spaces $V / \operatorname{Ker} s_{i}$ is finite dimensional. Note that $T_{j} \nsubseteq j(y)$ for every $j, 1 \leq j \leq q$, and $S \subseteq j(y)$. Therefore $T_{j} \backslash S \neq \varnothing$ 〔or every j. Let $t_{j} \in T_{j} \backslash S$ and let $W_{j}=\left\{w \in \bigcap_{i=1}^{p} \operatorname{Ker} s_{i} \mid w t_{j} \in \sum_{i=1}^{q} D v t_{i}\right\}$ for every j, $1 \leq j \leq q$. We claim that $\bigcap_{i=1}^{p} \mathrm{Ker}_{i} / W_{j}$ is infinite dimensional for every j. For if $\bigcap_{i=1}^{p} \operatorname{Ker} s_{i} / W_{j}$ is finite dimensional for some j and if $\bigcap_{i=1}^{p} \operatorname{Ker} s_{i}=W_{j} \oplus U_{j}$ for some finite dimensional subspace U_{j}, then $\left(\bigcap_{i=1}^{p} \operatorname{Ker} s_{i}\right) t_{j}=W_{j} t_{j}+U_{j} t_{j}$ is a finite dimensional subspace of V. Since $V / \bigcap_{i=1}^{p} \operatorname{Ker} s_{i}$ is finite dimensional, there is a finite dimensional subspace W such that $V=\left(\bigcap_{i=1}^{p} \operatorname{Ker} s_{i}\right) \oplus W$. Then $V t_{j}=\left(\bigcap_{i=1}^{p} \operatorname{Ker} s_{i}\right) t_{j}+W t_{j}$ is also finite dimensional and $t_{j} \in S$. This is impossible since, by choice, $t_{j} \nexists S$. Thus $\bigcap_{i=1}^{p} \operatorname{Ker} s_{i} / W_{j}$ is infinite dimensional for each j and $\bigcap_{i=1}^{p} \operatorname{Ker} s_{i} \neq \bigcup_{j=1}^{q} W_{j}$ by 2.1. Hence there exists $w \in$ $\bigcap_{i=1}^{p} \operatorname{Ker} s_{i}$ such that $w \notin \mathbf{\bigcup}_{j=1}^{q} w_{j}$. This means that $w s_{i}=0$ for every $i, 1 \leq$ $i \leq p$, and $w t_{j} \notin \Sigma_{i=1}^{q} D v t_{i}$ for every $j, 1 \leq i \leq q$. Now, we consider the vector $v+w$. Then $(v+w) s_{i}=v s_{i} \neq 0$ for every i such that $1 \leq i \leq p$ and $(v+w) t_{j} \neq$ 0 for every $j, 1 \leq j \leq q$. For if $(v+w) t_{j}=0$ for some j, then $w t_{j}=-v t_{j} \epsilon$ $\sum_{i=1}^{q} D v t_{i}$. Thus $(v+w)^{\perp} \epsilon\left(\bigcap_{i=1}^{p} \operatorname{supp}\left(S_{i}\right)\right) \cap\left(\bigcap_{j=1}^{q} \operatorname{supp}\left(T_{j}\right)\right)=\varnothing$. This is a contradiction.
2.6 Theorem. Let R be a primitive ring and S be the socle of R. If R / S is a radical ring and R is isomorphic to a dense ring of linear transformations of a vector space V over a finite field D, then $X(R)$ is a Hausdorff space.

Proof. Let x, y be two distinct members of $X(R)$. Since R / S is a radical ring, there exist v and w in V such that $j(x)=v^{\perp}, j(y)=w^{\perp}$ and $D v \cap D w=$ $\{0\}$. Moreover, $v^{\perp} \cap S \nsubseteq w^{\perp}$ and $w^{\perp} \cap S \nsubseteq v^{\perp}$. Let $a \in\left(w^{\perp} \cap S\right) \backslash v^{\perp}$ and $b \in$ $\left(v^{\perp} \cap S\right) \backslash w^{\perp}$. Then $w a=v b=0, v a \neq 0$, and $w b \neq 0$. Since $a \in S, V a=D v a \oplus U$ for some finite dimensional subspace U of V. Hence there is r in R such that
$U r=0$ but var $=v$. Therefore, Var $=D v$, war $=0$, and $V=\operatorname{Ker}$ ar $\oplus D v$. Likewise there is r_{0} in R such that $V b r_{0}=D w, v b r_{0}=0, w b r_{0}=w$, and $V=$ Ker $b r_{0} \oplus D w$. Since Ker $a r \neq$ Ker $b r_{0}$ and the codimensions of Ker ar and Ker $b r_{0}$ are $1, V=$ Ker $a r+\operatorname{Ker} b r_{0}$. Thus $\operatorname{dim}\left(\right.$ Ker $\left.a r / K e r ~ a r ~ \cap \operatorname{Ker~} b r_{0}\right)=$ $\operatorname{dim}\left(V / \operatorname{Ker} b r_{0}\right)=1$. Hence codim $\left(\operatorname{Ker}\right.$ ar $\left.\cap \operatorname{Ker} b r_{0}\right)=\operatorname{dim}\left(V / \operatorname{Ker} b r_{0}\right)+$ $\operatorname{dim}\left(\right.$ Ker $a r /$ Ker $a r \cap$ Ker $\left.b r_{0}\right)=2$ and therefore, $V=\left(\right.$ Ker ar $\left.\cap \operatorname{Ker} b r_{0}\right) \oplus D v \oplus D w$. For every α, β in D, define $U(\alpha, \beta)=\left(\right.$ Ker ar $\left.\cap \operatorname{Ker~} b r_{0}\right) \oplus D(\alpha v+\beta w)$. Then $V=\bigcup_{a, \beta \in D} U(\alpha, \beta)$. We shall show that $U(\alpha, \beta)^{\perp} \neq 0$ for each pair $(\alpha, \beta) \epsilon$ $D \times D$. Clearly ar $\in U(0, \beta)^{\perp}$ and $b r_{0} \in U(\alpha, 0)^{\perp}$. Assume $\alpha \neq 0$ and $\beta \neq 0$. Then there is $c \in R$ such that $\alpha v c=\beta w$. Consequently, $(\alpha v+\beta w)$ arc $=\alpha v a r c$ $=\alpha v c=\beta w=(\alpha v+\beta w) b r_{0}$ since $v a r=v$ and $w b r_{0}=w$. Hence $D(\alpha v+\beta w)$. $\left(a r c-b r_{0}\right)=0$. Clearly, arc $-b r_{0} \neq 0$ since warc $=0$ and $w b r_{0}=w \neq 0$. Thus $0 \neq a r c$ $-b r_{0} \in U(\alpha, \beta)^{\perp}$. Let

$$
\mathcal{O}_{1}=\bigcap_{\substack{(\alpha, \beta) \in D \times D \\ \beta \neq 0}} \operatorname{supp}\left(U(\alpha, \beta)^{\perp}\right) \text { and } \mathcal{O}_{2}=\bigcap_{\substack{(\alpha, \beta, \beta) \in D \times D \\ \alpha \neq 0}} \operatorname{supp}\left(U(\alpha, \beta)^{\perp}\right)
$$

Recall $j(x)=v^{\perp}$ and $j(y)=w^{\perp}$. If $x \notin \mathcal{O}_{1}$ then $U(\alpha, \beta)^{\perp} \subseteq v^{\perp}$ for some $\beta \neq 0$ in D. For every $f \in U(\alpha, \beta)^{\perp}, v f=0$. Consequently, $w f=0$ also since $\beta=0$ and hence $V f=0$. This means that $U(\alpha, \beta)^{\perp}=0$, a contradiction. Thus $x \in \mathcal{O}_{1}$. A similar argument shows that $y \in \mathcal{O}_{2}$. We now claim that $\mathcal{O}_{1} \cap \mathcal{O}_{2}=\varnothing$. For if $z \in \mathcal{O}_{1} \cap \mathcal{O}_{2}$ then $j(z)=v_{0}^{\perp}$ for some $v_{0} \in V$ and $v_{0}=v^{\prime}+\alpha v+\beta w$ for some $\nu^{\prime} \in \operatorname{Ker}$ ar $\cap \operatorname{Ker} b r_{0}$ and $\alpha, \beta \in D$. It follows that $\nu_{0}^{\perp} \supseteq U(\alpha, \beta)^{\perp}$ and $z \notin$ $\mathcal{O}_{1} \cap \mathcal{O}_{2}$, a contradiction. Therefore, $X(R)$ is Hausdorff.
2.7 Corollary. If R is a primitive ring with 1 , then $X(R)$ is a Hausdorff space if and only if either R is a division ring or R is a finite ring.

Proof. If R is a finite ring or a division ring then certainly $X(R)$ is a finite T_{1}-space. Hence it is a Hausdorff space. Conversely, if $X(R)$ is a Hausdorff space, then by $2.5, R$ is either a division ring or a dense ring of linear transformations of finite rank of a vector space over a finite field. In the latter case, since $1 \in R, R$ must be the complete ring of linear transformations of a finite dimensional vector space over a finite field. Thus, R is a finite ring.
2.8 Example. Let \mathcal{Z} be the ring of integers and let V be the set of finite sequences over $\mathcal{Z} /(2)$. Then V becomes an \aleph_{0}-dimensional vector space over $\mathscr{Z} /(2)$. Let R be the ring of linear transformations on V and S be the ideal of linear transformations of finite rank. Then R / S is a simple ring with 1 (refer to [2, Theorem 1, p. 93]). Hence by 2.5, $X(R)$ is not a Hausdorff space. However, $X(R)$ is a reducible space by 2.4 and $X(S)$ is a Hausdorff space by 2.6 .
2.9 Example. Let R be the ring of infinite row finite matrices of the following form:

$$
\left(\begin{array}{lllll}
A_{n} & & & & * \\
& 0 & & \\
& & & \ddots
\end{array}\right)
$$

where A_{n} is an $n \times n$ matrix over $Z /(2)$ for some n. Then R is a dense ring of the vector space of sequences over $Z /(2)$. If S is the socle of R then R / S is a radical ring.
3. Finite dimensional maximal regular right ideal space of a primitive ring. If X is a topological space, then the combinatorial dimension of $X, \operatorname{dim} X$, is the supremum of the positive integer n such that there is a strictly ascending chain of nonempty closed irreducible subsets of $X, \varnothing \neq F_{0} \varsubsetneqq F_{1} \varsubsetneqq \cdots \not F_{n}$ (refer to [4, p. 156]).
3.1 Theorem. If R is a dense ring of linear transformations of a vector space M over an infinite division ring D, then $\operatorname{dim} M=n+1$ if and only if $\operatorname{dim} X(R)=n$.

Proof. Assume $\operatorname{dim} M=n+1$ and let $\left\{m_{1}, m_{2}, \cdots, m_{n+1}\right\}$ be a basis for the vector space M. Then $\bigcap_{i=1}^{n+1} m_{i}^{\perp}=\{0\}$. Hence $X(R)=b\left(\bigcap_{i=1}^{n+1} m_{i}^{\frac{1}{2}} \nexists b\left(\bigcap_{i=2}^{n+1} m_{i}^{\perp}\right) \nexists\right.$ $\cdots \nexists b\left(m_{1}^{\perp} \cap m_{2}^{\perp}\right) \nexists b\left(m_{1}^{\perp}\right)=\left\{m_{1}^{\perp}\right\}$. Since R is a simple artinian ring, if $x \in X(R)$ then $v(x)=v^{\perp}$ for some vector $v \neq 0$ in M. Hence if $x \in b\left(\bigcap_{i=t}^{n+1} m_{i}^{\perp}\right)$, then $v \in \sum_{i=t}^{n+1} D m_{i}$. Therefore, if $b\left(\bigcap_{i=t}^{n+1} m_{i}^{l}\right)$ were reducible, then, as in the case of proof of 2.4 , the vector space $\sum_{i=t}^{n+1} D m_{i}$ would be a finite union of proper subspaces and D would be a finite field by 2.1. Thus $\operatorname{dim} X(R) \geq n$. Now let $F_{n+1} \supsetneqq F_{n} \supsetneqq \cdots \nexists F_{1 \neq} F_{0}$ $=\varnothing$ be a strictly descending closed irreducible subsets of $X(R)$. Let $A_{i}=$ $j\left(F_{i}\right), 0 \leq i \leq n+1$. Then $A_{n+1} \varsubsetneqq A_{n} \varsubsetneqq \cdots \not A_{1} \varsubsetneqq A_{0}$ is a strictly ascending chain of right ideals of R since $b\left(j\left(F_{i}\right)\right)=F_{i}$ for each i by 1.8 . Since R is a simple artinian ring, every right ideal of R is a direct summand of R. Hence $A_{0}=K_{1} \oplus A_{1}, A_{1}=K_{2} \oplus A_{2}, \cdots, A_{n}=K_{n+1} \oplus A_{n+1}$ for some nonzero right ideals $K_{1}, K_{2}, \cdots, K_{n+1}$, and $R=K_{0} \oplus K_{1} \oplus \cdots \oplus K_{n+1} \oplus A_{n+1}$ for some right ideal K_{0} of R. This means that R is a direct sum of at least $n+2$ minimal right ideals. This is impossible since R is a direct sum of $n+1$ minimal right ideals and the number of summands is unique. Conversely, let us assume now that $\operatorname{dim} X(R)=n$. Let B be a basis for the vector space M. If B is a finite set then, by the first part of the theorem, the number of elements in B must be $n+1$. So suppose that $\operatorname{dim} M=\infty$. Let $Y=\left\{m^{\perp} \mid m \in M, m \neq 0\right\}$. Then Y is a nonempty subspace of $X(R)$ and $\operatorname{dim} Y \leq \operatorname{dim} X(R)=n$ by [4, 9.3, p. 156].

Let $b_{1}, b_{2}, \cdots, b_{k}, \cdots$ be distinct elements in B. Then the chain of subsets $b\left(b_{1}^{\perp}\right) \cap Y \varsubsetneqq b\left(b_{1}^{\perp} \cap b_{2}^{\perp}\right) \cap Y \varsubsetneqq \cdots \varsubsetneqq b\left(\bigcap_{i=1}^{k} b_{1}^{\perp}\right) \cap Y \varsubsetneqq \cdots$ is strictly ascending. Since D is an infinite division ring, each $b\left(\bigcap_{i=1}^{k} b_{i}^{\perp}\right) \cap Y$ is irreducible in Y as in the case of proof of 2.4 . Hence $\operatorname{dim} Y$ is not finite and this is a contradiction.
3.2 Theorem. Let R be a primitive ring. Then R is right artinian if and only if $X(R)$ satisfies the descending chain condition on the subbasic open sets.

Proof. If R is right artinian, then R is a simple artinian ring. Hence if A is a right ideal of R, then $j(b(A))=A$. Hence if $\operatorname{supp}\left(A_{1}\right) \supseteq \operatorname{supp}\left(A_{2}\right) \supseteq \cdots \supseteq$ $\operatorname{supp}\left(A_{n}\right) \supseteq \ldots$ is a chain of subbasic open sets for some right ideals A_{1}, A_{2}, \cdots, A_{n}, \cdots then $b\left(A_{1}\right) \subseteq b\left(A_{2}\right) \subseteq \cdots \subseteq b\left(A_{n}\right) \subseteq \cdots$ and $j b\left(A_{1}\right)=A_{1} \supseteq j b\left(A_{2}\right)=$ $A_{2} \supseteq \cdots \supseteq j b\left(A_{n}\right)=A_{n} \supseteq \cdots$. Thus the chain must terminate. Conversely, assume that the descending chain condition holds on the subbasic open sets. Let V be a faithful simple right R-module. To prove that R is artinian, it suffices to show that V is a finite dimensional vector space. So suppose the dimension V is infinite. Then there exist infinite independent vectors v_{1}, v_{2}, \ldots such that $\operatorname{supp}\left(v_{1}^{\perp}\right) \supset \operatorname{supp}\left(v_{1}^{\perp} \cap v_{2}^{\perp}\right) \ldots$. This is a contradiction.

Acknowledgement. We are deeply indebted to the referee for many invaluable suggestions for the preparation of this paper.

REFERENCES

1. A. Bialynicki-Birula, J. Browkin and A. Schinzel, On the representation of fields as finite union of subfields, Colloq. Math. 7 (1959), 31-32. MR 22 \#2601.
2. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R.I., 1964. MR 36 \#5158.
3. R. S. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc. No. 70 (1967). MR 36 \#151.
4. R. G. Swan, Algebraic K-theory, Lecture Notes in Math., no. 76, Springer-Verlag, Berlin and New York, 1968. MR 39 \#6940.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27607

[^0]: Presented to the Society, May 10, 1971; received by the editors May 13, 1971.
 AMS 1970 subject classifications. Primary 16A20, 16A42; Secondary 16A48.
 Key words and phrases. Maximal regular right ideals, socle, reducible spaces, Hausdorff spaces, support.

