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REGULAR SEMIGROUPS SATISFYING CERTAIN CONDITIONS

ON IDEMPOTENTS AND IDEALS

by

mario petrich

ABSTRACT.   The structure of regular semigroups is studied (1) whose poset

of idempotents is required to be a tree or to satisfy a weaker condition concern-

ing the behavior of idempotents in different ÍD-classes, or (2) all of whose ideals

are categorical or satisfy a variation thereof.    For this purpose the notions of D-

majorization of idempotents, where  D  is a î-class, !D-majorization, S-categorical

ideals, and completely semisimple semigroups without contractions   are intro-

duced and several connections among them are established.   Some theorems due

to G. Lallement concerning subdirect products and completely regular semigroups

and certain results of the author concerning completely semisimple inverse semi-

groups are either improved or generalized.

1.   Introduction.  An arbitrary regular semigroup S has at least two outstand-

ing features:   (1) may have a very complicated structure, (2) abounds in idempo-

tents.   For these two reasons, it is natural to impose suitable restrictions on the

partially ordered set  Es  of idempotents of S  in order to obtain various classes of

regular semigroups more susceptible to a treatment which might eventually lead to

a complete determination of its structure.   Another type of restriction is a state-

ment concerning different kinds of ideals of  S.   Such restrictions are sometimes

expressed by means of Green's relations.   As long as these restrictions are very

strong, they lead to a complete determination of the structure (mod, e.g., semilat-

tices or groups) of the semigroup satisfying them, witness:   completely 0-simple

semigroups (see [l], [9]), trees of completely 0-simple semigroups [8], simple reg-

ular cü-semigroups ([5], [lO]), etc.

In addition to the frequent hypothesis that our semigroup be completely semi-

simple, we impose restrictions of either type mentioned above with the following

variations:   (1) the partially ordered set  Es  is required to be a tree or to satisfy

a condition concerning the behavior of idempotents in different ©-classes of S,

(2) all ideals are required to be categorical or satisfy a modified version thereof

involving JJ-classes of S.   With suitable restrictions on a regular semigroup, we

are able to establish several connections among these conditions, and in some

instances, characterize the semigroups in question in terms of subdirect products
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of (general or special) completely 0-simple semigroups, or give their complete

structure.   The frequent change of hypotheses strongly suggests that many of our

results are not the best possible.   This opens a great number of problems particu-

larly concerning subdirect products of O-bisimple regular semigroups.

Summary. We begin in §2 by considering the relationship of two regular JJ-

classes  A  and  73   of an arbitrary semigroup S in terms of the behavior of their

idempotents and functions from  B  into  A  satisfying certain multiplicative condi-

tions.   The principal idea here is a generalization of the development first ex-

pounded by Lallement [6, Chapitre II, §3] for the case of a completely semisimple

semigroup.   We introduce two binary relations on the set of regular JJ-classes of S

and the notions of C- and cr-majorization, which are then used throughout the pa-

per.   Making a free use of the results in the author's paper [14], the main result of

this section is a connection between the function v.   introduced in [14] and A-

majorization (a condition on idempotents) for a regular semigroup S.   A number of

lemmas are stated in a general setting and seem to be of independent interest.

In §3 we specialize the situation by further restricting the condition on the

functions  y„  for a regular semigroup S, and deduce a slight improvement of a

theorem due to Lallement [6, 2*. 12, 2.17] concerning subdirect products of com-

pletely 0-simple semigroups, giving a simpler proof.   This is further specialized

in §4 by considering completely regular semigroups, the main hypothesis always

being JJ-majorization.   Again we improve a theorem of Lallement [6, 2.21—2.23],

giving several characterizations of the class of completely regular semigroups sat-

isfying JJ-majorization.

We introduce in 55 the concept of a cr-categorical ideal, and for   a certain

class of regular semigroups  S  show that JJ-majorization implies that all ideals of

S ate JJ-categorical and that if Es  is   also a tree then all ideals are categorical.

In order to establish a partial converse of these statements, we consider in §6 a

more general situation.   Indeed, we introduce the notion of a completely semisim-

ple semigroup without contractions and give simple necessary and sufficient con-

ditions in order that an extension  V of a primitive regular semigroup S without

contractions be determined by a partial homomorphism.   This is used in §7 to ob-

tain a partial converse of some statements in §5.   Several results in y §5 —7 have

been established for inverse semigroups in the author's paper [15].

Notation.  We follow the notation and terminology used in [l] with a few minor

exceptions.   The following is a list of frequently used notation.   If A  is a non-

empty subset of a semigroup S, then  EA  denotes the partially ordered set of

idempotents contained in A,  where  e < / <$$> e = ef = fe.   To avoid cumbersome

exceptions, we often suppose that the semigroup S under consideration has a

zero, which is denoted by  S = S  ;  usually an obvious modification yields the de-

sired statement for the case without zero and will not be explicitly stated.   For
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sets  A  and  B, we write  A\B = {a £ A\ a f. B\,  and do not distinguish between

an element and the set consisting of that element alone.   The set of nonzero ele-

ments of a semigroup S with zero is denoted by S .   If D  is a JJ-class of S, then

D    denotes the groupoid defined on the set DUO where  0 tf. D,  0 acts as the

zero, and all products of elements of D that, in S, fall outside of D are set equal

to  0.   If a is a homomorphism of S,  ker a is the congruence on  S induced by Ct.

We use the following notation frequently:

M    =|/e£   |/<e(    where  e £ E s-

2. Conditions on idempotents of regular D-classes. We will establish here a

number of auxiliary statements mainly concerning two regular D-classes of an ar-

bitrary semigroup.   These results are fundamental for a large portion of the paper.

Throughout this section,  A  and  B denote regular D-classes of an arbitrary

semigroup S = S  .

Lemma 2.1.  // (AB U BA) n A /, 0,  then there exist e £ EA   and f £ Eß

such that e < f.

Proof. Let a £ A, b £ B and suppose that ab £ A. Let / £ E„ be such that

b = bf,  and let x = ab, x    be an inverse of x,  e = fx x.   Then

e    = (fx'x)(fx'x) = fx'(xf)x'x = fx xx'x = fx'x = e,

ef = (fx'x)f = fx'ixf) = fx'x = e = fe,

so that  e < /.   Further,

x~ xix x) = abx x = aibf)x'x = abifx'x) = xe

which together with  e = ifx')x implies that e x. x and thus  e £ A.   The case

ba £ A  is analogous.

It follows from [2, Theoreme 2] that under the hypothesis of the lemma, for

any g £ E„, we have  M, O EA = M    n EA   as partially ordered sets.   We thus in-

troduce the following notation:

A < B  means that for some (and thus any) / £ E„,   M, O EA /L 05,

A "£. B means that for some (and thus any) / £ E„, the poset M, C\ EA has a

greatest element, to be denoted by /.

The relations  < and  ^   are defined on the set  A  of all regular D-classes of

S.   It follows from the definition that both < and  ■<.   are reflexive and that <  is

also transitive.   In a simple regular ty-semigroup with D-classes  D., D,, ■ • • , D

where  72 > 1,  we have  D. ^ D.  for any  1 <»',/'< «  showing that   ;<  and thus also

< need not be antisymmetric, see [5] or [10].   In fact,   ^   need not even be tran-

sitive.   For take the set  T= {1,2,3!, and transformations a=(x2p, ß=(\\l),
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y = (\¡¡), d = (\22\); then Dy = D§ < Dß, Dß < Da, but Ds £ Da.

We will have many occasions to consider various functions from  73  into A

which have certain multiplicative properties.   It is then convenient to introduce

the following notation.   Let  d>: B —> A  be a function and  a £ A,  b, b  £ B  be ar-

bitrary elements.   We will say that  <f> satisfies condition (a),   resp.  (ß),  etc., if

(a)  ab £ A =$► ab = a(bcß),  ba £ A =^> ba = (bcb)a;

(/3)  EB<f>CEA;
(y) ab £ A   or a(bcf>) £ A =£► ab = a(b<f>),  ba £ A  or (b<p)a £ A =£> ba = (bcp)a;

(8) bb' e 73 =£► (bb')<p = ibcpAb' = b(b'<pA = (bcf>)(b'<f>);

and if C is a regular JJ-class of S and if/ : C —> A  (for C = 73, take if/ = cpA,

(e)  b £ B,  c £ C,   be £ A =>bc = (bcf>)c = b(cifi) = (b<fA(cif/).

The purpose of the next two lemmas is to construct a function from  B to A

satisfying (a) and (ß) provided that A ^ 73.

Lemma 2.2.  Let A <  B,   b £ B,  and e, f £ Eg  be such that e 7 b,   b £ f.

Then e~b = bj£ A and this element is independent of the choice of e £ R,,   f £ L,.

Proof.  Recall that  e~ is the greatest element of  Mg C\ EA.   To prove the first

statement, by symmetry, it suffices to show that  bf = ëbf £ A.

Since  b X. f and i_ is a right congruence, we obtain  bf Jl // = / so  bf £ A.

Let g be an idempotent such that  g 7 bf; then  bf = g(bf) and g = (bf)u tot some

u £ S.   Consequently,

(ge)2 = (bju)e(bju)e = bju(eb)jue = (bju)2e = ge,

so ge £ Eç.   Further,  g = bfu = g(eb)fu implies that ge J\ g,  so ge J\ bf.   Since

bf £ A,  it follows that ge £ A.   Thus ge £ EA   and ge = bfue = (eb)fue = ege  im-

plies that ge < e.    But then ge < ê and we obtain

bf = g (bj) = g(eb)J = (ge) bf = ? (ge) bf = -ëbf.

The second statement of the lemma   follows from the first since there is no con-

nection between e  and /.

Because of this lemma, if A ^ B we are able to define a function r¡„ . : B

—» A as follows:

77„ . : b —*e~b = bf     where  e 7 b, b X. f (b £ B).

Lemma 2.3.  If A ■<, B,   then r¡BA  satisfies (a) and (ß).

Proof.  Let a £ A,   b £ B,  and  e £ Eß  be such that ab £ A,   e 7 b.    Then  ab

= a(eb) = (ae)b and   a(br)BA) = a(e~b) = (a~ë)b;  thus to prove that ab = a(bcf>),  it

suffices to show that ae = de.   First note that  e 7b implies ae Â ab  so that

ae £ A.    Letting  t be an inverse of ae, and  h = etae,  we obtain  h £ E~, h <e,
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h Jl ae and hence  h < e.   Consequently,

ae = ah = a (hë) = (ah)ë = (ae)ë = de

as desired.   Therefore  ab = a(br]BA);  symmetrically  ba £ A   implies   ba = íbr¡BA)a.

Since for any e £ Eß) we have er]BA = e~,   it follows that EBr)BA Ç EA.     Q.E.D.

The next eight lemmas treat the relationships among the conditions  A < ß

and A "5  B, the function t¡BA,  and functions cfe susceptible to satisfying certain

of the conditions  (a)-(e).

Lemma 2.4.  // A < ß and there exists  cfe satisfying (a) and iß), then A :< B.

Proof.  For any  e £ Eg,  we have  ecfe £ EA.   If / £ M£ O A,  then f = fe = ef so

that /= (erp)/= fiecfe) and thus  /< e<p.   Hence  ecfe is the greatest element of M

nA.

Lemma 2.5.  If A •<  B and A  is also a §-class of S,  then r¡„A  satisfies (y).

Proof.  Since by 2.3 the function  r¡„ .   satisfies  (a), by symmetry, it suffices

to show that for a £ A,   b £ B,  the inclusion a(br¡BA) £ A   implies  ba £ A.   In-

deed, for / £ EB  such that  b X /,  we obtain

](a)= ] ia íbr¡BA)) = / iabj) Ç / iab) Ç / ia)

so that ab £ A.

Lemma 2.6.   // A  5 B  and B     is completely 0-simple, then T)„A  satisfies

Í8).

Proof.  For  b, b', bb' £ B,   if e £ Eß  satisfies  e % b, then also e % bb' since

ß    is completely 0-simple.   Hence

ibb')-qBA =ê(bb') = (êb)b' = (br,BA)b'

and thus, by  (a),also, (hr]BA)b' = ibr¡BA)ib'ijBA) since ihb')r¡BA £ A.   Analogous-

ly,(bb')rjBA = b(b'r}BA).    Q.E.D.

Lemmas 2.5 and 2.6 cease to be valid if both A  and  B  ate supposed to be

only regular.   For example, take again a simple regular (¿-semigroup S which is

not bisimple.   In the notation of [5], letting  e, > e?, > • • • > e,   be the poset of all

idempotents of the chain of groups  C,  we specify A = D.Q       ..,   ß = D,Q        Qy

A straightforward calculation shows that, for a = (0, e^O),   b = (0,e2,0),  b' =

(l,e2, 0), we have a £ A,   b, b' £ B and (1) aibrjBA) £ A  but ab f A  so that (y)

fails, (2) bb' £ B but ibriBA)(b'r]BA) 4 Ü>T]BA)b' so that (5)  fails.

Lemma 2.7.  // A     is completely 0-simple and cfe  is a function satisfying (a),

then A  ^ ß  and <fe = tira .

Proof.   If e £ EB,  f, g £ EA   satisfy  e > f,   e > g,  then, by (a),  /= (et/S)/ =
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f(ed>) which in a completely 0-simple semigroup implies that  ecb = j and, analo-

gously, ec/j = g.   Consequently, /= g and A 'S B.   Let b £ B  and e, f £ E„ be

such that e 7 b,  b X. f.   Then bngA =~eb £ A which by (a) implies êb = ë(bcp)

so that  br/B . = e(bcp) and, symmetrically,  hr¡BA = (ècp-) /.   A simple computation

using a Rees matrix representation of A    shows that the last two equations imply

b<t>=br,BA.

Lemma 2.8.   If A < B and there exists a function cf> satisfying (a) and (8),

then A IS B and <f> = r)BA.

Proof.  First note that (5)  implies  (ß).   Hence by 2.4 we have that A 'S  B

and by its proof that, for any  e £ Eß,  eçf> is the greatest element of Mg n E^.

Consequently, ecp" = ë = er¡BA.   For any b £ B, there is  e e£„  such that e 7b,

and hence by (8),

b<ß = (eb)<f> = (etp) b =eb = brjBA.

Lemma 2.9. If A < B, A < C, b £ 73, c £ C, be £ A, then r¡BA and r\CA

satisfy (c).

Proof.  For e £ Eß,  e 7 b, by (a) we obtain

be = (eb)c = (er]BA)bc = ~e(bc) = (lb) c = (br¡BA)c = Í^ba^^CA^'

and dually  be = b(cr¡CA).

Lemma 2.10.  If A < B,  B < C,  A  < C,  and A0 and 73° are completely 0-

simple, then r¡CBr]BA = VcA.

Proof. For c £ C, e £ Ec such that e 7 c, let eB be the greatest element

of Me n B and eA he the greatest element of MeBCiA. Using (8) (see 2.6), we

obtain

^CB'lBA  = {eBc)r>BA  = (eB(eBc))r?SA  = {eBïIBA) eBC ~ eAeBC " eAC'

0
On the other hand,  e > e„ > eA   and A     completely 0-simple imply that  eA   is the

only element in  M£ f> A,  so that  cr¡CA = eAc and the desired equality follows.

Lemma 2.11.  If A = Ja and B = Jb,   then A < B  if and only if J (a) Ç J(b).

Proof.  If A < B,  then for some  e £ EA,   f £ E„  we have  e < / so that e £

J(f) and thus  J (a) = /(e) C /(/) = J (b).   Conversely, suppose that  J (a) Ç ] (b).

For any e £ EA   we have  e = xby fot some x, y £ S.   Then  e = exèy and thus

J(e) = J (exby) C / (ex7>) C / (ex) C / (e)

which implies that  ex, (ex) b £ A.   Consequently,  AB Cl A =/ 0  and 2.1 implies
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A <B.

As a consequence we have that if D = ß in a regular semigroup S then the

relation < agrees with the usual partial ordering of 5-classes defined by / < /,

if and only if J ia) Ç jib).

By TA denote the trace of A and let v* be the homomorphism of S into the

translational hull 11(7^)  of  TA   constructed in [l4, §3].   In particular,

ker xA = (ker yA np) ^ (ker y a" a)

where

ker XAuv = As, ^1 ¡-f a £ A  and either as % a  or at 9\ a, then zjs = azj

and for ker XAnA  there is a dual expression.

Recall that an (ideal) extension V of a semigroup S is dense if the equality

relation on V is the only congruence on V whose restriction to S is the equality

on  S (see, e.g., [3]).   Also recall the notation  n   = (A.  , p ).

Proposition 2.12. // A is both a D- and §-class of a regular semigroup S =

S ,   then SxA   is a dense extension of the O-bisimple regular semigroup AxAUi7Q.

Proof.  Let F = AxA U i7„.   If a £ A,  s £ S, then

as   £ J ia) = /   u / ia) = A U / ia)

so that  iaXA^sXA^ = (as^XA 6 ^>  an<^ dually isxA^>iaXA^ 6 ^' wnlcn proves that

F is an ideal of SxA.   Since A  is a regular D-class and AxA U 270 = F is an

ideal of SxA,  it follows that AxA   is a regular D-class of SxA,  so  F  is a O-bi-

simple regular semigroup.   To prove that the extension is dense, we suppose

that, for s, t £ S,

isXAAaxA) = itXAAaxA),       i"XAAsxA) = iaXAAtxA)       ia£A).

Then isa, ta), ias, at) £ ker xA  ia £ A).   Let a £ A  and suppose as 5\ a.   For

e £ Es such that e 3\ a, we get ea = a and e % as  so that e Â eias).   Since

ias, at) £ ketixA77p),  it follows that  eas = eat and hence as = at.   Symmetrically,

at Ä a implies  as = at.   Dually, either of the relations  sa X a, ta X. a  implies

sa = ta.    But then is, t) £ ker xA   which proves that sxA = IXa>  which by [3, 3.7]

implies that SxA   is a dense extension of  F.

The conclusion of 2.12 fails for all but one D-class of a simple but not bi-

simple regular co-semigroup S (again by a straightforward computation using the

representation in [5] or [10]).

Corollary 2.13. Every regular semigroup S = S in which D = 5 is a subdi-

rect product of dense extensions of O-bisimple regular semigroups.

Proof.  This follows from [14, Proposition 2] and 2.12.
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We are now interested in the case Sy/ . = AyA U 77 0 for a regular semigroup

S, fot ii this holds for all JJ-classes, then S is a subdirect product of O-bisimple

regular semigroups AyA U uQ.

Lemma 2.14.   ByA Ç AyA   if and only if there exists a ¡unction 0 satisfying

(y).

Proof.   Necessity.   The hypothesis implies that for every  b £ B  there exists

a £ A  such that b\A = ayA.   Since  y^l^   is one-to-one, a is unique and we write

d) : b —> a = ~b~.   Hence À   = À    and thus for every (a; i, u) £ T. ,  we have

(1) bH., = 77.., <$> bH., = 77., =£> r'.br. = r'.br..
v   ' zl 7I zl 7 1 7       I 7        z

Let a £ A,  then a £ 77.    for some  i and a, and thus  a = ru for some  u £ S.   Sup-

pose next that ba £ A.   Then ba = ¿7.77 e A  and since  7)7.« J\ br., it follows that

bri £ A.    Hence  7>77;1 = 77 j for some  j and (1) implies that  bH¿l = 77-j and 7.¿?7¿ =

r'.br..   By virtue of r .r'.= e . 7 br. and  e.7 br-, we obtain
J      z ' Jill 7 !'

7>a = 7» (7. w) = e . (7)7.) « = 7. (7 '7)7 )u = r.(r'.br)u = e. (br.) u = b(r .u) = ba.
I 7 Z 111 77Z 7 ! '

Conversely, if  ba £ A, an analogous proof shows that then  ba = ba.   This estab-

lishes the second part of (y)  for the function  4>;  the first part follows similarly

from pb = (?.

Sufficiency.   For any  b £ B, again writing  b = bd),  if  bH■ 1 = 77.j,  then  br■ =

br. e 77.j  and hence  r.f77; = r.èr^ £_H iy   Similarly, if 7)7/^ = 77.j,  then  r.èr. =

r'.T^. £ 77jj.   Consequently, Àè = Ar,  and dually p   = pb and thus   èy^ = 7>Y¿.

The following concept will prove very useful.

Definition 2.15.   Let  C be a nonempty subset of a semigroup 5.    Then  S sat-

isfies C-majorization if, for any  e £ Es, either  M   O C = 0 or  M    OC has a

greatest element.

Theorem 2.16.   Let S = S     be a regular semigroup and let A  be a 7-class of

S.   If Sv, = /4v, U 770,  then S satisfies A-majorization; the converse holds if

A   is also a $-class of S.

Proof.  Suppose that Sy¿A = AyA U nQ and let  B  be an arbitrary iD-class of

S.   If A < B does not hold, then, for every  e £ Eß, we have  M   n A = 0.   If

A < B, then  B)^ Ç AyA   since  ^   maps   B  into a JJ-class of .Ay^ U 770,  and

2.14 implies the existence of a function 0 : B —»A  satisfying (y).   Since (y) im-

plies both (a) and (ß), by 2.4 we have that A ^ B.

Now suppose that A  is also a ¿J-class 0f S and that 5 satisfies A-majoriza-

tion.    Again let  B  be any JJ-class of S.   If A < B  does not hold, then  B\A = nQ.

It A <B, then 2.5 implies that r¡BA  satisfies (y) which by 2.14 yields  ByA Ç

A\A.   Consequently,  SyA = AXa U 77q.
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We now introduce the notion which for the case  o = D will be a fundamental

hypothesis for a great number of statements throughout the paper.

Definition 2.17.  Let o be an equivalence relation on a semigroup S.   Then

S  satisfies o-majorization if S satisfies C-majorization for all equivalence

classes  C of a.

Corollary 2.18.   Every regular semigroup S = S    satisfying D = ß and Ju-ma-

jorization is a subdirect product of O-bisimple regular semigroups.

Proof.   Let  A be an index set of D-classes of S different from 0.   Then [14,

Proposition 2] says that the mapping  X- s —' isXn^De£i iS an lsornorphism of S

into the direct product U.DeùÙÎTD)   (we have omitted here the D-class  0 as we

may).   Consequently, S is a subdirect product of semigroups  SxA, A £ A.   Since

for every A e A,  by hypothesis  A   is also a 5-class and S  satisfies A-majoriza-

tion, 2.16 implies that SxA = AxA U 2T0  so that  SxA   is a O-bisimple regular

semigroup.

Theorem 2.16 and its corollary have their obvious analogues for the case of

a regular semigroup without zero.   Indeed, if A   in 2.16 is the kernel of S, then

SxA = AxA  should be substituted for SyA = AxA U zr0, otherwise the statement

remains the same.   Corollary 2.18 for the general case becomes

Corollary 2.19.  Every regular semigroup satisfying D = 5 and S)-majorization

is a subdirect product of O-bisimple and bisimple regular semigroups.

3.   Subdirect products of completely 0-simple semigroups.  Recall that for any

semigroup S,  the inner part 11(5)  of the translational hull Í2 ÍS) of S is the ideal

of 0(5)  consisting of all tt   = (A  , p  ), s £ S, where À x = sx, xp   = xs  tot all

x £ S (see, e.g., [3]).   We are interested here in conditions on a regular D-class

D  of a semigroup S  in order that SxD = IIÍTD).   As a consequence we deduce a

slight improvement of an important theorem due to Lallement [6], giving a simpler

proof.

Lemma 3.1.   Let D  be a regular JJ-class of a semigroup S = S  .    Then Dyn=

IKTd)\ï7q  if end only if D     is a completely 0-simple semigroup.

Proof. Necessity.  The function Xq\d  ls a Partial isomorphism of D onto

n(TD)\270 since  yD   is a homomorphism of S whose restriction to  D  is one-to-

one.   For e, f £ ED,   e < f implies  exD < fXo  an<^> since n(TD) is completely 0-

simple, we must have  exD = fXp-   But then  e = /,  proving that every nonzero

idempotent of D     is primitive.   Since  D    is O-bisimple, the Rees theorem implies

that D     is completely 0-simple.

Sufficiency.  For s £ D with s £ R. O Ly,  let 5 = ir'.sq'v; j, v);   then
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Xs (a; i,u) = (r'ksr.a; k, p.)     if s//., = 77fel

(1)
= 0 otherwise,

X-(a; i, u) = (r'sq'v; j, v)(a; i, u) = (r'. sq'v(qvr.)a; j, a)

(2)
= (r'.sr.a; j, a)     if q   r. £ 77,,,

7       z'J'r- ^ f   z 11'

= 0 otherwise.

Now giving  D     the same Rees matrix representation used in constructing  TD, we

have  s = (g; j, v),  qv = (h; 1, v), r. = (t; i, 1)  for some  g, h, t £ 77jj,  and obtain

sri = (g; 7> "Mr; i, 1) = (gpvit; f, l),

qvr. = (h; I, v)(t; i, l) = (hpv-t; 1, l),

which implies  s77¿1 = Hkl ■##> qyr{ £ 77j j =£> /e = /'.   This together with (1) and (2)

shows that Xs (a; i, a) = X-(a; i, a).   Consequently,  Xs = X- and a symmetric

proof shows that also ps = pj,  so that syD = 77—.   It is easy to see that for

(g; f, v) £ TD,  letting  s = r^gqv,  we obtain sXd = »Tj = ^(g.j,vy   Therefore,  xD

maps  D onto n(TD)\770.

Note that in the proof of necessity it is enough to assume that D-yD Ç

Il(TD)\n0.

Lemma 3.2.   If D  is a £-class of a semigroup S and D     is completely 0-sim-

ple, then  D  is a Q-class of S.

Proof.   Let  /  be the 5-class of S containing  D.    Then the principal factor

/    is 0-simple, and if it is not completely 0-simple, by [l, Theorem 2.54], for

every idempotent  e  in D,  J     contains a copy  B  of the bicyclic semigroup with

identity  e.   But then for some f £ Eg,  we have  e > / and  e JJ /,  implying that D

contains two comparable nonzero idempotents.   This contradicts the hypothesis

that D    is completely 0-simple.   Hence  /    is completely 0-simple and  D = J.

Theorem 3.3.   Let D  be a JJ-class of a regular semigroup S = S    with D =/ 0.

Then SyD = U.(TD)  if and only if D     is completely 0-simple and S satisfies D-

majorization.

Proof. Necessity.  If for some  s £ D we have  syD = n*, then since  yD  is a

homomorphism, we also have   DyD  = n0.   If D has only one element, say x,  then

x is an idempotent and xyD = nQ is impossible, and if D has more than one ele-

ment, DyD = ttq contradicts the fact that Xd  restricted to D  is one-to-one.

Hence  DyD Ç n(TD)\770 and 3.1, together with the remark following it, implies

that D    is completely 0-simple, which in turn, again by 3.1, implies that T>Xd =
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n(TD)\770.   It follows that  SxD = n(TD) = DxD U 270 which by 2.16 implies that

S satisfies D-majorization.

Sufficiency. Since D     is completely 0-simple, 3.1 implies that E>xD U nQ = II(TD)

and 3.2 that  D  is also a ß-class of S.   Hence by 2.16, we have  SxD = T>Xd u n0

= n(TD).

Recall that a semigroup S is said to be completely semisimple if each princi-

pal factor of S is completely (0-)simple.

Theorem 3.4 (cf. [6, 2.12, 2.17]).  The following conditions on a regular semi-

group S are equivalent.

(a) S  is completely semisimple and satisfies D-majorization.

(b) S  is completely semisimple and, for any elements a, b £ S,   J (a) C J (b)

implies D   < D,   and the existence of a function cfe : D, —♦ Dfl satisfying (a).

(c) S  is a subdirect product of completely (0-)simple semigroups.

The function cfe in (b) is equal to r]D D and satisfies (ß), (y), (8), and the

system of functions \rjD D \ satisfies (e) and has the transitivity property in

2.10.

Proof,  (a) =^ (b).   This follows from 2.11 and 2.3.

(b) =^ (a).   This  follows from 2.11 and 2.7.

(a) =^ (c).   It follows from 3.3 that S  is a subdirect product of completely

(O-)simple semigroups  II (TD), where  D ranges over all D-classes of S.

(c) =^-(a).   Assume that 5  is a subdirect product of completely (O-)simple

semigroups Sa, a £ A.   Then 5 is completely semisimple by [6, Lemma 2.14].   We

suppose (as we may) that S C Ua€ASa and also that  e, f, g £ Es have the proper-

ties  e > f,   e > g,  f D g.   Writing  e = (ea), f = (fj, g = (ga),  it follows that for

every a £ A.  ea> fa.  ea> ga, fa= 0 <=> ga= 0.   Hence if fa/ 0, then fa< ea im-

plies  fa= ea, and ga/= 0 so ga< ea implies  ga= ea, hence fa= ga.   Consequent-

ly»  /= (/a)  = iga) = g which establishes D-majorization.

When (b) holds, for A = Da  and  ß = D&,  by 2.11 and 2.7 we obtain A  < B

and  cfe = T)BA.   Hence  cfe satisfies  (y)  by 2.5 and (§) by 2.6 ((¿5)  trivially implies

iß)), and the system  \r]BA\ has the required properties by 2.9 and 2.10.

4.   Completely regular semigroups. We will now apply some of the results in

the preceding section to this class of semigroups, obtain additional characteriza-

tions and a construction of the semigroups in question.   The results here supple-

ment some of those of Lallement [6, Chapitre II, §4].   Recall that a semigroup S

is called completely regular if for every a £ S there exists  b £ S  such that a =

aba,   ab = ba; equivalently,  S is a union of (pairwise disjoint) groups (see [l], [9]).

A band (idempotent semigroup) B  is called (left, resp. right) normal if it satisfies

the identity (axy = ayx, resp. xya = yxa) axya = ayxa (see, e.g., [17]).   Note that

in a completely regular semigroup S,  the relation D is the smallest semilattice



256 MARIO PETRICH [August

congruence on S and each JJ-class is completely simple, so  S is a semilattice of

completely simple semigroups (and conversely).   In accordance with this terminol-

ogy, we say that a semigroup S is a normal band of groups if }i is a congruence,

S/K is a normal band, and every M-class of S is a group.   The last requirement

is equivalent to the fact that S is completely regular.   If a  is an element of a

completely regular semigroup S, we denote by a    the identity of the maximal sub-

group of S containing a.

Theorem 4.1   (cf. [6, 2.22, 2.23]). The following conditions on a completely

regular semigroup S are equivalent.

(a) S satisfies S)-majorization.

(b) Both X. and 7 are congruences,  S/X.   is a right normal band,  S/Jv is a

left normal band.

(c) S  is a normal band of groups.

(d) For any  e, f, g £ E$,  e<f implies  (eg)* < (fg)*, (ge)*<(gff.

(e) S  is a subdirect product of completely simple semigroups with a zero pos-

sibly adjoined.

Proof,   (a) =^> (b).   Since J\  is always a left congruence, it suffices to show

that it is here a right congruence.   Thus let a, b, c £ S,  a 7 b,   b   be an inverse

of  b,  f = bb ,   t be an inverse of  be,  D  be the JJ-class of S  containing  be.   Then

bctbb  £ ED  and / > bctbb'.   Also ac, cb' £ D and thus there exists v £ D  such

that acvcb  £ E„  since  D  is completely simple.   Now a = bx  tot some x £ S and

thus fa = bb a - bb (bx) = bx = a so that f> acvcb'.   Consequently, the hypothesis

implies that  bctbb = acvcb   and hence

be = (bc)t(bc) = (bctbb')(bc) = (acvcb')(bc) £ acS

and, dually,  ac £ bcS.   Therefore,  ac 7 be which proves that J\ is a congruence.

Now let a, x, y £ S, let a' be an inverse of a,  e = aa,  s   be an inverse of

axy,  D be the JJ-class of S containing axy.   Then axysaa  £ E~,  ayx, xya' £ D

and there exists  u £ D such that ayxuxya  £ Eß since D is completely simple.

Further,  e > axysaa   and  e > ayxuxya   which by the hypothesis yields  axysaa' =

ayxuxya .   Consequently,

axy = axysaxy = (axysaa ) (axy) = (ayxuxya ) (axy) £ ayxS

and, dually,  ayx £ axyS.   Hence  axy 7 ayx which shows that  S/7 is a left nor-

mal band.

The statements concerning X. are established in an analogous manner.

(b) =^ (c). Since H = X. O J\, we have that M is a congruence and that S/K

is a subdirect product of the right normal band S/X. and the left normal band S/7.

Hence we may consider S/K as a subsemigroup of iS/X.) x (S/7) and obtain
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(a x, a 2)ix v x 2)iy x, y 2)ia x, a A = ia yX xy xa v a 2x 2y 2a 2)

= («j yj Xj «j, a2y2x2a2) = (zZj, a2)iyx, y2)ixj, x2)(«j, z?2).

Thus  S/fi is a normal band.

(c) =$> (d).   First let  ß  be a normal band, let  a, b, c £ B with  a < b.   Then

zzc = (ab) c = a(bc)c = (zzcKèc) and similarly ac = (bc)(ac)  so that <zc < be.   Next

let  s —> s   be the canonical homomorphism of S onto ß = S/K,  let  e, f, g £ Es,

and suppose that e < /.   Then e' < f'   and hence  eg < /'g'   so that (eg)' < (/g)'.

Consequently,  (eg)' = (eg)'(fg)''= (fg)'(eg)' and thus

(1) M*H(eg)*(/g)*,        (eg)*H(/gneg)*.

But then

(eg)*(/g)*= [(eg)*(/g)*](eg)*= (eg)*[(/g)*(eg)*] = (/g)*(eg)*

and hence both (eg)  (fg)   and (/g) (eg)   ate idempotents.   It then follows from (1)

that

(egf=iegrifg)*=ifg)Aeg)*,

i.e. ieg)*< ifg)*.   The proof of ige)* < (g/)* is dual.

(d) =» (a).   Let e. f, g £ Es with e > /,   e > g.  / D g.   Then g = ge = íge)*>

igf)   and similarly g > (/g) .   Since g, gf, fg ate all D-related, it follows that g =

igO   = ifg) •   Analogously f = (gf)   = (fg)   which yields / = g.

(a)=^(e).   We have seen in the preceding section that such a semigroup S is

a subdirect product of semigroups  II (TA) as  D ranges over all D-classes of S.

Since for no D-class  D,  the semigroup D    has zero divisors, the same holds for

the semigroups  II(TA).

(e) =^» (a).   This follows from 3.4.

Using 3.4 it is easy to see that the semigroups in 4.1, and only they, can be

constructed as follows (cf. [17, Theorem 6]; [6, 2.21, 2.22]).

Construction 4.2. Let Y be a semilattice, for each a, £ Y, let Sa be a com-

pletely simple semigroup, and suppose that $a n 5g = 0 if a =/ ß. For a, ß £ Y

with a> ß, let 6a g: Sa —» Sn be a homomorphism, let 6a a be the identity map-

ping on 5a> and suppose that

(2) daßdßy = 6a/y    if a>ß>y.

On the set S = Uaey Sa define a multiplication by

a*h-{ada,aß^bdß,aß)        {a £ Sa>   b £ V"
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Then S satisfies the conditions of 4.1, and conversely, every such semigroup can

be obtained in this way.

For a given semilattice   Y and sets  Sa with functions  da a  as above, call

the system \6a o\  transitive if it satisfies (2).

Corollary 4.3  (cf. [4]).  T7>e following conditions on a completely regular

semigroup S are equivalent.

(a) S satisfies the conditions 4.1 and E~  is a subsemigroup of S.

(b) Eç   is a normal band.

(c) S is a subdirect product of a class of semigroups of the following types:

groups and left or right zero semigroups, and any of these with a zero adjoined.

Proof,   (a) =^> (c).   By 4.1,  S  is a subdirect product of semigroups   T and/or

T    with  T completely simple, where now ET forms a subsemigroup of  T since   T

or  7*    is a homomorphic image of S.   But then  T is isomorphic to the direct prod-

uct  G x L x R where   G, L, R ate a group, and a left and a right zero semigroup,

respectively (for a proof, see, e.g., [11, Lemme l]).   Hence   T =(G x L x R)

where the latter is a subdirect product of semigroups   G , L , R  .

(c) =£» (b). Since in each of the semigroups listed in (c) idempotents form a

normal band, the same holds for any of their subdirect products.

(b) =^> (a).   By 4.1,  Es  satisfies JJ-majorization, which evidently implies

that the same holds for S, and thus   S  satisfies the conditions of 4.1.

It follows from (c) that subdirectly irreducible groups, 2-element left or right

zero semigroups, and all of these with a zero adjoined constitute the class of all

subdirectly irredicible semigroups satisfying the conditions of 4.3.

In order to give a construction of the semigroups satisfying the conditions of

4.3, in the above construction we take Sa = Ga x Lax Ra and compute all homo-

morphisms of such a semigroup into another of the same type.   This can be done

by specializing the expression of a homomorphism of an arbitrary completely (0-)

simple semigroup into another (see, e.g., [l, Theorem 3.1l]) or by a direct consid-

eration as in [12].   All homomorphisms  8:GxLxR—*GxLxR   ate given as

follows:    let  co : G —»G   be a homomorphism,  d> : L —» L   and if/ : R —> 7?   be

functions,  and let (g, I, r) 6 = (gco, Id}, nfi).

Construction 4.4.  Let  Y be a semilattice, for each a £ Y,  let Ga be a group,

La and  Ra be nonempty sets, and suppose that  Ga O Go = La n L = Ra n Rg = 0

if a^ 73.   For a, ß £ Y with a > ß,  let a>a ß : Ga —» G'o  be a homomorphism,

d>a,ß: La -* Lß  and  "Aa>/3: Ra — Rß   be functions, let  wa>a, fa^, i/ra>a be the

identity functions on  Ga, La, Ra, respectively, and suppose that each of the sys-

tems  jtua>/g|, \d)a<ß}, !<AaiJßi  is transitive.   On the set S = Uaey(Gax La x Ra)

define a multiplication as follows:   for (g, I, r) £ Gax La x Ra and  (g', I', r) £

GßxLßx Rß,
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(g, I, r)*(g', /', r') = iigü)ataß)ig'o>ßtaß), l<Pa,aß>r'<f/ß,aß)-

Then  S satisfies the conditions of 4.3, and conversely, every such semigroup can

be obtained in this way.

This subject is related to the theme of the structure of regular semigroups

satisfying permutational identities, see [16].

5. Conditions on ideals of a regular semigroup.  We now return to regular semi-

groups and ask the following question:   what can we say about ideals of a regular

semigroup S if S satisfies D-majorization or  E~  is a tree?   The theorems below

give an answer to this question for S suitably (and, indeed, strongly) restricted;

the converse of these results is not true, but a partial converse will be estab-

lished in V7.   To this end, we first introduce a new concept.

Definition 5.1.  Let  / be an ideal of S and  a be a binary relation on a semi-

group S.   Then 7 is a o-categorical ideal of S if, for any a, b, c £ S, ab, be it I

and ab o be  imply abc ft I.

When  o is the universal relation, a cr-categorical ideal is the usual categori-

cal ideal; if S has a zero which is a categorical ideal of S, then S is said to be

categorical at zero (see [l, §7.7], where  5 itself is not a categorical ideal, we do

not make this exception).

Lemma 5.2.   The following conditions on an arbitrary semigroup S are equiv-

alent.

(a) For all a, b, c £ S,   if ab 5 ¿zc  then abc 5 ab  {.either abc 5 ab  or

abc 5 be].

(b) All principal ideals of S are ^-categorical {.categorical],

(c) All ideals of S are ^-categorical {categorical].

Proof.  We will prove only the unbracketed statements, the bracketed state-

ments are treated analogously.

(a) =^> (b).   If ab, be ft J (x) and  ab 5 be, then abc ß <aé> and thus  abc fi J(x).

(b) =^ (c).   Let  / be an ideal of S and ab, be /.I,  ab § be.   For every x £ I,

the principal ideal J (x)  is ß-categorical and  J (x) C /.   Thus  ab, be ft J(x), and

hence ab 5 be implies  abc ft J(x).   Since x £ I is arbitrary, it follows that abc

tf I and  / is ß-categorical.

(c) =# (a).   If ab 5 be,  then ab, be ft I (ab) and since   I (ab) is either ß-cate-

gorical or empty, we must have  abc ft ¡(ab) so that abc ß ab.

Theorem 5.3.  If a regular semigroup S = S    satisfies  (a) D = 5,  (b) all prin-

cipal factors of S are categorical at zero,  (c) D-majorization, then all ideals of

S are D-categorical.

Proof.   For any D-classes  A   and  B,  if A < B,  then the hypothesis implies
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A ^ B, so by 2.3 the function r¡BA : B —» A  satisfies (a) and (ß), and by 2.9

the system of functions  \r]BA\ satisfies  (e).   Now suppose that ab S) be.   Letting

a=rlD  D  b' ß = rlDbD   j,' Y=Vd  D  b> we obtain ab = (aa) (bß),  be = (bß)(cy).

It follows that aa, bß, cy,(aa)(bß), (bß)(cy) £ Dah where  D   ,   can be consid-

ered as the set of all nonzero elements of the principal factor  j(ab)/l(ab).   By hy-

pothesis, the latter is categorical at zero which implies that (aa) (bß) (cy) £ D , .

By (e) we also have  be = (bß)c and thus  abc = (aa)(bß)c = (aa)(bß)(cy) £ Dab.

Hence  abc JJ ab and 5.2 implies that all ideals of S ate JJ = ß-categorical.

Recall that a partially ordered set  P is called a rree if, for any a, b, c £ P,

the relations  a > b, a > c imply that either  b > c or  c > b.

Theorem 5.4.   If S  is a completely semisimple semigroup for which E?  is a

tree, then all ideals of S are categorical.

Proof.  By 5.2 it suffices to show that for any a, b, c £ S, we have abc £ D   ,

U Db   .   Since  J (ab) C J (b) and  J (be) Ç J (b),  by 2.11 there exist idempotents

e e D,,  / e D ,,  g £ D,     such that  e > /,   e > g.   The hypothesis implies that ei-

ther f> g  or g > /;  suppose that / > g,  the other case is treated analogously.

Then J(bc) C J (ab) Ç J(b) which by 2.11 and the hypothesis implies  D,     ■< D ,,

Dab ^  Db-   Dbc ^   Db-   NoW let  <t> = ^DkD^  * - ï/Da6D6c»   X = VDbDbc'  and let

b   be an inverse of b.   Using 2.3, 2.6, and 2.10, we obtain

(1) (ab)iff = (abb'h)iff = [(abb')(b<f>)]iff = (abb')iff (bcpifr) = (abb')if/(by),

bc = b(b'bc) = (bX)(b'bc),

so that (abb')if/, b\, b'be, (abb') iff (by/), (by)(b'bc) £ D,   .   Since  D,     is complete-

ly 0-simple and thus categorical at zero, it follows that (abb )iff(by)(b be) £ D,

and (1) implies  (ab)yj(b be) £ D,   .   Here  ab £ D,,   b'be £ D,   ,  so by 2.5 we con-

clude that

abc = (ab) (b'be) = (ab)iff (b'be) eDL
r be

as desired.

If S  is an extension of a completely simple semigroup by a completely 0-sim-

ple semigroup, then all ideals of S    ate categorical but we cannot say anything

about the idempotents of S  .   Thus the converses of both 5.3 and 5.4 fail badly.

6.   Extensions of a primitive regular semigroup without contractions.   In order

to establish a converse of the theorems in the preceding section, we consider here

a more general situation, namely that of extensions determined by partial homomor-

phisms of a primitive regular semigroup without contractions.   For the pertinent

material consult [1, Chapter 31.

Definition 6.1.  A regular A x 7 matrix  P over a group with zero has no con-

tractions if
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p../=0 ^#> p   . /= 0 for every  i £ I  implies À = p,

p     jL 0 ^#> p.,/0 for every À e A  implies  z = ;'.

Thus   P has no contractions if and only if no two distinct rows and no two

distinct columns of  P have the corresponding entries simultaneously different

from zero.   The case of  P without contractions may be considered as a weakening

of the condition that  P be an invertible matrix and also as the opposite extreme

of the case in which all entries of P are different from zero.

Recall that a completely 0-simple semigroup  T with trivial subgroups is

called a rectangular 0-band, and that the congruence induced on an arbitrary semi-

group S by a homomorphism cfe of S onto  T is called an ¡-matrix congruence

where  / = Ocp~    (see [7]).   A congruence on a semigroup different from the univer-

sal relation is called proper.   The next proposition will be quite useful.

Proposition 6.2. The following conditions on a regular Rees matrix semigroup

S = ÎR   (G; /, A; P) are equivalent.

(a) P has no contractions.

(b) M  is the only 0-matrix congruence on S.

(c) Every proper congruence on S  is contained in K.

(d) For e, f £ Es,  exe /= 0 <^ fxf 4- 0 for all x £ S  implies  e = /.

Proof,   (a) =^» (b).   By [6, 4.24] every proper congruence on S  is obtained

from a triple  (zV, p, n) where  N is a normal subgroup of  G,   p and  77 are partitions

of  / and A, respectively.   The conditions in [6, 4.22] on p and 77 in conjuction

with our hypothesis imply that both must be the equality relations.   On the other

hand, the congruence associated with ÍN, p, n) is a 0-matrix congruence if and

only if  N = G.   Consequently the only 0-matrix congruence on S is the one asso-

ciated with (G, 2'., ¿A) where  i. and  1.   ate the equality relations on  / and A, re-

spectively, namely K.

(b) =^ (c). By [6, 4.22, 4.24] and the hypothesis, only the triples of the form

(N, i., tA) are associated with proper congruences on S, since otherwise (G, p, rr)

for either p 4- i{ or  27 4, ¿A  would yield a 0-matrix congruence different from K.

.Hence by [6, 4.25], every proper congruence on S  is contained in H.

(c) =£» (d).   The relation M defined on S by

a % b if axa 4. 0  *-* bxb 4. 0 for all x £ S

is by [7, 2.6] the largest 0-matrix congruence on  S.   Hence M  is proper and thus

the hypothesis implies M C K.   Thus if e, f £ E~  satisfy  e 511 / we obtain e K /

so that  e = /.

(d) =#> (a).   Suppose that, for all A 6 A,  pX{ 4 0 •#> px- 4 0.   There exists

p £ A  such that pu. 4 0, so also  ¿2,, . 4 0.   Hence for any ix; k, A) £ S,
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(p-.1; 2, p)ix; k, A)ip-]; i, p) ¿ 0 <&>Pßk± 0,  px. ¿Q^p^Q,  pXj ¿ 0

Oip-1; j, p)ix; k, A)ip-y, j, p) 4. 0

which by the hypothesis implies  (p~. ; i, p) = ipZA; j, p) and hence   i = j.   One

shows analogously that pAj. / 0 ^^ p   . 4 0 tot all  i £ I implies  A = p.

Even though the concept "no contractions" was defined for a sandwich ma-

trix, the above proposition shows that for a completely 0-simple semigroup S,  this

notion does not depend on the particular Rees matrix representation.   For this

reason, we say that S  has no contractions and, more  generally, introduce the fol-

lowing concept.

Definition 6.3.  A completely semisimple semigroup S = S    has no contrac-

tions if every nonzero principal factor of S is without contractions (i.e., satisfies

any of the conditions in 6.2).   If S is completely semisimple without zero, then S

has no contractions if S    has none.

Proposition 6.4.  Every completely semisimple semigroup S without contrac-

tions has the property that every congruence on S contained in D  is also con-

tained in K.

Proof.  Let o be a congruence on S such that o C D,  and let   P = Jía)/¡ía)

be a principal factor of S.   If  ¡ia) = 0, then   P is the kernel of S and the hypoth-

esis implies that   P must be a group, which then trivially implies that  o\„ C K|p.

Suppose next that ¡ia)4 0.   Since  P  =J(a)\l(a), the restriction o\p*  is an

equivalence relation on  P   which can be extended to a congruence  r on  P by let-

ting the zero of P  be r-related only to itself.   Hence  r is a proper congruence of

the completely 0-simple semigroup  P which by 6.2 implies that r is contained in

the H equivalence on P.   Since the restriction of the H equivalence on S to P

coincides with the restriction to  P    of the  K equivalence on  P, and   P is an ar-

bitrary principal factor of S, it follows that o CK, the H equivalence on S.

The converse of 6.4 holds if for every principal factor  P of S, every proper

congruence on   P restricted to  P   can be extended to a congruence on S con-

tained in D.   This occurs in the case we consider next.   Recall that a semigroup

S = S    is an orthogonal sum of (its sub-) semigroups  S , a £ A,  if S = \JaeASa,

SaSß = Sa n So = 0 if a 4. ß (0-direct union in [l, §6.3]); the semigroups Sa ate

called components.   We will write S = 2-aeA ©Sa,  and if there are only two com-

ponents, S = Sj © S2.   A regular semigroup S = S     is called primitive if all its

nonzero idempotents are primitive; these are precisely the semigroups which are

orthogonal sums of completely 0-simple semigroups [7, 5.16].

Corollary 6.5.   The following conditions on a primitive regular semigroup S

are equivalent.
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(a) S has no contractions.

(h) Every congruence on S which is contained in JJ  is also contained in K.

(c) For e, f £ Es,  exe /■ 0 #£> fxf / 0 for all x £ S  implies  e = f.

Proof,  (a) =^ (b).   This is a special case of 6.4.

(b) =^ (c).   Since  5  is an orthogonal sum of completely 0-simple semigroups,

it follows without difficulty that the relation % defined in the proof of 6.2 (c) =è»

(d) is a congruence on  S contained in JJ  and thus also in H,  which implies that

(c) holds.

(c) =^ (a).   Condition (c) then also holds in each completely 0-simple compo-

nent of S and hence 6.2 implies (a).

Recall that an ideal 7 of a semigroup S is prime if for any a, b £ S, aSb C 7

implies that either a £ I or b £ I, and that 7 is a matrix ideal if it is both prime

and categorical (see [7] where categorical is called quasi-complètement premier).

Lemma 6.6.  Let  V = V    be a semigroup categorical at zero with an ideal S =

Sa£ . © Sa where each Sa is completely 0-simple.    Then  V = (^aeA © Ta) © Q

where, for every a. £ A,  we have S  Ç T   and 0 is a matrix ideal of T .

Proof.  Let T = \v £ V | Sv /= 0\ u 0 and Q = (v\ T) U 0.   If s £ S and v £ V

ate such that sv 4 0, then sv = (sv) u(sv) for some  u £ S since sv £ S and S is

regular.   But then  us £ S and v(us) 4 0.   By symmetry, we conclude that Sv 4 0

^> vS 4 0,  and the definition of  T is actually symmetric.   If  t £ T,   v £ V,  and

tv 4 0, then st 4 0 for some s £ S and hence the hypothesis implies that stv 4 0,

so that  tv, v £ T.   It follows similarly that  t £ T,  v £ V,  and  vt 4 0 imply  vt, v

£ T.   Consequently,   T is an ideal of  V and, for any  t £ T,  q £ Q, we have  tq =

qt = 0.   If x, y £ V and  xy £ T , then sxy 4 0 for some  s £ S and thus  x, y £ T.

It follows by contraposition that Q  is a subsemigroup of  V, which then shows

that  V = T © Q, and by construction, 5 C T.

If  t £ T , then st 4 0 for some  s £ S and hence  sí = (st)u(st) fot some  u £

S,  so that  tTt 4 0.   In such a case,   0 is called a semiprime ideal of  T and since

0 is also a categorical ideal of  T   [7, 5.13]  implies that  T = 2nE„ © To   where

0 is a matrix ideal of each  To.   It is easy to see that each Sa is an ideal of S

and thus also of T.   Since  0 is a prime ideal of each  Tß,  if s. £ S* , s2 £ S* ,

and 5    U S    Ç Tß, then for some  t £ Tß,  s y>s2 4 0.   But s xts2 £ S*  D S*    and

hence ax = a2.   Consequently, each  To  contains at most one Sa.   If t £ To then

st £ S for some s£$a  for some a  which shows that  Sa Ç Tß  and each  Tß   con-

tains at least one  Sa.   Therefore we may label the   Tß's   in such a way that Sa is

contained only in  Ta.

We will take for granted definitions and simple properties of an (ideal) exten-

sion, partial homomorphism, an extension determined by a partial homomorphism,

and inflation (see [l, §4.4] and [3]).   The next theorem and its corollaries were
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established in [15] for the special case of a primitive inverse semigroup.   It seems

remarkable that in it and its corollaries the nature of the entire extension is dic-

tated by its behavior at zero.

Theorem 6.7.  An extension  V of a primitive regular semigroup S without

contractions is determined by a partial homomorphism if and only if V has a cate-

gorical ideal I such that I O S = 0.

Proof. Necessity.   The proof is the same as the proof of necessity of [15,

Theorem l] and does not require the hypothesis of no contractions.

Sufficiency.  As in the proof of sufficiency of [15, Theorem l], the problem

can be reduced to the case / = 0.   By [7, 5.16] we can write S = 2ae/1 ©Sa where

each Sa is completely 0-simple, so by 6.6 we obtain  V = i^-aeA © Ta) © Q where,

for each a £ A,  Sa is a 0-minimal ideal of Ta and 0 is a matrix ideal of Ta.   Now

the restriction of the smallest 0-matrix congruence  $a on   Ta to Sa is a 0-matrix

congruence on Sa.    Since  Sa has no contractions, 6.2 implies that the H. equiva-

lence  Ka on Sa is its only 0-matrix congruence, which then implies that $a|s =

Ka.   Hence  [7, 4.15.1] is satisfied and thus [7, 4.15-II] yields the existence of a

homomorphism cfea mapping   Ta onto Sa and leaving the latter elementwise fixed.

Defining cfe on all of  V by vcfe = vcfea if v £ Ta and vcfe = 0 if v £ Q, it follows at

once that cfe is a homomorphism of  V onto S  leaving the latter elementwise fixed.

By [13, Proposition 2],   V is an extension determined by a partial homomorphism

(in fact, by <p|v\s).

The proofs of the following corollaries are the same as those of the corol-

laries to [15, Theorem l].

Corollary 6.8. A semigroup V is an inflation of a primitive regular semigroup

without contractions if and only if V is categorical at zero and V2 is a primitive

regular semigroup without contractions.

Corollary 6.9.   Let S be a primitive regular semigroup without contractions

and let  T be a semigroup categorical at zero and having no nonzero proper ideals.

Then an extension  V of S  by   T  is determined by a partial homomorphism if and

only if V is categorical at zero.

7.   Completely semisimple semigroups without contractions. We will prove in

this section that for this class of semigroups the converses of 5.3 and 5.4 are

valid.   These results have several interesting consequences.   We begin by charac-

terizing the property "no contractions" in terms of elements of a completely semi-

simple semigroup.

Proposition 7.1.  A completely semisimple semigroup S  has no contractions

if and only if, for any e, f £ £_,
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e £ SexeS ^^ f £ SfxfS    for all x £ S  implies  e = /.

Proof. Necessity.   Let  e, f £ Es   and suppose that, for all x £ S,  e £ SexeS

■^> f £ SfxfS.   Since  e e SeeeS, we have  / £ SfefS C SeS = /(e)  and hence  /(/) Ç

/(e);  by symmetry, we also have  /(e) Ç /(/).  Letting P = J(e)/I(e), we obtain

e, f £ P .   Let x £ P and suppose that exe ^ 0 in  P.   Since   P  is completely

(O-)simple,  e = uexev fot some  u, v £ P .   Consequently,  e £ SexeS since  u, x,

v £ S and the hypothesis implies that  / £ SfxfS, that is,  /= afxfb  for some  a, b

£ S.   It follows that fxf £ P   which proves that fxf 4 0 in  P.   By symmetry, we

conclude that, for all x £ P,   exe 4 0 <í#> fxf 40 which by 6.2 yields   e = /.

Sufficiency.   First let   P be a completely 0-simple semigroup and suppose

that, for  e, f £ Ep, we have  exe /O <^#> fxf 40 fot all x £ P.   If xey ¡¿0,  then

xe 40 and ey j¿0, so there exists  u £ P such that eywxe 40.   The hypothesis

then implies that fyuxf 40 and thus  fy 40 and xf 40 so that xfy 4 0.   By sym-

metry, we conclude that xey ^ 0 «#^ xfy 4 0 for all x, y £ P.

Now let   P be a principal factor of 5,  let  e, f £ Ep*  and suppose that, for all

x £ P,   exe 40 -^^ fxf 40.   Suppose next that  e £ SeyeS tot some  y £ S.   Then

e = aeyeb fot some  a, b £ S and hence  ea, yebe £ P and   (ea)e(yebe) 4 0 in  P.

By the above,   (ea)f(yebe) 4 0 in P.   Since  eafy, be £ P,  again by the above,

(eafy) f(be) 4 0 in  P.   Consequently f £ P eafyfbeP  ÇSfyfS;  by symmetry, we

conclude that for all y £ S,   e £ SeyeS ■#$► / £ SfyfS, which by the hypothesis

yields  e = /.   Therefore   P has no contractions.

The next result provides a partial converse of 5.3.

Theorem 7.2.   The following conditions on a completely semisimple semigroup

S without contractions are equivalent.

(a) S satisfies 7}-majorization.

(b) A77 ideals of S are 7)-categorical.

(c) S  is a subdirect product of completely 0-simple semigroups without con-

tractions.

Proof,   (a) =^> (c).   As we have seen in the proof of 3.4,  S  is a subdirect

product of its principal factors, which here by the overall hypothesis have no con-

tractions.

(c) ^> (a).   This is a part of 3.4 and holds in any completely semisimple

semigroup.

(a) =^> (b).   This is a special case of 5.3.

(b) =£► (a).   Let e, f, g £ Es  and suppose that e >./,  e > g,  f -D g.   Let  P =

J(f)/I(f) and suppose that fxf 4 0 in  P fot some x £ P.   Then  fexf 4 0 and

hence  ex £ P .   Consequently, ge, ex $ 1(f) and ge £ ex and thus the hypothesis

implies that gex fi 1(f) (if  7(/) =0,  this is trivially satisfied).   Hence in  P,  gx
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4. 0, and an analogous argument shows that also xg 4- 0.   But then gxg ^ 0;  by

symmetry, we conclude that, for all x £ P,  fxf 4- 0 ■#^» gxg 4. 0.   Since   P  has no

contractions, it follows that /'= g.

The next corollary should be compared with 3.4.

Corollary 7.3.   The following conditions on a semigroup S are equivalent.

(a) S  is a completely semisimple inverse semigroup satisfying D-majorization.

(b) S  is a completely semisimple inverse semigroup all of whose ideals are

D-categorical.

(c) S  is regular and a subdirect product of Brandt semigroups.

The next theorem is a partial converse of 5.4.

Theorem 7.4.   /t2 a completely semisimple semigroup S without contractions

all of whose ideals are categorical,   ZL   is a tree.

Proof.  Let  e, f, g £ E$  and suppose that  e > /,   e > g.   If /(/) ^ J (fg) 4- j(g),

then fe, eg ft J (fg) and the hypothesis implies that fg = feg \i j(fg),  a contradic-

tion.   By symmetry, we may suppose that J (g) = J (fg) so that  J (g) C /(/).   If

¡(g) = 0, then the hypothesis implies that J (g) = J    is a group, and J (g) C /(/)

by 2.11 yields  f>g  since g is the only idempotent in  J .

Suppose next that  ¡(g) £ 0.   Since  ¡(g)  is a categorical ideal in S, we ob-

tain that the semigroup  V = J(e)/I(g) is categorical at zero.   Further,   T =

jig)/1ig) is a completely 0-simple semigroup without contractions and an ideal of

V.   Letting  / = 0 in 6.7, we conclude that  V is an extension of T determined by

a partial homomorphism cfe.   Hence the hypothesis  e > g implies that  ecfe > g,  but

since   T is completely 0-simple, we must have  ecfe = g.   Again by 2.11, the hypoth-

esis  Jig) C J if) implies the existence of h £ Ej    such that / > h.   But then e >

/ > h which as above implies that  ecfe = h.   Consequently,  / > h = ecfe = g as de-

sired.

Corollary 7.5.   ¡n a completely semisimple semigroup S without contractions,

E-  is a tree if and only if all ideals of S are categorical.

In particular, the conclusion is valid in any completely semisimple inverse

semigroup; this is precisely the content of [15, Theorem 2].

Proposition 7.6.  // S  is a regular semigroup in which D = ß  and all of whose

ideals are categorical, then S/3  is a tree.

Proof. Suppose that J ia) 3 jib) and J ia) D J ic).   By 2.11, there exist / £

Ej   and g £ Ejc such that e > / and e > g.   Since then feg = fg £ Jifg), the hy-

pothesis implies that either / £ Jifg)  or g £ J ifg).   Consequently, either /(/) =

Jifg) or Jig) = Jifg), so that either  jib) Ç J ic) or  /(c) Ç Jib) and thus  S/5  is

a tree.
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