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HOMOLOGY IN VARIETIES OF GROUPS. IV
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ABSTRACT.   The study of homology groups  =ß„(II, A),  'S a variety, II a group

in ii, and A   a suitable Il-module, is continued.  A 'Tor' is constructed which gives

a better (but imperfect) approximation to these groups than a  Tor  previously con-

sidered,  ii  (II, Z)  is calculated for various varieties  3i  and groups   II.

Introduction.  We continue the study of homology groups  33  (IT, A), where EÍ

is a group in the variety 3}  and A   is a suitable Fl-module, as in [2ll, ^251 and

[31], here  after referred  to as  [H i], [H II] and [H III].   These homology groups

were compared with a certain Tor in [H i]  and [H II], and it was shown that the

two theories do not always agree in dimension 1.  In § 1 we introduce a different

Tor which gives a better approximation to 3}  (n, A);  this theory arises from the

consideration of two-sided modules as in the Hochschild theory, and was prompted

by a remark of Barry Mitchell's.  In §2,3}  (n, Z)  is calculated approximately for

3}  the variety of metabelian groups that are nilpotent of class  c and FI  a finitely

generated abelian group.  The homological techniques are the same as those used

in [H III]  to calculate  3}  (n, Z)  for 5}  the variety of all nilpotent groups of class

c and II  as above, though the group theory here is harder.  Comparing the results

in the two cases we deduce that neither  Tor mentioned above always agrees with

3]  (II, A)  if 72 = 2, even when A   is a module with trivial action.   In §3 we repeat

the above calculations, for 3]  the two varieties of all metabelian and all centre-

by-metabelian groups.  A refinement in the homology enables the calculations to

be exact in these cases.  The variety of metabelian groups is particularly inter-

esting in that in this case it follows from a theorem of Grace Orzech that

33   (n, A), which can be calculated from 3}  (JJ, Z)  in the case of trivial action,

may be interpreted as an obstruction group much as in the classical theory.

The principal conventions and notations of [H I], [H II]  and [H III]  will re-

main in force.  A finitely generated abelian group will be said to be of rank r and

type  (s; ?2., - • • , 72 )  if it is the direct product of s  infinite cyclic groups, and  t

finite cyclic groups, one of order 72.  for each  i, where n . divides  72        for  1 <

2 < t, and r = s + t.   A cyclic group generated by the element a will be written
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C(a) if it is of infinite order and  C (a) if it is of order 72.   The category of abelian

groups will be written as Ab, except when it is regarded as a variety of groups, in

which case it will be written as  ?I.  If R   is a ring, MR   and  RJÍi denote the cate-

gories of right and left fi-modules respectively.

1. The Hochschild theory.  If II is a group, U   will denote the opposite group

of II with elements  Í77*j zr e IT?, and multiplication given by n*p* = (prr)*.  A two-

sided II-module A   may be regarded as a left Zu    ®z Zll-module by in* ® p)a =

pan, or as a right ZYl   ®z Zll-module by ¿2(77* ® p) = nap, fot all a  in A   and 27,p

in IL  Then the Hochschild homology groups  /7e (II, A)  ate defined to be

TorZn  ®Zn(ZlI, A);  here Zu  is a two-sided Il-module in the natural way, so that

Zu and A  may be regarded as right and left Zu    ®z Zll-modules respectively. If

A   is a left II-module then A   may be regarded as a two-sided Il-module by pan =

pa.   Then it is proved in [6] that He ÍYI, A) and H (II, A) = TorZI1(Z, A) ate iso-
' r n n n

morphic.  Turning to the relative case, bear in mind that the varietal homology in-

volves a dimension shift so that S (n, A)  is to be compared with  Tor      ÍDH, A),

where Dîl = /Il ®z Sil.  The two-sided analogue of Sn  will be  SeII = Sn*®z Su.

If IL, Il    are any groups in S, and  a: IIj—► II    is a homomorphism, then  a  in-

duces a homomorphism  a*: II, —» IL  by n*a* = (77a)  , and a homomorphism Sa:

Sllj — 5ßn2, so putting Sea = Sa* ® Sa: SS'IIj — S<TI2, Se  becomes a functor

from S  to rings.  We now construct the two-sided analogue of DL.   For any group

r define p : ZY    ®z ZY —» Zr  by (y* ® y  )p = y,y2  and extend by linearity.

Then putting ZeY = Zr   ®„ Zr, p becomes a homomorphism of right Z^T-modules,

where Y acts naturally on Zr  on either side.  Thus, putting JY = ker p, JY  is a

right Zer-module.   If now Y —► II e |(S, n)|, there is a natural homomorphism of

ZeY  onto Sel\ and hence into SeII;  and so we may form JY ®zer SeII = DeY,

say.  De  defines in a natural way a functor from (S, II)  to right SeII-modules.

A two-sided Su-module may equally be regarded as a left or right SeII-module

in the same way that an arbitrary two-sided II-module may be regarded as a left or

right ZeII-module.  In other words, the categories «,n^„n of two-sided Su-modules,

M  e„and -ejM  ate all isomorphic.  If A   is an abelian group then A   can be made

into a left or right Su-module by making II  act trivially if and only if the exponent

of II divides the exponent of S.  Thus, if A   is a right Su-module, A   can be made

into a two-sided Su-module by making II  act trivially on the left; A   with this ad-

ditional structure will be denoted by   A. Similarly, if A   is a left Sil-module, A

may be defined.

It is the thesis of this paragraph that Tor"*" ÍDeU, Af)  and Extn^enÍDeXA, ( A)

ate better approximations to S3  (II, A)  and  S"(ll, A)  than are  Tor8"(Dîl, A)  and

Ext"    (Dll, A) respectively; but first a few details must be disposed of.

Lemma 1.1.  // T-» II e |(S, II)|, then DeY  is generated as a right S<TI-

module by S(y* ® 1 - 1* ® y) ®z<?r 1 | y £Y\.
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Proof.   By [6, Proposition IX. 3-1], /I"1  is generated as a right ZT-module by

\(y* <g> 1- 1* ® y)\ y eTS-

If A   is a 3}en-module, and F -» n £ |(33, ü)|, then A   becomes a ST-module,

by pullback, and Der(T, A) denotes the set of derivations of T into A, i.e. maps

8: r —»A   satisfying (y.y 2)<5 =y.(y 8) + (y fi)y   ;  these form an abelian group

under addition.  If A   is a right 3311-module, the usual definition of a derivation of

a group into a module is regained by assuming that n  acts trivially on A   on the

left.

Lemma 1.2.   If T —» II £ |(33, II)|  and A   is a right %eH-module, then there is

an isomorphism DerCT, A) ^ Horn   e   (DeV, A) which is natural in V and in A.

Proof.   It is easy to verify, using Lemma 1.1, that every derivation of T  into
5 o

A  may be written uniquely as a composite T —»   DeV—»" A, where 5  is defined

by y8 = (y* ® 1 - 1 ® y*) ®Zer 1   and ß  is a 33eII-module homomorphism.  The

lemma then follows at once.

Regard 33II  either as a ring or as a left 33eII-right 3311-module, the left 53eII-

module structure arising from letting II  act by multiplication on the left and triv-

ially  on the  right, the right 3311-module structure being the natural one;  the con-

text will make it clear which meaning is intended.  Let A   be a right 3311-module.

Then    A = Hom„n(33n, A), where the (right) 5}eII-module structure on A   arises

from the left 33eII-module structure on 33n.  So

Hom8n(Dr, A) = Der(T, A) = DerOT, (A)

= Homsen(Der, Horn 8n(5ßn, A)) = Horn m(DeF 8^^, A).

From this we deduce

Lemma 1.3.   With the above module structure on Su,  Dr and DeV  ®„„„ 33n

are naturally isomorphic right ^ill-modules.

Proof.   If a right II-module A   is regarded as a split extension of A   by II, and

hence, using the canonical surjection onto II, as an object in (33, H), then by the

above remarks  ™mn  becomes a coreflective subcategory of (33, II)  in the sense of

[26], and both r -. Dr and T - DeT ®^en ^  define coreflexions.

It was proved in [H I, Lemma 1.2] that if F  is 33-freely generated by a set  £

then DF  is freely generated as a right 33II-module by i(l - x) ® 1| x £ $\.  The

proof depended on the way that DT represents the functor Der(r, —)  from right

3311-modules to Ab.  A similar argument proves

Proposition 1.4.   If F  is ^¡-freely generated by a set  £, i7>e72 DeF  is freely

generated as a right ^SeW-module by \x* ® 1 - 1* g> x\ x £ ci-
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Now consider the sequence of functors

(*) (S,n) DZ 8nziisn - 3iïon-^Ab

where  P = - ®   e   Su,  Q = - ®Rn A, and A   is a fixed left Su-module.   By

Lemma 1.3, DeP = D.   Also, PQ = - ®%en At, and DePQ = Diff(-, A). Moreover,

by Proposition 1.4, De  takes S-free groups over II  to free SeII-modules.  Now if

íf and Jo ate abelian categories, U having enough projectives, and if S: (S, II) —»

U and  T: (A —» £ ate functors such that the nth derived functor of T vanishes,

for 72 > 0, on the image in Cf  of a S-free group over II, then there is a spectral

sequence

L r(S (ils)) => s (n, st),pi p     "

as in [13, Theorem 2.26], where  L  T denotes the pth left derived functor of  T.

Recall that if A   is a left Su-module, then S   (II, Diff(—, A))  is abbreviated to

S  (II, A);   in particular S  (II, D) = S (u, Su). Applying this to the sequence (*),

with one functor omitted or two functors composed as above, spectral sequences

(i) Tor8en(S9(n, De), sn) =$>p snui, sn),

(ii) Tor»en(Syn; De^ A() ^ syr^ A)f and

(in) Tor8n(S30L D), A) =*>p Sn(n, A)

are obtained.

Similarly, since  P  is additive and takes projective Sen-modules to projec-

tive Sn-modules and  Q  is additive and right exact, there is, by [28, Theorem

2.4.1], a spectral sequence

(iv) Tot^nÍTotfnÍDeU, Sn), A) =^ TotfniDeYl, A().

(iii) has already been studied in [H II] where a homomorphism 6   (n, A):

5 (n, A) —► Tor      (Dn, A)  was constructed which appears as an edge homomor-

phism of (iii).  Similarly one may construct homomorphisms from S  (n, A)  to

Tor8£?n(Den, A  )  and from  TorS<?n(Den, A  )  to Tor8n(Dn, A)  whose composite
22 e zz C n r

is   6   (n, A)  and which appear as edge homomorphisms in the spectral sequences-

(ii) and (iv), at least if these are constructed analogously to the construction of   '

(iii) in [H II].  This factorisation of 6 is the sense in which  Tor8  n(DeU, A  )

Sn "
approximates more closely to S ÜL A)  than does  Tor     (Dll, A).  In dimension 1,

6 factorises as a product of surjections  S  (n, A) —» Tor8<?n(z9en, A) —»

Tor.    (DU, A), so that the approximation is better in this dimension in a more

concrete sense.  Analogues of the above remarks may, of course, be made for co-

homology.

2.  Metabelian of class  c.   The object of this paragraph is to calculate

S  (n, Z) (approximately) where S = îl    n 2I2 , the variety of all metabelian groups
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that are nilpotent of class at most c, where c > 3, and II is a finitely generated

abelian group. The method of proof is the same as in the corresponding calcula-

tion in the case S3 = 51 carried out in [H III]. The essence of the problem is an

understanding of the Schur multiplier of the S3-free groups. We can get away with

less than the full structure.

If F  is freely generated by the finite or infinite set x  , x  , • • • , a simple

basic commutator of weight  m  is a commutator of the form [x.  , x.  , ■ ■ ■ , x.   ],
e ll      z2 \m

where  i. > i. < i, < • • • < i   -A dopple basic commutator of weight m + 2  is a

commutator of the form [[x .  , x .  ,■■•, x .   ], [x ., x.]], where [x .  , x .  , ■ ■ ■ , x .   ] is
21       z2 lm 1       J !1       l2 lm

a simple basic commutator;  i > j, j < i    and either  ¿_ < /, or  i   = / and  i   < i, or

z   = j and  i. = i and  m > 2.

Lemma 2.1.  Let  F  be freely generated by the finite or infinite set x  ,x  ,■■•,

and let  c > 3.  TAe?2 the Schur multiplier F"F   ^J[F"F  x,, F]   of the 01    Cl 2I2)-
— l CTlCTl' C

free group F/F F +. is the direct product of three subgroups L, M and N, where

L is freely generated, as an abelian group, by the images in F"F ../[F"F ,., F]

of the dopple basic commutators of weight 4, M is generated by the images of the

dopple basic commutators of weight greater than 4, and N is freely generated, as

an abelian group, by the images of the simple basic commutators of weight  c + 1.

Proof. Note that [F" F       , F] = [F", F] F since [F", F]  is a normal sub-

group of F.  That F F  +2/[F', F] F  +    is generated by  L  and M  is clear from

§5 of [30]. Hence F"F  +,/[F"F  +., F]  is generated by L, M and N.   To show

that F F  +1/[77 F  +], F]  is the direct product of LM and N, and that the given

generators of N ate linearly independent, take the natural map F F  +./[F', F]F

—*F F  +,/F  F       ;  by a theorem of Magnus (Hanna Neumann [12, Theorem 36.32])

the second group is freely generated, as an abelian group, by the images of the

simple basic commutators of weight  c + 1, and  L  and M  are clearly contained in

the kernel.  It remains to show that F"F   +./ÍF   .., F]  is the direct product of L

and MN, and that the given generators of L  ate linearly independent.  Consider

the natural map F"77c + 1/[F"Fc + 1, F] —> F   /F     which is freely generated, as an

abelian group, by the images of the simple and dopple basic commutators of weight

4.  This completes the proof.

We shall also need the following commutator identity, valid in any group G.

Lemma 2.2.  If a, b, c, d e G, and if n  is any positive integer, then

[[a", b], [c, d]] h [[a, bn\, [c, d]] ^ [[a, b], [cn, d]]

= [[a, b], [c, d"]} = [[a, b], [c, d]]n    mod [G2, G3\.

Proof.  Immediate by induction.

For a positive integer r, define

t-[4] = (7+ 1)7(7- 1M7- 2)/8.
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For positive integers  r, c, define

xfe(r, c) = c(C + r~1)       (r>l),        xfe(l,c) = 0.

Lemma 2.3. xfe (r, c)  is the number of simple basic commutators of weight

c + 1   on r symbols.

Proof.  We may assume  r > 1.  Fix the value of i.. Suppose  i- = r — s + I.

Then the number of sequences  i_ < i, < • • - < i   ., < r is the number of ways in

which  c - 1   objects may be selected from s   large heaps, s > 0, objects being

indistinguishable if and only if they come from the same heap.  This number is

(s  c~  ), see [27, §11.5]. Hence, for the given value of i  , the number of se-

quences   i:   , i  , - ■ ■ , i  +    satisfying the given inequalities is  (s — l)(s  c~.   ), so

that the total number of sequences is  Sr _As - l)(s  c~?) = c(c  r~   ), as is im-

mediate by induction on r.

We can now prove

Proposition 2.4.  // n  is a finitely generated abelian group of rank r > 0 and

type is; »j, • • • , n ) and S = 31    O U2 , c > 3, then SQ(n, «2(-, Z))  is of rank p

and type io; v  , ■ ■ ■ , v;)  where p = xfeir, c) + rm,  o = xfeis, c) + sm, and vT = n

if s > 0 ö72zi I > 0,  v   = 72     ,   if s = 0 cZTZzi t > 1.  ¡n particular, p = 0 if r = 1.

Proof.   The proof is based on that of [H III, Lemma 3-l], q.v.  However, in

this case the problem is made harder by the more complicated structure of the

Schur multiplier of the S-free groups.  Let n = CÍaA x • • • x Cía ) x C    (a  +J) x

• ■ • x C    ia ), let  PQ  be S-freely generated by x  , ■ ■ ■ , x , and define /: P. —► n

by x .f = a.,  i = 1, • • • , r.  If R  is the kernel of /,  R   is generated, qua normal sub-

group, by {x. l~s |  2 = 5 + 1, • • • , r\ U \{x . , xk]\ 1 < /' < k < r\. Now the split ex-

tension of R  by  P0   is generated by all pairs  (a, b), where a runs over a set of

generators of R  qua normal subgroup and  b runs over a set of generators of PQ.

Then the fibre product  P. x_ P.   is generated by all pairs  (ba, b). Hence we

take  P     to be S-freely generated by \y . \ I < i < r} U {z.] * + 1 < i < r] U

\vjk I  l<j<k<r\, and define  (g,, g2): P, ^ PQ xn PQ   by

y,zS,=^z    ^ig1=\1   S,     "y*«! = t*,-.*t],    y.-fi"*.-'    2z«2 = 1'    wyfc«: 1.

Then (g., g A  is a surjection, and S (n, H A—, Z)) is the cokernel of H (g  , Z)

- H2(g  , Z): H (P   , Z) —> HA.PQi Z).  (To accord with the dissonant conventions

of group theory and homology, HAP., Z)  and  H (P-, Z)  will be written some-

times additively and sometimes multiplicatively.) Lemma 2.1 describes  H AP n,Z)

as the direct product of three subgroups  L     M     and NQ.   Similarly, H (P   , Z)  is

the direct product of three subgroups  L     M     and N    which are defined once the
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generators of P.   have been ordered;  this we do by taking the y.  in the natural

order followed by the z. and v.,   in any order.  The lemma then specifies gener-

ators for the groups  L  , L     etc., the generators of which will be described as

canonical.  It is clear that any canonical generator of H (P  , Z)  is mapped to the

identity by 77 (g, Z)  unless all the generators of P.   appearing in the expression

for the given generator are elements y., i.e. no z .  or v.,   appears.  In the case

when only generators y. appear, the image of the given generator of H (P  , Z) is

the same under H (g  , Z) and H (g  , Z).  Thus we are reduced to looking at the

quotient group of 77  (P   , Z)  by the subgroup generated by the images under

77 (g, Z)  of the canonical generators of 77 (P   , Z)  in which at least one z.  or

vjk  aPPears-  We first prove that M     is in the subgroup generated by the above

images;  this is why the precise structure of M     is not needed.  Let [[x.  , x.  ,

■ ■ ■ , x.   ], [x., x ]]  define a canonical generator of M     so m> 2. Now [[v.   ■  ,
1m '      ! u i 1*2

y ■  ,■■ • , y ■   ], [y -, y.]]  defines an element of 77 (P  , Z) (though not a canonical
Z3 im i     i ¿i

generator) whose  image   under 77 (g  , Z) - H (g  , Z)  is clearly the given canoni-

cal generator of M  . Thus M    makes no contribution to S3 (II, H A—, Z)). Since

Lj  and M l  ate mapped by ^(gj, Z) - 77 (g  , Z)  into LQ x MQ, and N    is

mapped into A/., the contributions of L     and  TV     may be calculated separately.

Every canonical generator of L     and M    will be mapped into M     except for those

represented by elements [[a, b], [c, d]], where each of a, b, c and d is a y.  or

a z . with at least one z. .  By Lemma 2.2 it is sufficient to consider commutators
z i        '

involving exactly one z. in which case, in view of our ordering of the generators

of P., the commutator will be of the form

tbXj» yÍ2l» hi > yy]L     i > />   ¿2 < A     or    [[y ¿i, y.], [z., y.]],     z'j > i^  ¿2 < /.

It follows, using Lemma 2.2 again, that the contribution of L     to S3  (II, H A—,Z))

consists of an abelian group with generators represented by

1[[*¿  > xi ], [x{, x ]]\ z'j > z'2, z > ;', and either  z'2 < / or  z'2 = /' and  z'j < i\

and relators represented by \[[x.  , x. ], [x ., x.]]k\, where  k = k(i  , i , i, j) = 0

if all of a.  , a.   , a. , a.  ate of infinite order, and otherwise is the least of these
z j '     z 2 '     z '     j

orders.  This is a group of rank run  and type (sur, À., • • • , Aa), where Aa= 72

if s > 1, Aa= 72     ,   if s = 1, and Aa= 72 if s = 0, since at least three distinct

generators of P0  are needed to define a generator of L   . (If r = s + i<3,7r4l =

0.) The contribution of TV    is generated by elements represented by all simple

basic commutators  [x .  , x .,■■■, x .      ]  with \[x.  , x .  , ■ ■ ■ , x.       ]   \ represent-

ing the relators where k = k(i,, i., ■ ■ ■ , i   ,,) = 0  if all of a .  , ■ • ■ , a . have
D 12 c + 1 zi !c + l

infinite order, and is otherwise the least of these orders.  This is a group of rank

1/7(7, c), by Lemma 2.3, and is clearly of type (iff(s, c); u  , ■ ■ • , (ij, where
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p„ = 72    if s > 0, and p„ = 72     ,   if s = 0.  Thus the proposition is proved.

We now deduce, exactly as in the proof of [H III, Theorem 3-2], the following

Theorem 2.5.   // n  is a finitely generated abelian group of rank r > 0 and type

(s; «j, • ••, 721), and S = 31 c n 2Ï2 ,  c > 3, then %2(U, Z)  is of rank p  and type

io; v., ■ ■ ■ , vA where

0 < p - xfeir, c) - r j-4-j < t + As - l)(r - 2)/6 (cf. pp. 297-298),

0 < o - ifeis, c) - s[4] < sis - 1) (s - 2)/6,

iv    divides  72,   , 22722^ z'/ s = 0, 2/,  divides  n     ,n. (nn = l).
r ¿2 r z—1   z      o

Note that this theorem coincides with [H III, Theorem 3-2] in the case  c = 3

since in this case 51    D ?I2 = 31   .
c c

Corollary 2.6.  // n  is a free abelian group of rank 3  then S  (n, Z) ^

Tor8I1(Dn, Z)   Z72 at least one of the cases  S = ïl      S = 311 O H2.   A/50, S  (n, Z)
2 ' 4 4.2

^Tor* ^Den, Z)  272 at least one of these cases.

Proof.  Since n  is abelian, if A   is any n-module the split extension of A   by

n  lies in one of these varieties if and only if it lies in the other.  Thus  Sn  is the

same for either variety, and so are  Dll, Sen and  De W (cf. [H I, Proposition 1.5])-

Now let p     and p     be the ranks of S  (n, Z)  in the cases  S = 51     and S = 5c    O

2I2  respectively. Then by [H III, Theorem 3-2], p, > y(3, 4) = 48, and by Theorem

2.5 of this paper, p    < iff(3, 4) + 3r4"! + 1 = 28.  Thus p. /= p   , and the result follows.

3. Metabelian and centre-by-metabelian.   In this paragraph we calculate

S  (n, Z)  exactly for n  a finitely generated abelian group, and S  the varieties Î1

and [Si  , ®]  of all metabelian and centre-by-metabelian groups.  The free groups

of the former variety of infinite rank, in fact of rank greater than one, have trivial

centre, and so if n  is any metabelian group and A   is any Sn-module, where  S =

«  ,  S (n, A)  can be interpreted in terms of obstruction theory, see Orzech [32].

If n acts trivially on A,  S2(n, A)  may be calculated from S  (n, Z)  by universal

coefficients [H I, Lemma 4.1].  The free groups of [ÎÎ  , ®], on the other hand, have

enormous centres;  in fact those of rank greater than one do not satisfy the maximal

condition on normal subgroups.  Now the 'construction pas à pas' of André [l] or

the Tierney-Vogel construction [18] can be used to produce a simplical resolution

of any finitely generated group in S  by finitely generated S-free groups, provided

the finitely generated groups of S  satisfy the maximal condition on normal sub-

groups.  Hence in such varieties, for example in nilpotent or metabelian varieties,

S (n, A)  is finitely generated provided that n  and A   are.  However, if S =

[21  , S]  and n  is free-metabelian of rank greater than one, S,(n, Z) = H AH, Z)  is

not finitely generated;   but if n  is finitely generated abelian, it turns out that

S2(n, Z) (and of course  S  (n, Z))  is finitely generated;  see also the remarks at

the end of this paper.
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Let II  be any group, and let S3  contain the product variety 21 var II.   Then, by

[H I, Proposition 1.4], 5311 = Zu; so if A   is any Zll-module and 9n = 0*UI, A) as

in[H II, §1],

6  : S3 (II, A) — TorBn(Dn, A) = TorZ" (III, A) = U  (II, A),
n       n n n n

where XL  is the universal variety.  Also, if qS    = d) (XL, S3, II, A) as in [H III, §l],

then <j>n. UB(II, A) •— S3n(n, A).  The composite <pn<9„: XLJAA, A) -. XLjJ{, A) may

be regarded as a ô-morphism of 5-functors from ^zn   to ^^> an<^ since d> 6'     is

the identity and tl   (II, A)  is trivial for 72 > 0 and A   projective, it follows that

(f> 8    is the identity for all 72 > 0.  But d)     is a surjection, by [H III, Corollary

2.2], and so is an isomorphism;  thus, by the same corollary, coker q>    =

S3Q(n, 772(-, A)). Hence

Proposition 3.1.  Let 33  contain ?I var II, so that 33II = ZU, and let A   be any

U-module.   Then for all n > 0,

S3 (U,A)3¿ 77   .m, A) © 7C   01, A)
n n + 1 n

where  K (n, A) = ker 6   = coker d>  .  Moreover
n n rn

KjUI, A) = 0    and    K2(U, A) B S3Q(n, 772(-, A)).

It would be interesting to know if there are any nonabelian varieties of finite

homological dimension;  i.e. varieties  S3  such that Ss  (n, A) = 0 for all 72 greater

than some 72., and for all n  in S3 and all 33n-modules A.   The following result

rules out 'large' varieties.

Corollary 3.2.   Let 33  contain the product variety  <ix for some nontrivial

variety  X.   Then there is a group XI  in S3  and a "RH-module A  such that S3  (n, A)

4 0 for all 72 > 0.

Proof.   Take n  to be a nontrivial finite cyclic group in  X, choose A   so that

77 (n, A) 4 0, and apply Proposition 3.1.

Using Proposition 3.1 we calculate  S3  (n, Z)  for n  a finitely generated abe-

lian group and  S3 = u   .   Information about the structure of the Schur multipliers of

the 33-free groups is needed; for their precise structure see [29]-

Lemma 3.3.   Let F  be freely generated by the finite or infinite set x  ,x  ,■■■.

Write  K = [F", F].   T7>e72 the Schur multiplier F"/K of the free-metabelian group

F/F  -is the direct product of two subgroups  L and M, where  L   is freely gener-

ated, as an abelian group, by

S = [[[x    , x    ], [x  , x ]]K\ [[x .  , x. ],[x ., x.]]
z 1      z 2 l      1 M      l2 z      7

is a dopple basic commutator of weight 4\,
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and M  is generated by

T = [[[*.  ,x.  ,x£i,---,x£.m], {x.,x]]K\
'1 '2 *3 '772 2 J '

ck = ± 1, all k;  ??2 > 2;   i > /',   z'j > z'2 < z, < • • • < z'm, 7 < z   ;

and either  i   < ;' or i   = / and i. < z}.

Proof.   This follows from §7 of [29], where it is shown that F"/K  is freely

generated as an abelian group by the set S U T    where  T,   is a subset of T. The

proof is long and complicated;  however, the fact that S V T generates  F /K,

while not quite sufficient for our purposes, may be readily deduced from the first

three paragraphs of the proof of [29, Proposition 7.8].

Theorem 3.4.   // n  is a finitely generated abelian group of rank r > 0   and

type is; n  , ■ ■■ , n), and S   is the variety of all metabelian groups, then S  UI, Z)

is isomorphic to H AH, Z) © K AH, Z), where  K AH, Z)  is of rank run  (see p. 297)

and type  ist 41; 72  , n  ,• ■■ , n  , n), where  n.  is repeated lA(r — i + l)ir— lXr— 2- l)

times,   i = 1, • • • , t.

Note that H?(n, Z) is of rank t + rir - l)(r- 2)/6 and type isis- l)is-2)/6;

72., 72 , • - - , n , 72 ) where 72. is repeated 1 + I4(r - i) ir - i - l) times, i = 1, ■■• , t

(cf. [H III, the proof of Theorem 3-2]).

Proof.   By Proposition 3.1, K-2(H, Z) =^ SQ(n, H2(-, Z)), which is calculated

as in the case of S = 5i    n 2I2  (Proposition 2.4), except that analogues of the

groups  N,   and N.   do not arise.

We now turn to the variety [?I  , S]  beginning with information about the

Schur multipliers of the relatively free groups;  for their precise structure see [29]-

Lemma 3.5.   Ler  F  be freely generated by the finite or infinite set x  ,x,>•••■

Wrz'Ze  K = [F", F, F],  Then the Schur multiplier [F", F]/ K  of the free-centre-by-

metabelian group  F/{F", F]  is the direct product of two subgroups  L  and M,

where  L   is freely generated, as an abelian group, by \{b, xAK\ b a dopple basic

commutator of weight 4\, and M  is generated by \{c, x AK\ c a dopple commutator

of weight greater than 4 as used to define a generator of the group M  in Lemma

3.3!.

Proof.   The result follows from §8 of [29]-

Theorem 3.6.   // n  z's a finitely generated abelian group of rank r > 0 and

type (s; «,,•••, n), and S   is the variety of all centre-by-metabelian groups, then

S2(n, Z)  ¿5 isomorphic to H JJl, Z) © K^H, Z), where  K^H, Z)  is of rank

r x rf4l (see p. 297) and type(s x -sm; n., n., ■ ■ • , n  , n), where n.  is repeated
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(7- z + l)(r- ¿)(r- i- 1)(57- 5z'+ 2)/8  times,   7= 1, •••, t.

Proof.   The proof of Theorem 3-4 needs only slight alteration, an extra term

being tagged onto the end of every commutator.

If n  is an abelian group, S3n, DYl, 33en  and DeYl ate the same in each of the

varieties  21  , [21  , S]  and the universal variety;  this produces a similar situation

to that of Corollary 2.9, except that the three homology theories compared in § 1

are known to coincide in the latter variety, so we can point a finger at the villains.

Corollary 3.7.  If H  is a finitely generated group of rank r > 3, then S3  ÜJ~,Z)

^ Tot^iDYl, Z) and Syn, Z) ^ Tot*en(DeYl, Z)  if S3  is the variety of all

metabelian groups and if 33   is the variety of all centre-by-metabelian groups.

We end with a note on some other varieties.  Let

S3 = I"?!2, (§]

be the variety defined by the law [[[*,, x A, [x  , x ]], x  , ■ ■ ■ , x  + ].   Then the

Schur multiplier of the S3-free group obtained by dividing out the free group on

x., *,>• •■   by this law is generated by elements represented by {[[[x.  , x. ],

[x .  , x . ]], x .  , ■ ■ ■ , x .      ]| [[x .  , x . ], [x .  , x . ]]  is a dopple basic commutator}
73      14 z5 z„+4 zi      z2 ¡3      ¡4

together with commutators of higher weight.  We do not know what relations hold

between generators of the displayed form, but we have seen there are none in the

cases  72 = 0  or 1, and conjecture that there are none if n = 2.  In any case, for

this variety, and n  a finitely generated abelian group of rank r,  KATI, Z)  is of

rank at most r"rr4~|, with equality for ?2 = 0 or  1   and, if our conjecture is true,

for 72 = 2.  This may be compared with [H III, Theorem 3.2], according to which,

if p  is the rank of S3  (n, Z)  where S3 = Ï1     and n  is as above, then p ~

rc + l/(c + 1) as  c -> °o.
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